# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1999 | 0 | 0.9287 | Emergence and genomic epidemiology of tigecycline resistant bacteria of fly origin across urban and rural China. Plasmid-mediated tigecycline resistance genes, notably the tet(X) and tmexCD-toprJ genes, have garnered considerable attention due to their transferability. This study aims to investigate the prevalence and resistance mechanisms associated with tet(X) and tmexCD-toprJ in flies, which are important reservoirs of antimicrobial resistance genes. A total of 52 tigecycline resistant bacterial isolates were collected, among which 40 (76.9 %) and 12 (23.1 %) were positive for tet(X) and tmexCD-toprJ, respectively. Tigecycline resistant bacteria were isolated from diverse geographical locations in China, with tet(X4)-positive Escherichia coli and tmexCD1-toprJ1-positive Klebsiella pneumoniae dominant among the isolates. The prevalence of tet(X) in rural area was significantly higher than that in urban area (2.7 % vs. 0.3 %; P < 0.001), while the prevalence of tmexCD1-toprJ1 shows no significant difference between urban and rural areas (0.2 % vs. 0.6 %; P > 0.05). Most tet(X)-positive strains (n = 40, 100.0 %), and 11(91.7 %) of the tmexCD1-toprJ1-positive strains exhibited multi-drug resistance. The IncFIB(Mar)/IncHI1B hybrid plasmid carrying tmexCD1-toprJ1 was identified by whole-genome sequencing analysis, which dominated the transmission of tmexCD1-toprJ1 in K. pneumoniae. Genetic context analysis showed that tmexCD1-toprJ1 was related locally to IS26, and IS26 may exacerbate the spread of tmexCD1-toprJ1 in different bacteria. In addition, the genetic structure of tmexCD1-toprJ1 also contains several antimicrobial resistance genes, including aph(3')-Ic, sul1, bla(DHA-1), bla(CTX-M-5), etc., conferring resistance to aminoglycosides, sulfonamides, and carbapenems. This study provides insights into the epidemiology and transmission dynamics of tigecycline resistance genes, informing targeted intervention strategies to mitigate antimicrobial resistance dissemination. | 2024 | 39476596 |
| 2491 | 1 | 0.9267 | Baicalein Inhibits Plasmid-Mediated Horizontal Transmission of the blaKPC Multidrug Resistance Gene from Klebsiella pneumoniae to Escherichia coli. Carbapenem-resistant bacterial infections pose an urgent threat to public health worldwide. Horizontal transmission of the β-lacatamase Klebsiella pneumoniae carbapenemase (blaKPC) multidrug resistance gene is a major mechanism for global dissemination of carbapenem resistance. Here, we investigated the effects of baicalein, an active ingredient of a Chinese herbal medicine, on plasmid-mediated horizontal transmission of blaKPC from a meropenem-resistant K. pneumoniae strain (JZ2157) to a meropenem-sensitive Escherichia coli strain (E600). Baicalein showed no direct effects on the growth of JZ2157 or E600. Co-cultivation of JZ2157 and E600 caused the spread of meropenem resistance from JZ2157 to E600. Baicalein at 40 and 400 µg/mL significantly inhibited the spread of meropenem resistance. Co-cultivation also resulted in plasmid-mediated transmission of blaKPC from JZ2157 to E600, which was inhibited by baicalein. Therefore, baicalein may be used in clinical practice to prevent or contain outbreaks of carbapenem-resistant infections by inhibiting the horizontal transfer of resistance genes across bacteria species. | 2023 | 36543225 |
| 2000 | 2 | 0.9257 | Abundance of tigecycline resistance genes and association with antibiotic residues in Chinese livestock farms. The discovery of plasmid-mediated tet(X) variants and efflux pump gene tmexCD1-toprJ1 conferring bacteria resistance to tigecycline has compromised glycylcycline as the last line of defense against infection, which poses serious threat to public health. Herein, real-time quantitative PCR was used to detect the abundance of seven tigecycline resistance genes (TRGs), including six tet(X) variants and tmexCD1-toprJ1, and insertion sequences ISCR2 and IS26. Then, the concentrations of nine antibiotics were quantified in fecal samples collected from 157 livestock farms in four Chinese provinces. TRGs, especially tet(X4), tmexCD1-toprJ1, and insertion sequences ISCR2 and IS26, were more abundant in chicken feces than in pig and cattle feces, suggesting the greater risk for the propagation of TRGs in chicken feces. Positive correlations (ρ = 0.3741-0.8275, P < 0.0001) between ISCR2/IS26 and TRGs (except tet(X1)) further demonstrated that ISCR2 mediates the transfer of tet(X3), tet(X4), and tet(X5) and that IS26 plays a certain role for the mobilization of tet(X4) and tmexCD1-toprJ1. Tetracyclines had no positive correlation with the abundance of TRGs (except tet(X1)), meanwhile florfenicol and tiamulin were positively correlated with TRGs. However, further research is needed to confirm whether or not florfenicol and tiamulin are potential driving factors of TRG accumulation. | 2021 | 33421874 |
| 1390 | 3 | 0.9240 | Oxacillinase-484-Producing Enterobacterales, France, 2018-2023. We examined the emergence and characteristics of oxacillinase-484-producing Enterobacterales in France during 2012-2023. Genomic analysis identified 2 predominant sequence types in Escherichia coli: ST410 and ST1722. Plasmid analysis revealed that bla(OXA-484) genes were carried mostly on an IncX3-type plasmid associated with genetic elements including insertion sequences IS3000 and ISKpn19. | 2024 | 39320334 |
| 1511 | 4 | 0.9239 | Characterization of an Extensively Drug-Resistant Salmonella Kentucky ST198 Co-Harboring cfr, mcr-1 and tet(A) Variant from Retail Chicken Meat in Shanghai, China. The emergence of extensively drug-resistant (XDR) foodborne pathogens poses grave threats to food safety. This study characterizes the genome of an XDR Salmonella Kentucky isolate (Sal23C1) co-harboring cfr, mcr-1 and tet(A) from Shanghai chicken meat in 2022, which was the only isolate co-harboring these three key resistance genes among 502 screened Salmonella isolates. Genomic analysis revealed that the multidrug resistance gene cfr, which confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins and streptogramin A, was identified within a Tn3-IS6-cfr-IS6 structure on the transferable plasmid p3Sal23C1 (32,387 bp), showing high similarity to the Citrobacter braakii plasmid pCE32-2 (99% coverage, 99.98% identity). Concurrently, the mcr-1 gene resided in a pap2-mcr-1 structure on the transferable IncI2 plasmid p2Sal23C1 (63,103 bp). Notably, both genes could be co-transferred to recipient bacteria via conjugative plasmids at frequencies of (1.15 ± 0.98) × 10(-6). Furthermore, a novel ~79 kb multidrug resistance region (MRR) chromosomally inserted at the bcfH locus was identified, carrying fosA3, mph(A), rmtB, qnrS1 and bla(CTX-M-55). Additionally, a novel Salmonella Genomic Island 1 variant (SGI1-KI) harbored aadA7, qacEΔ1, sul1 and the tet(A) variant. The acquisition of these antibiotic resistance genes in this isolate enhanced bacterial resistance to 21 antimicrobials, including resistance to the critical last-resort antibiotics tigecycline and colistin, which left virtually no treatment options for potential infections. Taken together, this is the first comprehensive genomic report of an XDR poultry-derived Salmonella Kentucky isolate co-harboring cfr, mcr-1 and the tet(A) variant. The mobility of these resistance genes, facilitated by IS6 elements and conjugative plasmids, underscores significant public health risks associated with such isolates in the food chain. | 2025 | 40941142 |
| 1401 | 5 | 0.9236 | Molecular Surveillance of Multidrug-Resistant Bacteria among Refugees from Afghanistan in 2 US Military Hospitals during Operation Allies Refuge, 2021. In 2021, two US military hospitals, Landstuhl Regional Medical Center in Landstuhl, Germany, and Walter Reed National Military Medical Center (WRNMMC) in Bethesda, Maryland, USA, observed a high prevalence of multidrug-resistant bacteria among refugees evacuated from Afghanistan during Operation Allies Refuge. Multidrug-resistant isolates collected from 80 patients carried an array of antimicrobial resistance genes, including carbapenemases (bla(NDM-1), bla(NDM-5), and bla(OXA-23)) and 16S methyltransferases (rmtC and rmtF). Considering the rising transmission of antimicrobial resistance and unprecedented population displacement globally, these data are a reminder of the need for robust infection control measures and surveillance. | 2024 | 39530854 |
| 102 | 6 | 0.9236 | Paradoxical behaviour of pKM101; inhibition of uvr-independent crosslink repair in Escherichia coli by muc gene products. In strains of Escherichia coli deficient in excision repair (uvrA or uvrB), plasmid pKM101 muc+ but not pGW219 mucB::Tn5 enhanced resistance to angelicin monoadducts but reduced resistance to 8-methoxy-psoralen interstrand DNA crosslinks. Thermally induced recA-441 (= tif-1) bacteria showed an additional resistance to crosslinks that was blocked by pKM101. Plasmid-borne muc+ genes also conferred some additional sensitivity to gamma-radiation and it is suggested that a repair step susceptible to inhibition by muc+ gene products and possibly involving double-strand breaks may be involved after both ionizing radiation damage and psoralen crosslinks. | 1985 | 3883148 |
| 9933 | 7 | 0.9234 | Ibuprofen prevents the conjugative transfer of plasmid-mediated antimicrobial resistance genes. Refractory infections caused by multidrug-resistant bacteria pose a significant threat to public health. Here we report that ibuprofen inhibits conjugation of the RP4 plasmid and plasmids from clinical strains carrying different resistance genes including mcr-1, bla(NDM), bla(KPC), tet(X4), and tmexCD1-toprJ1. Mechanistic studies suggest that ibuprofen reduces ATP production and inhibits conjugation-related genes. The inhibitory effect of ibuprofen on conjugation has significant clinical implications for preventing the spread of multidrug resistance, opening new therapeutic avenues to combat multidrug-resistant bacteria. | 2025 | 39909367 |
| 1091 | 8 | 0.9233 | Co-harboring of cephalosporin (bla)/colistin (mcr) resistance genes among Enterobacteriaceae from flies in Thailand. The spreading of antimicrobial-resistant Enterobacteriaceae, especially those co-harboring plasmid-mediated cephalosporin (bla) and colistin (mcr) resistance genes, is becoming increasingly problematic. As a vector, flies carry antimicrobial-resistant bacteria (ARB) into human and livestock habitats. To investigate ARB in flies, we collected 235 flies from 27 sites (18 urban areas, five pig farms and four chicken farms) in Thailand during 2013-2015. Cefotaxime-resistant Enterobacteriaceae (CtxRE) and bla-positive CtxRE were isolated from 70 (29.8%) and 48 (20.4%) flies, respectively. In 93 bla-positive CtxRE isolates that included Escherichia coli, Enterobacter spp., and Klebsiella pneumoniae from 48 flies, the most frequent bla gene was TEM (n = 62), followed by CTX-M-55 (n = 31), CTX-M-14 (n = 26), CMY-2 (n = 24) and SHV (n = 10), and 58 isolates harbored multiple types of these genes. In addition, we detected the mcr-1 (n = 1) and mcr-3 (n = 19) genes in bla-positive CtxRE isolates from 16 flies. In conjugation experiments, 10 mcr-3- and bla-positive isolates exhibited co-transfer of mcr-3 and blaTEM-1 genes. These results suggest that a relatively high proportion of flies in Thailand carries cephalosporin-resistant Enterobacteriaceae harboring co-transmissible cephalosporin and colistin resistance genes. | 2018 | 30010911 |
| 1532 | 9 | 0.9232 | Identification of TMexCD-TOprJ-producing carbapenem-resistant Gram-negative bacteria from hospital sewage. Carbapenems and tigecycline are crucial antimicrobials for the treatment of gram-negative bacteria infections. Recently, a novel resistance-nodulation-division (RND) efflux pump gene cluster, tmexCD-toprJ, which confers resistance to tigecycline, has been discovered in animals and clinical isolates. It was reported that hospital sewage could act as a reservoir for gram-negative bacteria with high antimicrobial resistance genes. In this study, we analyzed 84 isolates of carbapenem-resistant gram-negative bacteria (CR-GNB) from hospital sewage, and identified five isolates of TMexCD-ToprJ-producing CR-GNB, including one Raoultella ornithinolytica isolate and four Pseudomonas spp. isolates. All these five isolates carried at least one carbapenem resistance gene and were resistant to multiple antibiotics. Multiple tmexCD-toprJ clusters were detected, including tmexC2D2-toprJ2, tmexC3D3-toprJ3, tmexC3.2D3.3-toprJ1b and tmexC3.2D3-toprJ1b. Among these clusters, the genetic construct of tmexC3.2D3-toprJ1b showed 2-fold higher minimum inhibitory concentration (MIC) of tigecycline than other three variants. In addition, it was found that the tmexCD-toprJ gene cluster was originated from Pseudomonas spp. and mainly located on Tn6855 variants inserted in the same umuC-like genes on chromosomes and plasmids. This unit co-localized with bla(IMP) or bla(VIM) on IncHI5-, Inc(pJBCL41)- and Inc(pSTY)-type plasmids in the five isolates of TMCR-GNB. The IncHI5- and Inc(pSTY)-type plasmids had the ability to conjugal transfer to E. coli J53 and P. aeruginosa PAO1, highlighting the potential risk of transfer of tmexCD-toprJ from Pseudomonas spp. to Enterobacterales. Importantly, genomic analysis showed that similar tmexCD-toprJ-harboring IncHI5 plasmids were also detected in human samples, suggesting transmission between environmental and human sectors. The emergence of TMCR-GNB from hospital sewage underscores the need for ongoing surveillance of antimicrobial resistance genes, particularly the novel resistance genes such as the tmexCD-toprJ gene clusters in the wastewater environment. | 2023 | 37480594 |
| 831 | 10 | 0.9228 | RmtC and RmtF 16S rRNA Methyltransferase in NDM-1-Producing Pseudomonas aeruginosa. We investigated 16S rRNA methyltransferases in 38 blaNDM-1-positive Pseudomonas aeruginosa isolates and found RmtC in 3 isolates, 1 of which also harbored RmtF. The isolates were clonally unrelated; rmtC and rmtF genes were located on a chromosome with the blaNDM-1 gene. Strategies are needed to limit the spread of such isolates. | 2015 | 26488937 |
| 1514 | 11 | 0.9227 | Widespread prevalence and molecular epidemiology of tet(X4) and mcr-1 harboring Escherichia coli isolated from chickens in Pakistan. The emergence and spread of plasmid-mediated tigecycline resistance gene tet(X4) and colistin resistance gene mcr-1 in Escherichia coli (E. coli) pose a potential threat to public health, due to the importance of colistin and tigecycline for treating serious clinical infections. However, the characterization of bacteria coharboring both genes was few reported. Here, we described the molecular epidemiology of tet(X4) and mcr-1 harboring E. coli strains of chicken origin in Pakistan, with methods including PCR, antimicrobial susceptibility testing, DNA transfer assays, plasmid replicon typing, whole-genome sequencing and bioinformatics analysis. The tet(X4) gene was identified in 36 isolates exhibiting high levels of tigecycline resistance (MICs, 16-128 mg/L). Worryingly, 24 of the 36 tet(X4)-bearing isolates were confirmed as colistin resistance, positive for plasmid-borne mcr-1. We observed the prevalence of tet(X4)-bearing IncFII plasmid with mcr-1-bearing IncI2 plasmid in 12 E. coli isolates, with a high co-transfer frequency except for one strain PK8233, in which tet(X4)- and mcr-1-bearing plasmids were non-transferable. Coexistence of tet(X4)-bearing IncFII plasmid with mcr-1-carrying multidrug-resistant (MDR) IncHI2 plasmid was also identified in 10 E. coli isolates, and a relatively low co-transfer frequency was obtained except PK8575, in which mcr-1 was non-transferable. The transferability of pPK8275-tetX in PK8275 and pPK8233-tetX in PK8233, that could transfer from E. coli J53 to C600 by conjugation, was interfered by certain factors in PK8275 and PK8233. This may provide new insights to prevent and control the spread of antibiotic resistance genes. Two strains were reported to co-carry tet(X4)-positive IncQ1 plasmid and mcr-1-positive IncI2 plasmid. Convergence of tet(X4) and mcr-1 genes in E. coli by conjugative or mobilizable plasmids may lead to potentially widespread transmission of such resistance genes, which may incur antibiotic-resistance crisis globally. | 2022 | 34599956 |
| 1736 | 12 | 0.9226 | Concurrent Resistance to Carbapenem and Colistin Among Enterobacteriaceae Recovered From Human and Animal Sources in Nigeria Is Associated With Multiple Genetic Mechanisms. Resistance to last resort drugs such as carbapenem and colistin is a serious global health threat. This study investigated carbapenem and colistin resistance in 583 non-duplicate Enterobacteriaceae isolates utilizing phenotypic methods and whole genome sequencing (WGS). Of the 583 isolates recovered from humans, animals and the environment in Nigeria, 18.9% (110/583) were resistant to at least one carbapenem (meropenem, ertapenem, and imipenem) and 9.1% (53/583) exhibited concurrent carbapenem-colistin resistance. The minimum inhibitory concentrations of carbapenem and colistin were 2-32 μg/mL and 8 to >64 μg/mL, respectively. No carbapenem resistant isolates produced carbapenemase nor harbored any known carbapenemase producing genes. WGS supported that concurrent carbapenem-colistin resistance was mediated by novel and previously described alterations in chromosomal efflux regulatory genes, particularly mgrB (M1V) ompC (M1_V24del) ompK37 (I70M, I128M) ramR (M1V), and marR (M1V). In addition, alterations/mutations were detected in the etpA, arnT, ccrB, pmrB in colistin resistant bacteria and ompK36 in carbapenem resistant bacteria. The bacterial isolates were distributed into 37 sequence types and characterized by the presence of internationally recognized high-risk clones. The results indicate that humans and animals in Nigeria may serve as reservoirs and vehicles for the global spread of the isolates. Further studies on antimicrobial resistance in African countries are warranted. | 2021 | 34690985 |
| 1235 | 13 | 0.9226 | Characterization of integrons and antimicrobial resistance genes in clinical isolates of Gram-negative bacteria from Palestinian hospitals. Sixty Gram-negative bacterial isolates were collected from Palestinian hospitals in 2006. Thirty-two (53.3%) isolates showed multidrug resistance phenotypes. PCR and DNA sequencing were used to characterize integrons and antimicrobial resistance genes. PCR screening showed that 19 (31.7%) and five (8.3%) isolates were positive for class 1 and class 2 integrons, respectively. DNA-sequencing results for the captured antimicrobial resistance gene cassettes within class 1 integrons identified the following genes: dihydrofolate reductases, dfrA1, dfrA5, dfrA7, dfrA12, dfrA17 and dfrA25; aminoglycoside adenyltransferases, aadA1, aadA2, aadA5, aadA12 and aadB; aminoglycoside acetyltransferase, aac(6')-Ib; and chloramphenicol resistance gene, cmlA1. ESBL were identified in 25 (41.7%) isolates. The identified ESBL were bla(CTX-M-15), bla(CTX-M-56), bla(OXA-1), bla(SHV-1), bla(SHV-12), bla(SHV-32) and bla(TEM-1) genes. Moreover, we characterized the plasmid-mediated quinolone resistance genes, aac(6')-Ib-cr and qnrB2, which were detected in seven (11.7%) and two (3.3%) isolates, respectively. In this study various types of antibiotic resistance genes have been identified in Gram-negative bacteria from Palestinian hospitals, many of which are reported in the Middle East area for the first time. | 2009 | 19903259 |
| 1250 | 14 | 0.9225 | Distribution of 16S rRNA methylases among different species of Gram-negative bacilli with high-level resistance to aminoglycosides. 16S rRNA methylases confer high-level resistance to most aminoglycosides in Gram-negative bacteria. Seven 16S rRNA methylase genes, armA, rmtA, rmtB, rmtC, rmtD, rmtE and npmA, have been identified since 2003. We studied the distribution of methylase genes in more than 200 aminoglycoside-resistant Gram-negative clinical isolates collected in 2007 at our hospital in Shanghai, China. 16S rRNA methylase genes were amplified by polymerase chain reaction (PCR) among 217 consecutive clinical isolates of Gram-negative bacilli resistant to gentamicin and amikacin by a disk diffusion method. 16S rRNA methylase genes were present in 97.5% (193/198) of clinical isolates highly resistant to amikacin (≥512 μg/ml), with armA and rmtB detected in 67.2 and 30.3% of strains, respectively, while no 16S rRNA methylase genes were detected in 19 strains with amikacin minimum inhibitory concentration (MIC) ≤256 μg/ml. armA or rmtB genes were detected in 100% of 104 strains of Enterobacteriaceae, and these two genes were equally represented (49 vs. 55 strains). Genes for armA or rmtB were detected in 94.7% (89/94) of Acinetobacter baumannii and Pseudomonas aeruginosa strains, and armA was predominant (84 vs. 5 strains with rmtB). No rmtA, rmtC, rmtD or npmA genes were found. Enterobacterial repetitive intergenic consensus sequence (ERIC-PCR) indicated that armA and rmtB genes were spread by both horizontal transfer and clonal dissemination. | 2010 | 20614151 |
| 1113 | 15 | 0.9224 | Prevalence of Colistin-Resistant Bacteria among Retail Meats in Japan. Colistin (CST) is considered the last resort for the treatment of infectious diseases due to multidrug-resistant bacteria. Since the mcr-1 gene has been reported in Enterobacteriaceae isolated from food, animals, and humans in China, the prevalence of CST-resistant bacteria has been of great concern. Here, we investigated the prevalence of CST resistance and plasmid-mediated colistin-resistance genes (mcr) in gram-negative bacteria isolated among retail meats in Japan. CST-resistant bacteria were isolated from 310 domestic retail meats (103 chicken meat, 103 pork, and 104 beef) purchased between May 2017 and July 2018 from retail shops in Japan using CST-containing media and antimicrobial susceptibility testing. The mcr gene was investigated in isolates with a CST minimum inhibitory concentration of ≥1 μg/mL. Excluding the intrinsically CST-resistant isolates, CST-resistant bacteria were isolated from 39 of the total chicken meats (37.9%), 19 of the pork samples (18.4%), and 18 of the beef samples (17.3%). A total of 459 isolates were identified, out of which 99 were CST-resistant. CST resistance (resistance breakpoints: Aeromonas, >4 μg/mL; others, >2 μg/mL) was found in Aeromonas spp. (48/206, 23.3%), Yersinia spp. (5/112, 4.5%), Escherichia coli (23/39, 59%), Citrobacter spp. (4/26, 15.4%), Klebsiella spp. (2/23, 8.7%), Raoultella spp. (2/16, 12.5%), Enterobacter spp. (7/14, 50%), Pseudomonas spp. (1/8, 12.5%), Pantoea spp. (5/7, 71.4%), Ewingella spp. (1/4, 25%), and Kluyvera spp. (1/2, 50%). The mcr gene was detected in 16 isolates: mcr-1 in 14 isolates of E. coli from 10 chicken samples (9.7%), and mcr-3 in two isolates of Aeromonas sobria from pork and chicken samples (each 1.0%). The findings of this study highlight the necessity of surveillance of CST resistance and resistance genes in bacteria that contaminate retail meats. | 2021 | 34249589 |
| 1537 | 16 | 0.9223 | Occurrence and mechanisms of tigecycline resistance in carbapenem- and colistin-resistant Klebsiella pneumoniae in Thailand. Tigecycline has been regarded as one of the most important last-resort antibiotics for the treatment of infections caused by extensively drug-resistant (XDR) bacteria, particularly carbapenem- and colistin-resistant Klebsiella pneumoniae (C-C-RKP). However, reports on tigecycline resistance have been growing. Overall, ~ 4000 K. pneumoniae clinical isolates were collected over a five-year period (2017-2021), in which 240 isolates of C-C-RKP were investigated. Most of these isolates (91.7%) were resistant to tigecycline. Notably, a high-risk clone of ST16 was predominantly identified, which was associated with the co-harboring of bla(NDM-1) and bla(OXA-232) genes. Their major mechanism of tigecycline resistance was the overexpression of efflux pump acrB gene and its regulator RamA, which was caused by mutations in RamR (M184V, Y59C, I141T, A28T, C99/C100 insertion), in RamR binding site (PI) of ramA gene (C139T), in MarR (S82G), and/or in AcrR (L154R, R13Q). Interestingly, four isolates of ST147 carried the mutated tet(A) efflux pump gene. To our knowledge, this is the first report on the prevalence and mechanisms of tigecycline resistance in C-C-RKP isolated from Thailand. The high incidence of tigecycline resistance observed among C-C-RKP in this study reflects an ongoing evolution of XDR bacteria against the last-resort antibiotics, which demands urgent action. | 2024 | 38433246 |
| 1451 | 17 | 0.9221 | Molecular Epidemiology of Extensively Drug-Resistant mcr Encoded Colistin-Resistant Bacterial Strains Co-Expressing Multifarious β-Lactamases. Plasmid-mediated colistin resistance (Col-R) conferred by mcr genes endangers the last therapeutic option for multifarious β-lactamase-producing bacteria. The current study aimed to explore the mcr gene molecular epidemiology in extensively drug-resistant (XDR) bacteria. Col-R gram-negative bacterial strains were screened using a minimum inhibitory concentration (MIC) breakpoint ≥4 µg/mL. Resistant isolates were examined for mcr variants, extended-spectrum β-lactamase, AmpC, and carbapenemase genes using polymerase chain reaction (PCR). The MIC breakpoints for mcr-positive strains were determined using broth microdilution and E-test strips. Overall, 19/718 (2.6%) gram-negative rods (GNRs) harboring mcr were identified, particularly in pus (p = 0.01) and tracheal secretions (p = 0.03). Molecular epidemiology data confirmed 18/19 (95%) mcr-1 and 1/19 (5%) mcr-2 genes. Integron detection revealed 15/17 (88%) Int-1 and 2/17 (12%) Int-2. Common co-expressing drug-resistant β-lactamase genes included 8/16 (50%) bla(CTM-1), 3/16 (19%) bla(CTM-15), 3/3 (100%) bla(CMY-2), 2/8 (25%) bla(NDM-1), and 2/8 (25%) bla(NDM-5). The MIC(50) and MIC(90) values (µg/mL) were as follows: Escherichia coli, 12 and 24; Klebsiella pneumoniae, 12 and 32; Acinetobacter baumannii, 8 and 12; and Pseudomonas aeruginosa, 32 and 64, respectively. Treatment of XDR strains has become challenging owing to the co-expression of mcr-1, mcr-2, multifarious β-lactamase genes, and integrons. | 2021 | 33923991 |
| 1524 | 18 | 0.9221 | Characterization of a Novel mcr-8.2-Bearing Plasmid in ST395 Klebsiella pneumoniae of Chicken Origin. The emergence of mobile colistin resistance mcr genes undermines the efficacy of colistin as the last-resort drug for multi-drug resistance infections and constitutes a great public health concern. Plasmids play a critical role in the transmission of mcr genes among bacteria. One colistin-resistant Klebsiella pneumoniae strain of chicken origin was collected and analyzed by antimicrobial susceptibility testing, PCR, conjugation assay and S1-PFGE. Whole-genome sequencing (WGS) approach combining Illumina and MinION platforms was utilized to decipher the underlying colistin resistance mechanism and genetic context. A novel mcr-8.2-bearing plasmid p2019036D-mcr8-345kb with 345 655 bp in size encoding various resistance genes including floR, sul1, aadA16, aadA2, bla (CTX-M-27), bla (DHA-1), tet(D), dfrA12 and qnrB4 was identified responsible for the colistin resistance phenotype. Plasmid comparison has shown that the mcr-8.2-bearing plasmid differed from other reported plasmids positive for mcr-8.2 but shared the same core mcr-8.2-bearing conserved region. This study demonstrates the emergence of mcr-8.2-bearing K. pneumoniae of animal origin is a potential risk to humans. | 2020 | 32606828 |
| 1388 | 19 | 0.9219 | Snapshot Study of Whole Genome Sequences of Escherichia coli from Healthy Companion Animals, Livestock, Wildlife, Humans and Food in Italy. Animals, humans and food are all interconnected sources of antimicrobial resistance (AMR), allowing extensive and rapid exchange of AMR bacteria and genes. Whole genome sequencing (WGS) was used to characterize 279 Escherichia coli isolates obtained from animals (livestock, companion animals, wildlife), food and humans in Italy. E. coli predominantly belonged to commensal phylogroups B1 (46.6%) and A (29%) using the original Clermont criteria. One hundred and thirty-six sequence types (STs) were observed, including different pandemic (ST69, ST95, ST131) and emerging (ST10, ST23, ST58, ST117, ST405, ST648) extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Eight antimicrobial resistance genes (ARGs) and five chromosomal mutations conferring resistance to highest priority critically important antimicrobials (HP-CIAs) were identified (qnrS1, qnrB19, mcr-1, bla(CTX-M1,15,55), bla(CMY-2), gyrA/parC/parE, ampC and pmrB). Twenty-two class 1 integron arrangements in 34 strains were characterized and 11 ARGs were designated as intI1 related gene cassettes (aadA1, aadA2, aadA5, aad23, ant2_Ia, dfrA1, dfrA7, dfrA14, dfrA12, dfrA17, cmlA1). Notably, most intI1 positive strains belonged to rabbit (38%) and poultry (24%) sources. Three rabbit samples carried the mcr-1 colistin resistance gene in association with IS6 family insertion elements. Poultry meat harbored some of the most prominent ExPEC STs, including ST131, ST69, ST10, ST23, and ST117. Wildlife showed a high average number of virulence-associated genes (VAGs) (mean = 10), mostly associated with an ExPEC pathotype and some predominant ExPEC lineages (ST23, ST117, ST648) were identified. | 2020 | 33172096 |