# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7796 | 0 | 0.9934 | Irreversible inactivation of carbapenem-resistant Klebsiella pneumoniae and its genes in water by photo-electro-oxidation and photo-electro-Fenton - Processes action modes. Carbapenem-resistant Klebsiella pneumoniae is a critical priority pathogen according to the World Health Organization's classification. Effluents of municipal wastewater treatment plants (EWWTP) may be a route for K. pneumoniae dissemination. Herein, the inactivation of this microorganism in simulated EWWTP by the photo-electro-oxidation (PEO) and photo-electro-Fenton (PEF) processes was evaluated. Firstly, the disinfecting ability and action pathways of these processes were established. PEO achieved faster K. pneumoniae inactivation (6 log units in 75 min of treatment) than the PEF process (6 log units in 105 min of treatment). PEO completely inactivated K. pneumoniae due to the simultaneous action of UVA light, electrogenerated H(2)O(2,) and anodic oxidation pathways. The slower inactivation of K. pneumoniae when using PEF was related to interfering screen effects of iron oxides on light penetration and the diffusion of the bacteria to the anode. However, both PEO and PEF avoided the recovery and regrowth of treated bacteria (with no detectable increase in the bacteria concentration after 24 h of incubation). In addition to the bacteria evolution, the effect of treatment processes on the resistance gene was examined. Despite inactivation of K. pneumoniae by PEF was slower than by PEO, the former process induced a stronger degrading action on the gene, conferring the resistance to carbapenems (PEF had a Ct value of 24.92 cycles after 105 min of treatment, while PEO presented a Ct of 19.97 cycles after 75 min). The results of this research indicate that electrochemical processes such as PEO and PEF are highly effective at dealing with resistant K. pneumoniae in the EWWTP matrix. | 2021 | 34146813 |
| 7354 | 1 | 0.9933 | Changes in Antibiotic-Resistance Genes Induced by the Grazing Effect in Three Cladoceran Species. The acquisition of Antibiotic-Resistance Genes (ARGs) by natural bacteria caused by antibiotic abuse is causing serious problems for human and animal welfare. Here, we evaluated the influence of three cladoceran species on Antibiotic-Resistant Bacteria (ARB) and tetracycline-resistance gene (tet(A)) copies, and discussed the effect of these biological interactions on the distribution and diffusion of ARGs in freshwater ecosystems. Bacterial community and tet(A) abundances in water samples collected from wetlands were strongly influenced by cladoceran presence. The presence of Daphnia obtusa dramatically decreased ARB and tet(A) abundance compared to that with other cladoceran species (Chydorus sphaericus and Simocephalus vetulus). Interestingly, we found a high abundance of Flavobacteriales in the microbiomes of cladoceran species. Considering that Flavobacteriales species are potential carriers of the tet(A) gene, their adsorption and assimilation with cladocerans could significantly impact the reduction of tet(A) in water. Field surveys also showed that tet(A) abundance could be low if the dominance of D. obtusa in each wetland was high. This study highlighted the need for ecological interactions and a broad range of niches in the food web when discussing the fate of ARGs in freshwater ecosystems. | 2021 | 34576856 |
| 7842 | 2 | 0.9933 | Removal of Antibiotic Resistant Bacteria and Genes by UV-Assisted Electrochemical Oxidation on Degenerative TiO(2) Nanotube Arrays. Antibiotic resistance has become a global crisis in recent years, while wastewater treatment plants (WWTPs) have been identified as a significant source of both antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). However, commonly used disinfectants have been shown to be ineffective for the elimination of ARGs. With the goal of upgrading the conventional UV disinfection unit with stronger capability to combat ARB and ARGs, we developed a UV-assisted electrochemical oxidation (UV-EO) process that employs blue TiO(2) nanotube arrays (BNTAs) as photoanodes. Inactivation of tetracycline- and sulfamethoxazole-resistant E. coli along with degradation of the corresponding plasmid coded genes (tetA and sul1) is measured by plate counting on selective agar and qPCR, respectively. In comparison with UV(254) irradiation alone, enhanced ARB inactivation and ARG degradation is achieved by UV-EO. Chloride significantly promotes the inactivation efficiency due to the electrochemical production of free chlorine and the subsequent UV/chlorine photoreactions. The fluence-based first-order kinetic rate coefficients of UV-EO in Cl(-) are larger than those of UV(254) irradiation alone by a factor of 2.1-2.3 and 1.3-1.8 for the long and short target genes, respectively. The mechanism of plasmid DNA damage by different radical species is further explored using gel electrophoresis and computational kinetic modeling. The process can effectively eliminate ARB and ARGs in latrine wastewater, though the kinetics were retarded. | 2021 | 39605952 |
| 7605 | 3 | 0.9932 | Inactivation of antibiotic resistant bacteria and their resistance genes in sewage by applying pulsed electric fields. We evaluated the suitability of pulsed electric field (PEF) technology as a new disinfection option in the sewage treatment plants (STPs) that can inactivate antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). It was shown that PEF applied disinfection could inactivate not only vancomycin-resistant enterococci (VRE), but also vanA resistance gene. Cultivable VRE could be effectively inactivated by PEF applied disinfection, and were reduced to below the detection limit (log reduction value of VRE > 5 log). Although the vanA also showed a reduction of more than 4 log, it remained in the order of 10(5) copies/mL, suggesting that ARGs are more difficult to be inactivated than ARB in PEF applied disinfection. Among parameters in each applying condition verified in this study, the initial voltage was found to be the most important for inactivation of ARB and ARGs. Furthermore, frequency was a parameter that affects the increase or decrease of the duration time, and it was suggested that the treatment time could be shortened by increasing the frequency. Our results strongly suggested that PEF applied disinfection may be a new disinfection technology option for STPs that contributes to the control of ARB and ARGs contamination in the aquatic environments. | 2022 | 34879573 |
| 7607 | 4 | 0.9932 | Inactivation of Antibiotic Resistant Bacteria and Resistance Genes by Ozone: From Laboratory Experiments to Full-Scale Wastewater Treatment. Ozone, a strong oxidant and disinfectant, seems ideal to cope with future challenges of water treatment, such as micropollutants, multiresistant bacteria (MRB) and even intracellular antibiotic resistance genes (ARG), but information on the latter is scarce. In ozonation experiments we simultaneously determined kinetics and dose-dependent inactivation of Escherichia coli and its plasmid-encoded sulfonamide resistance gene sul1 in different water matrixes. Effects in E. coli were compared to an autochthonous wastewater community. Furthermore, resistance elimination by ozonation and post-treatment were studied in full-scale at a wastewater treatment plant (WWTP). Bacterial inactivation (cultivability, membrane damage) and degradation of sul1 were investigated using plate counts, flow cytometry and quantitative real-time PCR. In experiments with E. coli and the more ozone tolerant wastewater community disruption of intracellular genes was observed at specific ozone doses feasible for full-scale application, but flocs seemed to interfere with this effect. At the WWTP, regrowth during postozonation treatment partly compensated inactivation of MRB, and intracellular sul1 seemed unaffected by ozonation. Our findings indicate that ozone doses relevant for micropollutant abatement from wastewater do not eliminate intracellular ARG. | 2016 | 27775322 |
| 7599 | 5 | 0.9931 | Antibiotic resistant bacteria survived from UV disinfection: Safety concerns on genes dissemination. Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are the emerging contaminants leading to a serious worldwide health problem. Although disinfection like ultraviolet (UV) irradiation could remove part of ARB and ARGs, there still are residual ARB and ARGs in the effluent of wastewater treatment plants. Conjugative transfer is main concern of the risk of ARGs and little is known about the effects of UV disinfection on the transfer ability of the non-inactivated ARB in the effluent which will enter the environment. Hence the influences of UV irradiation and reactivation on ARB conjugative transfer ability were studied under laboratory condition, focusing on the survival bacteria from UV irradiation and the reactivated bacteria, as well as their descendants. The experimental results imply that even 1 mJ/cm(2) UV disinfection can significantly decrease the conjugative transfer frequency of the survival bacteria. However, viable but not culturable state cells induced by UV can reactivate through both photoreactivation and dark repair and retain the same level of transfer ability as the untreated strains. This finding is essential for re-considering about the post safety of UV irradiated effluent and microbial safety control strategies were required. | 2019 | 30851534 |
| 7600 | 6 | 0.9931 | Elimination of antibiotic resistance genes and control of horizontal transfer risk by UV-based treatment of drinking water: A mini review. Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have been recognized as one of the biggest public health issues of the 21st century. Both ARB and ARGs have been determined in water after treatment with conventional disinfectants. Ultraviolet (UV) technology has been seen growth in application to disinfect the water. However, UV method alone is not adequate to degrade ARGs in water. Researchers are investigating the combination of UV with other oxidants (chlorine, hydrogen peroxide (H(2)O(2)), peroxymonosulfate (PMS), and photocatalysts) to harness the high reactivity of produced reactive species (Cl·, ClO·, Cl(2)·(-), ·OH, and SO(4)·(-)) in such processes with constituents of cell (e.g., deoxyribonucleic acid (DNA) and its components) in order to increase the degradation efficiency of ARGs. This paper briefly reviews the current status of different UV-based treatments (UV/chlorination, UV/H(2)O(2), UV/PMS, and UV-photocatalysis) to degrade ARGs and to control horizontal gene transfer (HGT) in water. The review also provides discussion on the mechanism of degradation of ARGs and application of q-PCR and gel electrophoresis to obtain insights of the fate of ARGs during UV-based treatment processes. | 2019 | 32133212 |
| 7499 | 7 | 0.9930 | Sunlight Photolysis of Extracellular and Intracellular Antibiotic Resistance Genes tetA and sul2 in Photosensitizer-Free Water. Antibiotic resistance genes (ARGs; the genetic material in bacteria that encode for resistance to antibiotics) have been found in the aquatic environment, raising concerns of an environmental transmission route. In an effort to contribute to models predicting the fate of ARGs in the environment-to design control measures, predict health risks, inform ARG surveillance activities, and prioritize policy interventions-and given the importance of sunlight in damaging DNA, we evaluated the sunlight photolysis kinetics of antibiotic-resistant bacteria (ARB) and ARGs under laboratory conditions, focusing on Escherichia coli SMS-3-5 and its ARGs tetA and sul2. Experiments were conducted in the absence of photosensitizers, and ARG decay rates were quantified by quantitative polymerase chain reaction (qPCR) with short and long amplicon targets. Long amplicon qPCR targets quantified greater photolysis rate constants, due to greater ARG coverage. After a lag phase, intracellular ARG had faster decay rates than extracellular ARG, likely due to the contribution of intracellular indirect photolysis processes. Furthermore, all ARG decay rates were significantly slower than those of E. coli. Decay rate constants and quantum yields are presented as foundational work in the development of models to describe the persistence of ARGs in sunlit, environmental waters. | 2021 | 34346694 |
| 7854 | 8 | 0.9930 | Removal of antibiotic resistant bacteria and plasmid-encoded antibiotic resistance genes in water by ozonation and electro-peroxone process. The electro-peroxone (EP) process is an electricity-based oxidation process enabled by electrochemically generating hydrogen peroxide (H(2)O(2)) from cathodic oxygen (O(2)) reduction during ozonation. In this study, the removal of antibiotic resistant bacteria (ARB) and plasmid-encoded antibiotic resistance genes (ARGs) during groundwater treatment by ozonation alone and the EP process was compared. Owing to the H(2)O(2)-promoted ozone (O(3)) conversion to hydroxyl radicals (•OH), higher •OH exposures, but lower O(3) exposures were obtained during the EP process than ozonation alone. This opposite change of O(3) and •OH exposures decreases the efficiency of ARB inactivation and ARG degradation moderately during the EP process compared with ozonation alone. These results suggest that regarding ARB inactivation and ARG degradation, the reduction of O(3) exposures may not be fully counterbalanced by the rise of •OH exposures when changing ozonation to the EP process. However, due to the rise of •OH exposure, plasmid DNA was more effectively cleaved to shorter fragments during the EP process than ozonation alone, which may decrease the risks of natural transformation of ARGs. These findings highlight that the influence of the EP process on ARB and ARG inactivation needs to be considered when implementing this process in water treatment. | 2023 | 36738938 |
| 7134 | 9 | 0.9929 | Elevated levels of antibiotic resistance in groundwater during treated wastewater irrigation associated with infiltration and accumulation of antibiotic residues. Treated wastewater irrigation (TWW) releases antibiotics and antibiotic resistance genes (ARGs) into the environment and might thus promote the dissemination of antibiotic resistance in groundwater (GW). We hypothesized that TWW irrigation increases ARG abundance in GW through two potential mechanisms: the contamination of GW with resistant bacteria and the accumulation of antibiotics in GW. To test this, the GW below a real-scale TWW-irrigated field was sampled for six months. Sampling took place before, during and after high-intensity TWW irrigation. Samples were analysed with 16S rRNA amplicon sequencing, qPCR of six ARGs and the class 1 integron-integrase gene intI1, while liquid chromatography tandem mass spectrometry was performed to detect antibiotic and pharmaceutical residues. Absolute abundance of 16S rRNA in GW decreased rather than increased during long-term irrigation. Also, the relative abundance of TWW-related bacteria did not increase in GW during long-term irrigation. In contrast, long-term TWW irrigation increased the relative abundance of sul1 and intI1 in the GW microbiome. Furthermore, GW contained elevated concentrations of sulfonamide antibiotics, especially sulfamethoxazole, to which sul1 confers resistance. Total sulfonamide concentrations in GW correlated with sul1 relative abundance. Consequently, TWW irrigation promoted sul1 and intI1 dissemination in the GW microbiome, most likely due to the accumulation of drug residues. | 2022 | 34555761 |
| 7606 | 10 | 0.9929 | Dissemination prevention of antibiotic resistant and facultative pathogenic bacteria by ultrafiltration and ozone treatment at an urban wastewater treatment plant. Conventional wastewater treatment is not sufficient for the removal of hygienically relevant bacteria and achieves only limited reductions. This study focuses on the reduction efficiencies of two semi-industrial ultrafiltration units operating at a large scale municipal wastewater treatment plant. In total, 7 clinically relevant antibiotic resistance genes, together with 3 taxonomic gene markers targeting specific facultative pathogenic bacteria were analysed via qPCR analyses before and after advanced treatment. In parallel with membrane technologies, an ozone treatment (1 g ozone/g DOC) was performed for comparison of the different reduction efficiencies. Both ultrafiltration units showed increased reduction efficiencies for facultative pathogenic bacteria and antibiotic resistance genes of up to 6 log units, resulting mostly in a strong reduction of the bacterial targets. In comparison, the ozone treatment showed some reduction efficiency, but was less effective compared with ultrafiltration due to low ozone dosages frequently used for micro-pollutant removal at municipal wastewater treatment plants. Additionally, metagenome analyses demonstrated the accumulation of facultative pathogenic bacteria, antibiotic resistance genes, virulence factor genes, and metabolic gene targets in the back flush retentate of the membranes, which opens further questions about retentate fluid material handling at urban wastewater treatment plants. | 2019 | 31492933 |
| 6500 | 11 | 0.9929 | Effect of ozonation-based disinfection methods on the removal of antibiotic resistant bacteria and resistance genes (ARB/ARGs) in water and wastewater treatment: a systematic review. Antibiotic resistance is considered a universal health threat of the 21st century which its distribution and even development are mainly mediated by water-based media. Disinfection processes with the conventional methods are still the most promising options to combat such crises in aqueous matrices especially wastewater. Knowing that the extent of effectiveness and quality of disinfection is of great importance, this paper aimed to systematically review and discuss ozonation (as one of the main disinfectants with large scale application) effect on removing antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) from aqueous solutions, for which no study has been reported. For this, a comprehensive literature survey was performed within the international databases using appropriate keywords which yielded several studies involving different aspects and the effectiveness extent of ozonation on ARB & ARGs. The results showed that no definite conclusion could be drawn about the superiority of ozone alone or in a hybrid form. Mechanism of action was carefully evaluated and discussed although it is still poorly understood. Evaluation of the studies from denaturation and repairment perspectives showed that regrowth cannot be avoided after ozonation, especially for some ARB & ARGs variants. In addition, the comparison of the effectiveness on ARB & ARGs showed that ozonation is more effective for resistant bacteria than their respective genes. The degradation efficiency was found to be mainly influenced by operational parameters of CT (i.e. ozone dose & contact time), solids, alkalinity, pH, and type of pathogens and genes. Moreover, the correlation between ARB & ARGs removal and stressors (such as antibiotic residuals, heavy metals, aromatic matters, microcystins, opportunistic pathogens, etc.) has been reviewed to give the optimal references for further in-depth studies. The future perspectives have also been reported. | 2022 | 34767893 |
| 7815 | 12 | 0.9929 | Microbial Water Quality through a Full-Scale Advanced Wastewater Treatment Demonstration Facility. The fates of viruses, bacteria, and antibiotic resistance genes during advanced wastewater treatment are important to assess for implementation of potable reuse systems. Here, a full-scale advanced wastewater treatment demonstration facility (ozone, biological activated carbon filtration, micro/ultrafiltration, reverse osmosis, and advanced oxidation) was sampled over three months. Atypically, no disinfectant residual was applied before the microfiltration step. Microbial cell concentrations and viability were assessed via flow cytometry and adenosine triphosphate (ATP). Concentrations of bacteria (16S rRNA gene), viruses (human adenovirus and JC polyomavirus), and antibiotic resistance genes (sul1 and bla (TEM) ) were assessed via quantitative PCR following the concentration of large sample volumes by dead-end ultrafiltration. In all membrane filtration permeates, microbial concentrations were higher than previously reported for chloraminated membranes, and log(10) reduction values were lower than expected. Concentrations of 16S rRNA and sul1 genes were reduced by treatment but remained quantifiable in reverse osmosis permeate. It is unclear whether sul1 in the RO permeate was from the passage of resistance genes or new growth of microorganisms, but the concentrations were on the low end of those reported for conventional drinking water distribution systems. Adenovirus, JC polyomavirus, and bla (TEM) genes were reduced below the limit of detection (∼10(-2) gene copies per mL) by microfiltration. The results provide insights into how treatment train design and operation choices affect microbial water quality as well as the use of flow cytometry and ATP for online monitoring and process control. | 2022 | 36530600 |
| 9626 | 13 | 0.9928 | Daphnia as a refuge for an antibiotic resistance gene in an experimental freshwater community. Mechanisms that enable the maintenance of antibiotic resistance genes in the environment are still greatly unknown. Here we show that the tetracycline resistance gene tet(A) is largely removed from the pelagic aquatic bacterial community through filter feeding by Daphnia obtusa while it becomes detectable within the microbiome of the daphniids themselves, where it was not present prior to the experiment. We moreover show that a multitude of Daphnia-associated bacterial taxa are potential carriers of tet(A) and postulated that the biofilm-like structures, where bacteria grow in, may enable horizontal transfer of such genes. This experiment highlights the need to take ecological interactions and a broad range of niches into consideration when studying and discussing the fate of antibiotic resistance genes in nature. | 2016 | 27459256 |
| 6499 | 14 | 0.9928 | From Conventional Disinfection to Antibiotic Resistance Control-Status of the Use of Chlorine and UV Irradiation during Wastewater Treatment. Extensive use of antibiotics for humans and livestock has led to an enhanced level of antibiotic resistance in the environment. Municipal wastewater treatment plants are regarded as one of the main sources of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the aquatic environment. A significant amount of research has been carried out to understand the microbiological quality of wastewater with respect to its antibiotic resistance potential over the past several years. UV disinfection has primarily been used to achieve disinfection, including damaging DNA, but there has been an increasing use of chlorine and H(2)O(2)-based AOPs for targeting genes, including ARGs, considering the higher energy demands related to the greater UV fluences needed to achieve efficient DNA damage. This review focuses on some of the most investigated processes, including UV photolysis and chlorine in both individual and combined approaches and UV advanced oxidation processes (AOPs) using H(2)O(2). Since these approaches have practical disinfection and wastewater treatment applications globally, the processes are reviewed from the perspective of extending their scope to DNA damage/ARG inactivation in full-scale wastewater treatment. The fate of ARGs during existing wastewater treatment processes and how it changes with existing treatment processes is reviewed with a view to highlighting the research needs in relation to selected processes for addressing future disinfection challenges. | 2022 | 35162659 |
| 7604 | 15 | 0.9928 | Combined applications of UV and chlorine on antibiotic resistance control: A critical review. Environmental health problems caused by antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) have become a global concern. ARB and ARGs have been continuously detected in various water environments, which pose a new challenge for water quality safety assurance. Disinfection is a key water treatment process to eliminate pathogenic microorganisms in water, and combined chlorine and UV processes (the UV/Cl(2) process, the UV-Cl(2) process, and the Cl(2)-UV process) are considered potential disinfection methods to control antibiotic resistance. This review documented the efficacy and mechanism of combined UV and chlorine processes for the control of antibiotic resistance, as well as the effects of chlorine dose, solution pH, UV wavelength, and water matrix on the effectiveness of the processes. There are knowledge gaps in research on the combined chlorine and UV processes for antibiotic resistance control, in particular the UV-Cl(2) process and the Cl(2)-UV process. In addition, changes in the structure of microbial communities and the distribution of ARGs, which are closely related to the spread of antibiotic resistance in the water, induced by combined processes were also addressed. Whether these changes could lead to the re-transmission of antibiotic resistance and harm human health may need to be further evaluated. | 2024 | 38072103 |
| 7494 | 16 | 0.9928 | DNA phosphorothioate modification facilitates the dissemination of mcr-1 and bla(NDM-1) in drinking water supply systems. The mechanism driving the dissemination of antibiotic resistance genes (ARGs) in drinking water supply systems (DWSSs) with multiple barriers remains poorly understood despite several recent efforts. Phosphorothioate (PT) modifications, governed by dndABCDE genes, occur naturally in various bacteria and involve the incorporation of sulfur into the DNA backbone. PT is regarded as a mild antioxidant in vivo and is known to provide protection against bacterial genomes. We combined quantitative polymerase chain reaction, metagenomic, and network analyses for the water treatment process and laboratory-scale experiments for chlorine treatment using model strains to determine if DNA PT modification occurred in DWSS and facilitated the dissemination of mobilized colistin resistance-1 (mcr-1) and New Delhi metallo-β-lactamase-1 (bla(NDM-1)) in DWSS. Our results indicated that the relative abundance of dndB increased in the effluent, compared with the influent, in the water treatment plants. Presence of dndB copies had a positive correlation with the concentration of chloramine disinfectant. Network analysis revealed Bdellovibrio as a potential host for MCR genes, NDM genes, and dndB in the DWSS. E. coli DH10B (Wild-type with the dndABCDE gene cluster and ΔdndB) model strains were used to investigate resistance to chlorine treatment at the concentration range of 0.5-3 mg/L. The resistance of the wild-type strain increased with increasing concentration of chlorine. DNA PT modification protected MCR- and NDM-carrying bacteria from chloramine disinfection during the water treatment process. The higher relative abundance of ARGs in the effluent of the water treatment plants may be due to the resistance of DNA PT modification to chloramine disinfection, thereby causing the enrichment of genera carrying MCR, NDM, and dndB. This study provides a new understanding on the mechanism of ARG dissemination in DWSS, which will help to improve the performance of drinking water treatment to control the risk associated with antibiotic-resistant bacteria. | 2021 | 33162214 |
| 7601 | 17 | 0.9928 | Evaluating the Impact of Cl(2)(•-) Generation on Antibiotic-Resistance Contamination Removal via UV/Peroxydisulfate. The removal of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) using sulfate anion radical (SO(4)(•-))-based advanced oxidation processes has gained considerable attention recently. However, immense uncertainties persist in technology transfer. Particularly, the impact of dichlorine radical (Cl(2)(•-)) generation during SO(4)(•-)-mediated disinfection on ARB/ARGs removal remains unclear, despite the Cl(2)(•-) concentration reaching levels notably higher than those of SO(4)(•-) in certain SO(4)(•-)-based procedures applied to secondary effluents, hospital wastewaters, and marine waters. The experimental results of this study reveal a detrimental effect on the disinfection efficiency of tetracycline-resistant Escherichia coli (Tc-ARB) during SO(4)(•-)-mediated treatment owing to Cl(2)(•-) generation. Through a comparative investigation of the distinct inactivation mechanisms of Tc-ARB in the Cl(2)(•-)- and SO(4)(•-)-mediated disinfection processes, encompassing various perspectives, we confirm that Cl(2)(•-) is less effective in inducing cellular structural damage, perturbing cellular metabolic activity, disrupting antioxidant enzyme system, damaging genetic material, and inducing the viable but nonculturable state. Consequently, this diminishes the disinfection efficiency of SO(4)(•-)-mediated treatment owing to Cl(2)(•-) generation. Importantly, the results indicate that Cl(2)(•-) generation increases the potential risk associated with the dark reactivation of Tc-ARB and the vertical gene transfer process of tetracycline-resistant genes following SO(4)(•-)-mediated disinfection. This study underscores the undesired role of Cl(2)(•-) for ARB/ARGs removal during the SO(4)(•-)-mediated disinfection process. | 2024 | 38477971 |
| 7836 | 18 | 0.9928 | Efficient Degradation of Intracellular Antibiotic Resistance Genes by Photosensitized Erythrosine-Produced (1)O(2). Intracellular antibiotic resistance genes (iARGs) constitute the important part of wastewater ARGs and need to be efficiently removed. However, due to the dual protection of intracellular DNA by bacterial membranes and the cytoplasm, present disinfection technologies are largely inefficient in iARG degradation. Herein, we for the first time found that erythrosine (ERY, an edible dye) could efficiently degrade iARGs by producing abundant (1)O(2) under visible light. Seven log antibiotic-resistant bacteria were inactivated within only 1.5 min, and 6 log iARGs were completely degraded within 40 min by photosensitized ERY (5.0 mg/L). A linear relationship was established between ARG degradation rate constants and (1)O(2) concentrations in the ERY photosensitizing system. Surprisingly, a 3.2-fold faster degradation of iARGs than extracellular ARGs was observed, which was attributed to the unique indirect oxidation of iARGs induced by (1)O(2). Furthermore, ERY photosensitizing was effective for iARG degradation in real wastewater and other photosensitizers (including Rose Bengal and Phloxine B) of high (1)O(2) yields could also achieve efficient iARG degradation. The findings increase our knowledge of the iARG degradation preference by (1)O(2) and provide a new strategy of developing technologies with high (1)O(2) yield, like ERY photosensitizing, for efficient iARG removal. | 2023 | 37531556 |
| 7822 | 19 | 0.9928 | Solar photo-Fenton disinfection of 11 antibiotic-resistant bacteria (ARB) and elimination of representative AR genes. Evidence that antibiotic resistance does not imply resistance to oxidative treatment. The emergence of antibiotic resistance represents a major threat to human health. In this work we investigated the elimination of antibiotic resistant bacteria (ARB) by solar light and solar photo-Fenton processes. As such, we have designed an experimental plan in which several bacterial strains (Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae) possessing different drug-susceptible and -resistant patterns and structures (Gram-positive and Gram-negative) were subjected to solar light and the photo-Fenton oxidative treatment in water. We showed that both solar light and solar photo-Fenton processes were effective in the elimination of ARB in water and that the time necessary for solar light disinfection and solar photo-Fenton disinfection were similar for antibiotic-susceptible and antibiotic-resistant strains (mostly 180-240 and 90-120 min, respectively). Moreover, the bacterial structure did not significantly affect the effectiveness of the treatment. Similar regrowth pattern was observed (compared to the susceptible strain) and no development of bacteria with higher drug-resistance values was found in waters after any treatment. Finally, both processes were effective to reduce AR genes (ARGs), although solar photo-Fenton was more rapid than solar light. In conclusion, the solar photo-Fenton process ensured effective disinfection of ARB and elimination of ARGs in water (or wastewater) and is a potential mean to ensure limitation of ARB and ARG spread in nature. | 2018 | 29986243 |