# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 73 | 0 | 0.9781 | Trafficking arms: oomycete effectors enter host plant cells. Oomycetes cause devastating plant diseases of global importance, yet little is known about the molecular basis of their pathogenicity. Recently, the first oomycete effector genes with cultivar-specific avirulence (AVR) functions were identified. Evidence of diversifying selection in these genes and their cognate plant host resistance genes suggests a molecular "arms race" as plants and oomycetes attempt to achieve and evade detection, respectively. AVR proteins from Hyaloperonospora parasitica and Phytophthora infestans are detected in the plant host cytoplasm, consistent with the hypothesis that oomycetes, as is the case with bacteria and fungi, actively deliver effectors inside host cells. The RXLR amino acid motif, which is present in these AVR proteins and other secreted oomycete proteins, is similar to a host-cell-targeting signal in virulence proteins of malaria parasites (Plasmodium species), suggesting a conserved role in pathogenicity. | 2006 | 16356717 |
| 9982 | 1 | 0.9776 | Family 6 glycosyltransferases in vertebrates and bacteria: inactivation and horizontal gene transfer may enhance mutualism between vertebrates and bacteria. Glycosyltransferases (GTs) control the synthesis and structures of glycans. Inactivation and intense allelic variation in members of the GT6 family generate species-specific and individual variations in carbohydrate structures, including histo-blood group oligosaccharides, resulting in anti-glycan antibodies that target glycan-decorated pathogens. GT6 genes are ubiquitous in vertebrates but are otherwise rare, existing in a few bacteria, one protozoan, and cyanophages, suggesting lateral gene transfer. Prokaryotic GT6 genes correspond to one exon of vertebrate genes, yet their translated protein sequences are strikingly similar. Bacterial and phage GT6 genes influence the surface chemistry of bacteria, affecting their interactions, including those with vertebrate hosts. | 2010 | 20870714 |
| 8139 | 2 | 0.9773 | TAL effectors: highly adaptable phytobacterial virulence factors and readily engineered DNA-targeting proteins. Transcription activator-like (TAL) effectors are transcription factors injected into plant cells by pathogenic bacteria of the genus Xanthomonas. They function as virulence factors by activating host genes important for disease, or as avirulence factors by turning on genes that provide resistance. DNA-binding specificity is encoded by polymorphic repeats in each protein that correspond one-to-one with different nucleotides. This code has facilitated target identification and opened new avenues for engineering disease resistance. It has also enabled TAL effector customization for targeted gene control, genome editing, and other applications. This article reviews the structural basis for TAL effector-DNA specificity, the impact of the TAL effector-DNA code on plant pathology and engineered resistance, and recent accomplishments and future challenges in TAL effector-based DNA targeting. | 2013 | 23707478 |
| 8355 | 3 | 0.9771 | Ecology-relevant bacteria drive the evolution of host antimicrobial peptides in Drosophila. Antimicrobial peptides are host-encoded immune effectors that combat pathogens and shape the microbiome in plants and animals. However, little is known about how the host antimicrobial peptide repertoire is adapted to its microbiome. Here, we characterized the function and evolution of the Diptericin antimicrobial peptide family of Diptera. Using mutations affecting the two Diptericins (Dpt) of Drosophila melanogaster, we reveal the specific role of DptA for the pathogen Providencia rettgeri and DptB for the gut mutualist Acetobacter. The presence of DptA- or DptB-like genes across Diptera correlates with the presence of Providencia and Acetobacter in their environment. Moreover, DptA- and DptB-like sequences predict host resistance against infection by these bacteria across the genus Drosophila. Our study explains the evolutionary logic behind the bursts of rapid evolution of an antimicrobial peptide family and reveals how the host immune repertoire adapts to changing microbial environments. | 2023 | 37471548 |
| 726 | 4 | 0.9771 | Regulation of antimicrobial resistance by extracytoplasmic function (ECF) sigma factors. Extracytoplasmic function (ECF) sigma factors are a subfamily of σ(70) sigma factors that activate genes involved in stress-response functions. In many bacteria, ECF sigma factors regulate resistance to antimicrobial compounds. This review will summarize the ECF sigma factors that regulate antimicrobial resistance in model organisms and clinically relevant pathogens. | 2017 | 28153747 |
| 8363 | 5 | 0.9770 | Hundreds of antimicrobial peptides create a selective barrier for insect gut symbionts. The spatial organization of gut microbiota is crucial for the functioning of the gut ecosystem, although the mechanisms that organize gut bacterial communities in microhabitats are only partially understood. The gut of the insect Riptortus pedestris has a characteristic microbiota biogeography with a multispecies community in the anterior midgut and a monospecific bacterial population in the posterior midgut. We show that the posterior midgut region produces massively hundreds of specific antimicrobial peptides (AMPs), the Crypt-specific Cysteine-Rich peptides (CCRs) that have membrane-damaging antimicrobial activity against diverse bacteria but posterior midgut symbionts have elevated resistance. We determined by transposon-sequencing the genetic repertoire in the symbiont Caballeronia insecticola to manage CCR stress, identifying different independent pathways, including AMP-resistance pathways unrelated to known membrane homeostasis functions as well as cell envelope functions. Mutants in the corresponding genes have reduced capacity to colonize the posterior midgut, demonstrating that CCRs create a selective barrier and resistance is crucial in gut symbionts. Moreover, once established in the gut, the bacteria differentiate into a CCR-sensitive state, suggesting a second function of the CCR peptide arsenal in protecting the gut epithelia or mediating metabolic exchanges between the host and the gut symbionts. Our study highlights the evolution of an extreme diverse AMP family that likely contributes to establish and control the gut microbiota. | 2024 | 38865264 |
| 505 | 6 | 0.9768 | Production of phytoalexins in peanut (Arachis hypogaea) seed elicited by selected microorganisms. Under favorable conditions, the peanut plant demonstrates appreciable resistance to fungal invasion by producing and accumulating phytoalexins, antimicrobial stilbenoids. This mechanism for resistance is little understood, yet it is crucial for breeding and genetically modifying peanut plants to develop new cultivars with fungal resistance. The dynamics of phytoalexin production in peanut seeds and embryos challenged by selected important fungi and bacteria was investigated. Different biotic agents selectively elicited production of major peanut stilbenoids, resveratrol, arachidin-1, arachidin-3, and SB-1. Aspergillis species, compared to other biotic agents, were more potent elicitors of stilbenoids. Embryos demonstrated significantly higher production of stilbenoids compared to cotyledons and may serve as a convenient source of genetic material in isolating genes for peanut plant defense enhancement. | 2013 | 23387286 |
| 8276 | 7 | 0.9768 | Lipopolysaccharide of Yersinia pestis, the Cause of Plague: Structure, Genetics, Biological Properties. The present review summarizes data pertaining to the composition and structure of the carbohydrate moiety (core oligosaccharide) and lipid component (lipid A) of the various forms of lipopolysaccharide (LPS), one of the major pathogenicity factors ofYersinia pestis, the cause of plague. The review addresses the functions and the biological significance of genes for the biosynthesis of LPS, as well as the biological properties of LPS in strains from various intraspecies groups ofY. pestis and their mutants, including the contribution of LPS to the resistance of bacteria to factors of the innate immunity of both insect-vectors and mammal-hosts. Special attention is paid to temperature-dependent variations in the LPS structure, their genetic control and roles in the pathogenesis of plague. The evolutionary aspect is considered based on a comparison of the structure and genetics of the LPS ofY. pestis and other enteric bacteria, including otherYersinia species. The prospects of development of live plague vaccines created on the basis ofY. pestis strains with the genetically modified LPS are discussed. | 2012 | 23150803 |
| 9222 | 8 | 0.9767 | Bacterial proton motive force as an unprecedented target to control antimicrobial resistance. Novel antibacterial therapies are urgently required to tackle the increasing number of multidrug-resistant pathogens. Identification of new antimicrobial targets is critical to avoid possible cross-resistance issues. Bacterial proton motive force (PMF), an energetic pathway located on the bacterial membrane, crucially regulates various biological possesses such as adenosine triphosphate synthesis, active transport of molecules, and rotation of bacterial flagella. Nevertheless, the potential of bacterial PMF as an antibacterial target remains largely unexplored. The PMF generally comprises electric potential (ΔΨ) and transmembrane proton gradient (ΔpH). In this review, we present an overview of bacterial PMF, including its functions and characterizations, highlighting the representative antimicrobial agents that specifically target either ΔΨ or ΔpH. At the same time, we also discuss the adjuvant potential of bacterial PMF-targeting compounds. Lastly, we highlight the value of PMF disruptors in preventing the transmission of antibiotic resistance genes. These findings suggest that bacterial PMF represents an unprecedented target, providing a comprehensive approach to controlling antimicrobial resistance. | 2023 | 36896761 |
| 506 | 9 | 0.9767 | A kiss of death--proteasome-mediated membrane fusion and programmed cell death in plant defense against bacterial infection. Eukaryotes have evolved various means for controlled and organized cellular destruction, known as programmed cell death (PCD). In plants, PCD is a crucial regulatory mechanism in multiple physiological processes, including terminal differentiation, senescence, and disease resistance. In this issue of Genes & Development, Hatsugai and colleagues (pp. 2496-2506) demonstrate a novel plant defense strategy to trigger bacteria-induced PCD, involving proteasome-dependent tonoplast and plasma membrane fusion followed by discharge of vacuolar antimicrobial and death-inducing contents into the apoplast. | 2009 | 19884251 |
| 585 | 10 | 0.9763 | Genetic susceptibility to intracellular infections: Nramp1, macrophage function and divalent cations transport. Nramp1 is one of the few host resistance genes that have been characterized at the molecular level. Nramp1 is an integral membrane protein expressed in the lysosomal compartment of macrophages and is recruited to the membrane of bacterial phagosomes where it affects intracellular microbial replication. Nramp1 is part of a very large gene family conserved from bacteria and man that codes for transporters of divalent cations transporters. We propose that Nramp1 affects the intraphagosomal microbial replication by modulating divalent cations content in this organelle. Both mammalian and bacterial transporters may compete for the same substrate in the phagosomal space. | 2000 | 10679418 |
| 201 | 11 | 0.9763 | Hyaluronic Acid--an "Old" Molecule with "New" Functions: Biosynthesis and Depolymerization of Hyaluronic Acid in Bacteria and Vertebrate Tissues Including during Carcinogenesis. Hyaluronic acid is an evolutionarily ancient molecule commonly found in vertebrate tissues and capsules of some bacteria. Here we review modern data regarding structure, properties, and biological functions of hyaluronic acid in mammals and Streptococcus spp. bacteria. Various aspects of biogenesis and degradation of hyaluronic acid are discussed, biosynthesis and degradation metabolic pathways for glycosaminoglycan together with involved enzymes are described, and vertebrate and bacterial hyaluronan synthase genes are characterized. Special attention is given to the mechanisms underlying the biological action of hyaluronic acid as well as the interaction between polysaccharide and various proteins. In addition, all known signaling pathways involving hyaluronic acid are outlined. Impaired hyaluronic acid metabolism, changes in biopolymer molecular weight, hyaluronidase activity, and enzyme isoforms often accompany carcinogenesis. The interaction between cells and hyaluronic acid from extracellular matrix that may be important during malignant change is discussed. An expected role for high molecular weight hyaluronic acid in resistance of naked mole rat to oncologic diseases and the protective role of hyaluronic acid in bacteria are discussed. | 2015 | 26555463 |
| 8138 | 12 | 0.9763 | Xanthomonas and the TAL Effectors: Nature's Molecular Biologist. Agrobacterium, due to the transfer of T-DNA to the host genome, is known as nature's genetic engineer. Once again, bacteria have led the way to newfound riches in biotechnology. Xanthomonas has emerged as nature's molecular biologist as the functional domains of the sequence-specific DNA transcription factors known as TAL effectors were characterized and associated with the cognate disease susceptibility and resistance genes of plants. | 2016 | 26443209 |
| 9173 | 13 | 0.9763 | Bacterial defences: mechanisms, evolution and antimicrobial resistance. Throughout their evolutionary history, bacteria have faced diverse threats from other microorganisms, including competing bacteria, bacteriophages and predators. In response to these threats, they have evolved sophisticated defence mechanisms that today also protect bacteria against antibiotics and other therapies. In this Review, we explore the protective strategies of bacteria, including the mechanisms, evolution and clinical implications of these ancient defences. We also review the countermeasures that attackers have evolved to overcome bacterial defences. We argue that understanding how bacteria defend themselves in nature is important for the development of new therapies and for minimizing resistance evolution. | 2023 | 37095190 |
| 200 | 14 | 0.9762 | Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Microbial infection activates two distinct intracellular signalling cascades in the immune-responsive fat body of Drosophila. Gram-positive bacteria and fungi predominantly induce the Toll signalling pathway, whereas Gram-negative bacteria activate the Imd pathway. Loss-of-function mutants in either pathway reduce the resistance to corresponding infections. Genetic screens have identified a range of genes involved in these intracellular signalling cascades, but how they are activated by microbial infection is largely unknown. Activation of the transmembrane receptor Toll requires a proteolytically cleaved form of an extracellular cytokine-like polypeptide, Spätzle, suggesting that Toll does not itself function as a bona fide recognition receptor of microbial patterns. This is in apparent contrast with the mammalian Toll-like receptors and raises the question of which host molecules actually recognize microbial patterns to activate Toll through Spätzle. Here we present a mutation that blocks Toll activation by Gram-positive bacteria and significantly decreases resistance to this type of infection. The mutation semmelweis (seml) inactivates the gene encoding a peptidoglycan recognition protein (PGRP-SA). Interestingly, seml does not affect Toll activation by fungal infection, indicating the existence of a distinct recognition system for fungi to activate the Toll pathway. | 2001 | 11742401 |
| 8140 | 15 | 0.9762 | Engineering plant disease resistance based on TAL effectors. Transcription activator-like (TAL) effectors are encoded by plant-pathogenic bacteria and induce expression of plant host genes. TAL effectors bind DNA on the basis of a unique code that specifies binding of amino acid residues in repeat units to particular DNA bases in a one-to-one correspondence. This code can be used to predict binding sites of natural TAL effectors and to design novel synthetic DNA-binding domains for targeted genome manipulation. Natural mechanisms of resistance in plants against TAL effector-containing pathogens have given insights into new strategies for disease control. | 2013 | 23725472 |
| 8425 | 16 | 0.9761 | Carotenoid biosynthesis in extremophilic Deinococcus-Thermus bacteria. Bacteria from the phylum Deinococcus-Thermus are known for their resistance to extreme stresses including radiation, oxidation, desiccation and high temperature. Cultured Deinococcus-Thermus bacteria are usually red or yellow pigmented because of their ability to synthesize carotenoids. Unique carotenoids found in these bacteria include deinoxanthin from Deinococcus radiodurans and thermozeaxanthins from Thermus thermophilus. Investigations of carotenogenesis will help to understand cellular stress resistance of Deinococcus-Thermus bacteria. Here, we discuss the recent progress toward identifying carotenoids, carotenoid biosynthetic enzymes and pathways in some species of Deinococcus-Thermus extremophiles. In addition, we also discuss the roles of carotenoids in these extreme bacteria. | 2010 | 20832321 |
| 9155 | 17 | 0.9761 | Polyphenols and their nanoformulations as potential antibiofilm agents against multidrug-resistant pathogens. The emergence of multidrug-resistant (MDR) pathogens is a major problem in the therapeutic management of infectious diseases. Among the bacterial resistance mechanisms is the development of an enveloped protein and polysaccharide-hydrated matrix called a biofilm. Polyphenolics have demonstrated beneficial antibacterial effects. Phenolic compounds mediate their antibiofilm effects via disruption of the bacterial membrane, deprivation of substrate, protein binding, binding to adhesion complex, viral fusion blockage and interactions with eukaryotic DNA. However, these compounds have limitations of chemical instability, low bioavailability, poor water solubility and short half-lives. Nanoformulations offer a promising solution to overcome these challenges by enhancing their antibacterial potential. This review summarizes the antibiofilm role of polyphenolics, their underlying mechanisms and their potential role as resistance-modifying agents. | 2024 | 38305223 |
| 8362 | 18 | 0.9761 | Lifestyle evolution in symbiotic bacteria: insights from genomics. Bacteria that live only in eukaryotic cells and tissues, including chronic pathogens and mutualistic bacteriocyte associates, often possess a distinctive set of genomic traits, including reduced genome size, biased nucleotide base composition and fast polypeptide evolution. These phylogenetically diverse bacteria have lost certain functional categories of genes, including DNA repair genes, which affect mutational patterns. However, pathogens and mutualistic symbionts retain loci that underlie their unique interaction types, such as genes enabling nutrient provisioning by mutualistic bacteria-inhabiting animals. Recent genomic studies suggest that many of these bacteria are irreversibly specialized, precluding shifts between pathogenesis and mutualism. | 2000 | 10884696 |
| 9158 | 19 | 0.9760 | Quorum sensing pathways in Gram-positive and -negative bacteria: potential of their interruption in abating drug resistance. Quorum sensing (QS) is an inter-cell communication between bacterial populations through release of tiny diffusible compounds as signalling agents, called auto-inducers, abetting bacteria to track population density. QS allows bacterial population to perform collectively in coordination to wide phenotypes like alterations in expression of virulence genes to achieve advancement over their competitors, drug resistance and biofilm formation. Several classes of autoinducers have been described that are involved in bacterial virulence. This review gives an insight into the multitudinous QS systems in Gram-positive and Gram-negative bacteria to explore their role in microbial physiology and pathogenesis. Bacterial resistance to antibiotics has clinically become a super challenge. Strategies to interrupt QS pathways by natural and synthetic QS inhibitors or quorum quenchers or analogs provide a potential treatment. We highlight the advancements in discovery of promising new targets for development of next generation antimicrobials to control infections caused by multidrug resistant bacterial pathogens. | 2019 | 31007147 |