TJS01 - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
548800.8306Comparative genomics analysis of Acinetobacter haemolyticus isolates from sputum samples of respiratory patients. Acinetobacter haemolyticus (A. haemolyticus) is a significant Acinetobacter pathogen, and the resistance of A. haemolyticus continues to rise due to abuse of antibiotics and the frequent gene exchange between bacteria in hospital. In this study, we performed complete genome sequencing of two A. haemolyticus strains TJR01 and TJS01 to improve our understanding of pathogenic and resistance of A. haemolyticus. Both TJR01 and TJS01 contain one chromosome and two plasmids. Compared to TJS01, more virulence factors (VFs) associated pathogenicity and resistant genes were predicted in TJR01 due to T4SS and integron associated with combination and transport. Antimicrobial susceptibility results were consistent with sequencing. We suppose TJS01 was a susceptive strain and TJR01 was an acquired multidrug resistance strain due to plasmid-mediated horizontal gene transfer. We hope these findings may be helpful for clinical treatment of A. haemolyticus infection and reduce the risk of potential outbreak infection.202032209379
81110.8204Genomic analysis of five antibiotic-resistant bacteria isolated from the environment. Our study presents the whole-genome sequences and annotation of five bacteria isolates, each demonstrating distinct antibiotic resistance. These isolates include Bacillus paranthracis RIT 841, Atlantibacter hermanii RIT 842, Pantoea leporis RIT 844, Enterococcus casseliflavus RIT 845, and Pseudomonas alkylphenolica RIT 846, underscoring the importance of understanding antimicrobial resistance.202439189722
600520.8198Antimicrobial activity of Pediococcus pentosaceus strains against diarrheal pathogens isolated from pigs and effect on paracellular permeability of HT-29 cells. This study aimed to investigate lactic acid bacteria with antimicrobial activities against infectious diarrheal pathogens in pigs and their genetic characteristics. Acid-resistant lactic acid bacteria were examined for bile resistance, pancreatic enzyme resistance, gelatinase and urease activities, and antibiotic resistance. Subsequently, selected isolates were examined for antimicrobial activities against Campylobacter coli, Clostridium perfringens, Escherichia coli, and Salmonella Typhimurium, and their effects on paracellular permeability and the expression of tight junction protein-encoding genes in HT-29 cells were assessed. Whole genome sequencing was performed to identify the genes related to safety and antibacterial activity. Of the 51 isolates examined, 12 were resistant to bile and pancreatin and did not produce gelatinase and urease. Of these 12, isolates 19, 20, 30, 36, and 67 showed tetracycline resistance and isolates 15, 19, and 38W showed antimicrobial activity against infectious diarrheal bacteria. Treatment with isolate 38W significantly reduced the paracellular permeability induced by E. coli in HT-29 cells and alleviated the expression of tight junction protein-encoding genes (claudin-1, occludin, and ZO-1) induced by E. coli inoculation. Isolates 15, 19, and 38W were named as Pediococcus pentosaceus SMFM2016-NK1, SMFM2016-YK1, and SMFM2016-WK1, respectively. Bacteriocin-related genes were YheH, ytrF, BceA, BceB, and MccF in SMFM2016-NK1; YheH, ytrF, BceA, BceB, entK, lcnA, MccF, and skgD in SMFM2016-YK1; and YheH, ytrF, BceA, BceB, and MccF in SMFM2016-WK1. SMFM2016-YK1 harbored the tetM gene. These results indicate that P. pentosaceus SMFM2016-WK1 might control diarrheal pathogens isolated from pigs. However, a further study is necessary because the results were obtained only from in vitro experiment.202540873998
147330.8188Evaluation of the Unyvero i60 ITI® multiplex PCR for infected chronic leg ulcers diagnosis. OBJECTIVES: Unyvero i60 ITI multiplex PCR (mPCR) may identify a large panel of bacteria and antibiotic resistance genes. In this study, we compared results obtained by mPCR to standard bacteriology in chronic leg ulcer (CLU) infections. METHODS: A prospective study, part of the interventional-blinded randomized study "ulcerinfecte" (NCT02889926), was conducted at Saint Joseph Hospital in Paris. Fifty patients with a suspicion of infected CLU were included between February 2017 and September 2018. Conventional bacteriology and mPCR were performed simultaneously on deep skin biopsies. RESULTS: Staphylococcus aureus and Pseudomonas aeruginosa were the most detected pathogens. Regarding the global sensitivity, mPCR is not overcome to the standard culture. Anaerobes and slow growing bacteria were detected with a higher sensitivity rate by mPCR than standard culture. CONCLUSION: Unyvero i60 ITI multiplex PCR detected rapidly pathogenic bacteria in infected CLU especially anaerobes and slow growing bacteria and was particularly effective for patients previously treated with antibiotics.202031790779
613140.8184Draft Genome Sequence of Eggerthia catenaformis Strain MAR1 Isolated from Saliva of Healthy Humans. Here, we report the draft genome sequence of Eggerthia catenaformis MAR1 isolated during a screen for d-cycloserine-resistant bacteria from the saliva of healthy humans. Analysis of the genome reveals that the strain has the potential to be a human pathogen and carries genes related to virulence and antibiotic resistance.201728705984
303350.8172Glabridin inhibited the spread of polymyxin-resistant Enterobacterium carrying ICEMmoMP63. INTRODUCTION: The role of integrative and conjugative elements (ICEs) in antibiotic resistance in Morganella morganii is unknown. This study aimed to determine whether an ICE identified in the M. morganii genome contributed to the polymyxin resistance. METHODS: Whole-genome sequencing was performed followed by bioinformatics analyses to identify ICEs and antibiotic resistance genes. Conjugation assays were performed to analyze the transferability of a discovered ICE. A drug transporter encoded on the ICE was heterogeneously expressed in Escherichia coli, minimum inhibitory concentrations of antibiotics were determined, and a traditional Chinese medicine library was screened for potential efflux pump inhibitors. RESULTS: An antibiotic resistance-conferring ICE, named ICEMmoMP63, was identified. ICEMmoMP63 was verified to be horizontally transferred among Enterobacteriaceae bacteria. G3577_03020 in ICEMmoMP63 was found to mediate multiple antibiotic resistances, especially polymyxin resistance. However, natural compound glabridin was demonstrated to inhibit polymyxin resistance. DISCUSSION: Our findings support the need for monitoring dissemination of ICEMmoMP63 in Enterobacteriaceae bacteria. Combined glabridin and polymyxin may have therapeutic potential for treating infections from multi-drug resistant bacteria carrying ICEMmoMP63.202337283918
847360.8170MHCII, Tlr4 and Nramp1 genes control host pulmonary resistance against the opportunistic bacterium Pasteurella pneumotropica. MHCII, Tlr4, and Nramp1 genes are each independently important in pulmonary immunity. To determine the effect of these genes on host resistance, mice carrying various combinations of functional alleles for these three genes were experimentally challenged with the opportunistic bacterium, Pasteurella pneumotropica. MHCII-/-, Tlr4d/d, and Nramp1s/s mice were significantly more susceptible to experimental infections by P. pneumotropica after intranasal challenge compared to mice carrying functional alleles at only one of those genes. P. pneumotropica were cultured from the lungs of challenged mice, and the severity of the pneumonia strongly correlated with the number of isolated bacteria. Mice with the genotype MHCII-/- Tlr4n/n genotype were less susceptible to pneumonia than MHCII+/+, Tlr4d/d mice. It is interesting that the Nramp1 gene contribution to host resistance was apparent only in the absence of functional MHCII or Tlr4 genes. These data suggest that MHCII, Tlr4, and Nramp1 genes are important to pulmonary bacterial resistance.200111261784
986870.8163The mosaic architecture of Aeromonas salmonicida subsp. salmonicida pAsa4 plasmid and its consequences on antibiotic resistance. Aeromonas salmonicida subsp. salmonicida, the causative agent of furunculosis in salmonids, is an issue especially because many isolates of this bacterium display antibiotic resistances, which limit treatments against the disease. Recent results suggested the possible existence of alternative forms of pAsa4, a large plasmid found in A. salmonicida subsp. salmonicida and bearing multiple antibiotic resistance genes. The present study reveals the existence of two newly detected pAsa4 variants, pAsa4b and pAsa4c. We present the extensive characterization of the genomic architecture, the mobile genetic elements and the antimicrobial resistance genes of these plasmids in addition to the reference pAsa4 from the strain A449. The analysis showed differences between the three architectures with consequences on the content of resistance genes. The genomic plasticity of the three pAsa4 variants could be partially explained by the action of mobile genetic elements like insertion sequences. Eight additional isolates from Canada and Europe that bore similar antibiotic resistance patterns as pAsa4-bearing strains were genotyped and specific pAsa4 variants could be attributed to phenotypic profiles. pAsa4 and pAsa4c were found in Europe, while pAsa4b was found in Canada. In accordance with their content in conjugative transfer genes, only pAsa4b and pAsa4c can be transferred by conjugation in Escherichia coli. The plasticity of pAsa4 variants related to the acquisition of antibiotic resistance indicates that these plasmids may pose a threat in terms of the dissemination of antimicrobial-resistant A. salmonicida subsp. salmonicida bacteria.201627812409
520580.8159Antimicrobial resistance and virulence factors of Klebsiella quasipneumoniae, the novel sequence types (ST) 7979 and 7980 from Indonesia. Klebsiella pneumoniae is a human pathogen of global concern. The more recently described pathogen, K. quasipneumoniae, shares similar morphological characteristics with K. pneumoniae and is commonly misidentified as this species using conventional laboratory techniques. This study investigates the molecular characteristics of four phenotype-identified K. pneumoniae isolates obtained from hospital wastewater in Jakarta, Indonesia. Whole-genome sequencing (WGS) and the Average Nucleotide Identity (ANI) showed that these isolates were eventually identified as K. quasipneumoniae subsp. quasipneumoniae, a closely related species of K. pneumoniae. These isolates of novel ST7979 and ST7980 strains are classified as multi-drug resistant (MDR) bacteria and harbor many antibiotic-resistance genes. Interestingly, the novel ST7980 strain is carbapenem non-susceptible and harbors the sul1 gene and the heat-stable enterotoxin gene, astA. The ST7979 strains have KL55 capsular type and O3b type, whereas the ST7980 strains have KL107 and O12 types. Our finding highlights the significance of identifying the K. quasipneumoniae strain utilizing a genomic platform. Additionally, routine surveillance is needed to monitor the hospital wastewater and avoid the spread of multidrug-resistant bacteria.202540609771
299890.8158Membrane vesicles derived from Enterococcus faecalis promote the co-transfer of important antibiotic resistance genes located on both plasmids and chromosomes. BACKGROUND: Bacterial membrane vesicles (BMVs) are novel vehicles of antibiotic resistance gene (ARG) transfer in Gram-negative bacteria, but their role in the spread of ARGs in Gram-positive bacteria has not been defined. The purpose of this study was to evaluate the role of MVs in the transmission of antimicrobial resistance in Gram-positive bacteria. METHODS: A linezolid-resistant Enterococcus faecalis CQ20 of swine origin was selected as the donor strain. Linezolid-susceptible E. faecalis SC032 of human origin, Enterococcus faecium BM4105 and Escherichia coli were selected as recipient strains. The presence of plasmids (pCQ20-1 and pCQ20-2) and an optrA-carrying transposon Tn6674 in CQ20, MVs and vesiculants was verified by WGS or PCR. MVs were isolated with density gradient centrifugation, and MV-mediated transformation was performed to assess the horizontal transferability of MVs. The MICs for CQ20 and its vesiculants were determined by the broth microdilution method. RESULTS: CQ20-derived MVs (CQ20-MV) were isolated, and PCR identified the presence of two plasmids and the optrA gene in the CQ20-MVs. MV-mediated transformation to E. faecalis SC032 and E. faecium BM4105 was successfully performed, and the WGS data also showed that both plasmids pCQ20-1 and pCQ20-2 and optrA-carrying transposon Tn6674 were transferred to E. faecalis SC032 and E. faecium BM4105, but failed for E. coli. Additionally, vesiculants that had acquired ARGs still had the ability to spread these genes via MVs. CONCLUSIONS: To our knowledge, this is the first report of MV-mediated co-transfer of ARG-carrying plasmids and transposons in the Gram-positive bacterium E. faecium.202438109479
5487100.8156Rapid Transmission and Divergence of Vancomycin-Resistant Enterococcus faecium Sequence Type 80, China. We investigated genomic evolution of vancomycin-resistant Enterococcus faecium (VREF) during an outbreak in Shenzhen, China. Whole-genome sequencing revealed 2 sequence type 80 VREF subpopulations diverging through insertion sequence-mediated recombination. One subpopulation acquired more antimicrobial resistance and carbohydrate metabolism genes. Persistent VREF transmission underscores the need for genomic surveillance to curb spread.202540305388
5204110.8152Draft genome sequencing of a multidrug-resistant Klebsiella pneumoniae strain MBBL2 isolated from mastitic cow milk. Milk from cows with mastitis is a primary source of bacteria harboring antibiotic resistance genes (ARGs), including Klebsiella pneumoniae. We present the genome sequence of K. pneumoniae strain MBBL2 isolated from mastitic cow milk, which contains numerous ARGs and virulence-associated genes potentially pathogenic to humans.202539878535
2997120.8151Genomic Characterization of Multidrug-Resistant Escherichia coli BH100 Sub-strains. The rapid emergence of multidrug-resistant (MDR) bacteria is a global health problem. Mobile genetic elements like conjugative plasmids, transposons, and integrons are the major players in spreading resistance genes in uropathogenic Escherichia coli (UPEC) pathotype. The E. coli BH100 strain was isolated from the urinary tract of a Brazilian woman in 1974. This strain presents two plasmids carrying MDR cassettes, pBH100, and pAp, with conjugative and mobilization properties, respectively. However, its transposable elements have not been characterized. In this study, we attempted to unravel the factors involved in the mobilization of virulence and drug-resistance genes by assessing genomic rearrangements in four BH100 sub-strains (BH100 MG2014, BH100 MG2017, BH100L MG2017, and BH100N MG2017). Therefore, the complete genomes of the BH100 sub-strains were achieved through Next Generation Sequencing and submitted to comparative genomic analyses. Our data shows recombination events between the two plasmids in the sub-strain BH100 MG2017 and between pBH100 and the chromosome in BH100L MG2017. In both cases, IS3 and IS21 elements were detected upstream of Tn21 family transposons associated with MDR genes at the recombined region. These results integrated with Genomic island analysis suggest pBH100 might be involved in the spreading of drug resistance through the formation of resistance islands. Regarding pathogenicity, our results reveal that BH100 strain is closely related to UPEC strains and contains many IS3 and IS21-transposase-enriched genomic islands associated with virulence. This study concludes that those IS elements are vital for the evolution and adaptation of BH100 strain.202033584554
2493130.8149Multidrug-resistant hypervirulent Klebsiella pneumoniae: an evolving superbug. Multidrug-resistant hypervirulent Klebsiella pneumoniae (MDR-hvKP) combines high pathogenicity with multidrug resistance to become a new superbug. MDR-hvKP reports continue to emerge, shattering the perception that hypervirulent K. pneumoniae (hvKP) strains are antibiotic sensitive. Patients infected with MDR-hvKP strains have been reported in Asia, particularly China. Although hvKP can acquire drug resistance genes, MDR-hvKP seems to be more easily transformed from classical K. pneumoniae (cKP), which has a strong gene uptake ability. To better understand the biology of MDR-hvKP, this review discusses the virulence factors, resistance mechanisms, formation pathways, and identification of MDR-hvKP. Given their destructive and transmissible potential, continued surveillance of these organisms and enhanced control measures should be prioritized.202540135944
6721140.8147Aldehyde-resistant mycobacteria bacteria associated with the use of endoscope reprocessing systems. Bacteria can develop resistance to antibiotics, but little is known about their ability to increase resistance to chemical disinfectants. This study randomly sampled 3 automated endoscope reprocessors in the United States using aldehydes for endoscope disinfection. Bacterial contamination was found after disinfection in all automated endoscope reprocessors, and some mycobacteria isolates demonstrated significant resistance to glutaraldehyde and ortho-phthaldehyde disinfectants. Bacteria can survive aldehyde-based disinfection and may pose a cross-contamination risk to patients.201222325730
2001150.8142Identification of plasmids co-carrying cfr(D)/optrA and cfr(D2)/poxtA linezolid resistance genes in two Enterococcus avium isolates from swine brain. Oxazolidinones are critically important antibiotics to treat human infections caused by multidrug-resistant bacteria, therefore the occurrence of linezolid-resistant enterococci from food-producing animals poses a serious risk to human health. In this study, Enterococcus avium 38157 and 44917 strains, isolated from the brain of two unrelated piglets, were found to carry the linezolid resistance genes cfr(D)-optrA, and cfr(D2)-poxtA, respectively. Whole genome sequencing analysis of E. avium 38157 revealed that the genes were co-located on the 36.5-kb pEa_cfr(D)-optrA plasmid showing high identity with the pAT02-c of Enterococcus faecium AT02 from pet food. The optrA region, was 99% identical to the one of the pAv-optrA plasmid from a bovine Aerococcus viridans strain, whereas the cfr(D) genetic context was identical to that of the plasmid 2 of E. faecium 15-307.1. pEa_cfr(D)-optrA was not transferable to enterococcal recipients. In E. avium 44917 a cfr(D)-like gene, named cfr(D2), and the poxtA gene were co-located on the transferable 42.6-kb pEa-cfr(D2)-poxtA plasmid 97% identical to the Tn6349 transposon of the human MRSA AOUC-0915. The cfr(D2) genetic context, fully replaced the Tn6644 that in S. aureus AOUC-0915 harbor the cfr gene. In conclusion, this is, the best of our knowledge, the first report of the new cfr(D2) gene variant. The occurrence of plasmids co-carrying two linezolid resistance genes in enterococci from food-producing animals needs close surveillance to prevent their spread to human pathogens.202337116421
2481160.8138Gene expressions of clinical Pseudomonas aeruginosa harboring RND efflux pumps on chromosome and involving a novel integron on a plasmid. The clinical strain of Pseudomonas aeruginosa XM8 harbored multiple RND-type antibiotic efflux pump genes and a novel integron In4881 on its plasmid pXM8-2, rendering it resistant to nearly all conventional antibiotics except colistin. The resistance was primarily attributed to the inactivation of the oprD gene and overexpression of several efflux pump genes, including mexAB-oprM, mexCD-oprJ, oprN-mexFE, and mexXY. In this study, the XM8 strain was comprehensively characterized using various methods. Antimicrobial susceptibility testing was performed using the BioMerieux VITEK2 system and manual double dilution methods. Gene expression levels of efflux pump-related genes were analyzed via quantitative real-time PCR. The bacterial chromosome and plasmid were sequenced using both Illumina and Nanopore platforms, and bioinformatics tools were employed to analyze mobile genetic elements associated with antibiotic resistance. The pXM8-2 plasmid containsed multiple mobile genetic elements, including integrons (In4881, In334, In413) and transposons (Tn3, TnAs1, TnAs3). Notably, In4881 was reported for the first time in this study. The presence of these elements highlights the potential for horizontal gene transfer and further spread of antibiotic resistance. Given the strong resistance profile of the XM8 strain, effective measures should be implemented to prevent the dissemination and prevalence of such multidrug-resistant bacteria.202540154852
6025170.8135Phenotypic and Genomic Insights into Schleiferilactobacillus harbinensis WU01, a Candidate Probiotic with Broad-Spectrum Antimicrobial Activity Against ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter) Pathogens. The increasing prevalence of multidrug-resistant (MDR) pathogens, particularly ESKAPE bacteria, necessitates alternative antimicrobial strategies. Probiotics, particularly lactic acid bacteria, protect against pathogenic infections. This study aimed to characterize Schleiferilactobacillus harbinensis WU01, isolated from fermented palm sap, and evaluate its probiotic potential and antimicrobial activity. Its probiotic characteristics were assessed based on low-pH and bile tolerance, auto-aggregation, hydrophobicity, and adhesion to Caco-2 cells. Antimicrobial activity against ESKAPE pathogens was evaluated using the agar well diffusion assay. Whole-genome sequencing (WGS) and in silico analysis were performed to identify bacteriocin-related genes, virulence factors, and antibiotic-resistance genes. WU01 exhibited a strong tolerance to gastrointestinal conditions, with high survival rates under acidic and bile-salt environments. S. harbinensis WU01 demonstrated significant auto-aggregation, high hydrophobicity, and strong adhesion to Caco-2 cells. Antimicrobial assays revealed inhibitory activity against MDR ESKAPE pathogens, which correlated with the presence of bacteriocin-related genes, including those homologous to Carnocin_CP52. Molecular dynamics (MDs) simulations confirmed the interaction of Carnocin_CP52 with bacterial membranes, suggesting a mechanism for pathogen disruption. WGS confirmed the absence of virulence and antimicrobial-resistance genes, confirming its safety for probiotic applications. These findings suggest that S. harbinensis WU01 possesses probiotic properties and antimicrobial activity against ESKAPE pathogens. The combined results highlight its potential application in functional foods and therapeutic interventions.202540238333
1765180.8135Molecular Characterization of a Multidrug-Resistant Klebsiella pneumoniae Strain R46 Isolated from a Rabbit. To investigate the mechanisms of multiple resistance and the horizontal transfer of resistance genes in animal pathogens, we characterized the molecular structures of the resistance gene-related sequences in a multidrug-resistant Klebsiella pneumoniae strain R46 isolated from a rabbit. Molecular cloning was performed to clone the resistance genes, and minimum inhibitory concentrations (MICs) were measured to determine the resistance characteristics of the cloned genes and related strains. A conjugation experiment was conducted to assess the transferability of the resistance plasmids. Sequencing and comparative genomic methods were used to analyze the structures of the resistance gene-related sequences. The K. pneumoniae R46 genome consisted of a chromosome and three resistance plasmids named pR46-27, pR46-42, and pR46-270, respectively. The whole genome encoded 34 antibiotic resistance genes including a newly identified chromosome-encoded florfenicol resistance gene named mdfA2. pR46-270, besides encoding 26 antibiotic resistance genes, carried four clusters of heavy metal resistance genes and several virulence-related genes or gene clusters. The plasmid-encoded resistance genes were mostly associated with mobile genetic elements. The plasmid with the most similarity to the floR gene-harboring plasmid pR46-27 was pCTXM-2271, a plasmid from Escherichia coli. The results of this work demonstrated that the plasmids with multidrug resistance genes were present in animal-derived bacteria and more florfenicol resistance genes such as mdfA2 could be present in bacterial populations. The resistance genes encoded on the plasmids may spread between the bacteria of different species or genera and cause the resistance dissemination.201931531339
5464190.8135Genomic and resistome analysis of Alcaligenes faecalis strain PGB1 by Nanopore MinION and Illumina Technologies. BACKGROUND: Drug-resistant bacteria are important carriers of antibiotic-resistant genes (ARGs). This fact is crucial for the development of precise clinical drug treatment strategies. Long-read sequencing platforms such as the Oxford Nanopore sequencer can improve genome assembly efficiency particularly when they are combined with short-read sequencing data. RESULTS: Alcaligenes faecalis PGB1 was isolated and identified with resistance to penicillin and three other antibiotics. After being sequenced by Nanopore MinION and Illumina sequencer, its entire genome was hybrid-assembled. One chromosome and one plasmid was assembled and annotated with 4,433 genes (including 91 RNA genes). Function annotation and comparison between strains were performed. A phylogenetic analysis revealed that it was closest to A. faecalis ZD02. Resistome related sequences was explored, including ARGs, Insert sequence, phage. Two plasmid aminoglycoside genes were determined to be acquired ARGs. The main ARG category was antibiotic efflux resistance and β-lactamase (EC 3.5.2.6) of PGB1 was assigned to Class A, Subclass A1b, and Cluster LSBL3. CONCLUSIONS: The present study identified the newly isolated bacterium A. faecalis PGB1 and systematically annotated its genome sequence and ARGs.202235443609