# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1342 | 0 | 0.9859 | Prevalence, Toxin Genes, and Antibiotic Resistance Profiles of Bacillus cereus Isolates from Spices in Antalya and Isparta Provinces in Türkiye. Bacillus cereus is a pathogenic bacterium commonly found in nature and can produce toxins that cause food poisoning. This study aimed to detect the prevalence of B. cereus group bacteria in 50 unpackaged and 20 packaged spice samples frequently used as flavoring in Turkish cuisine, as well as investigate the presence of toxin genes and antibiotic resistance in the isolates. A total of 48 B. cereus group bacteria were isolated from 27 of 70 (38.57%) spice samples. The prevalence of B. cereus group bacteria in packaged (25%, 5/20) and unpackaged (44%, 22/50) spice samples did not differ significantly (P ˃ 0.05). All B. cereus group isolates were identified as B. cereus sensu stricto (B. cereus) using molecular methods. The hemolytic activity tests revealed that the most strains (44/48, 91.67%) are β-hemolytic. The distributions of toxin genes in isolates were investigated by PCR. It was determined that all isolates were identified to have 2-8 toxin genes, except B. cereus SBC3. The three most common toxin genes were found to be nheA (47/48, 97.92%), nheB (46/48, 95.83%), and entFM (46/48, 95.83%). All B. cereus isolates were susceptible to linezolid and vancomycin, while 35.42% (17/48) showed resistance to erythromycin. Multi-drug resistance (MDR) was detected in 8.3% (4/48) of B. cereus isolates, while 33.33% of the isolates showed multiple antibiotic resistance (MAR) index values higher than 0.2. The findings indicate that B. cereus may pose a health risk in packaged and unpackaged spices if present in high quantities. Therefore, the presence of B. cereus strains in both packaged and unpackaged spices should be monitored regarding consumer health and product safety. | 2023 | 38031610 |
| 2129 | 1 | 0.9858 | Screening of antibiotic resistance genes in pathogenic bacteria isolated from tiny freshwater shrimp (Macrobrachium lanchesteri) and "Kung Ten", the uncooked Thai food. OBJECTIVE: This study aimed to isolate and identify of pathogenic bacteria in tiny freshwater shrimp (Macrobrachium lanchesteri) and in Kung Ten, which is an unusual Thai cuisine that eaten alive shrimp directly. Antimicrobial susceptibility test and identification of antibiotic resistance genes for isolated bacteria were conducted. MATERIALS AND METHODS: Eighty of fresh shrimp samples and forty of Kung Ten salads were collected from four fresh markets, which were located in Bangkok and Nonthaburi province (N = 120). The isolation, identification, and antimicrobial susceptibility test of pathogenic bacteria were done following the Clinical and Laboratory Standards Institute guidelines. Antibiotic-resistant bacteria were screened for β-lactamase relating genes, such as AmpC (MOX and ACC genes), bla (CTX-M), and Int1 genes. RESULTS: The number of bacterial isolates in tiny freshwater shrimp and Kung Ten salad was 136 and 65, respectively. Aeromonas caviae, A. hydrophilla, Proteus penneri, Proteus vulgaris, and Klebsiella pneumoniae were commonly found. Ampicillin, amoxicillin/clavulanic, cefuroxime, tetracycline, and trimethoprim/sulfamethoxazole resistance were observed, and common antibiotic-resistant bacteria were A. caviae, P. vulgaris, Enterobacter Aerogenes, and K. pneumoniae. A. caviae, P. penneri, K. Pneumoniae, and A. hydrophilla were positive for MOX gene; bla (CTX-M), and Int1 genes; ACC and Int1 genes; and ACC gene, respectively. CONCLUSION: Raw or uncooked shrimps in Kung Ten salad may a risk in foodborne diseases due to positive for pathogenic bacterial isolates. However, hygienic control on food preparation is difficult to apply because of the difficulty of changing in local Thai food behavior. | 2020 | 32219114 |
| 948 | 2 | 0.9857 | Multidrug-Resistant Bacteria in Aquaculture Systems in Accra, Ghana. BACKGROUND: Antibiotic resistance (ABR) poses a critical global health challenge, necessitating its surveillance across both human and animal health sectors. This study evaluated ABR in bacteria harboured in reared inland fishes sold in Accra and the pond water from which they originated. METHOD: The study was cross-sectional, involving fishes and water sampled from 80 ponds. The gastrointestinal organs of the fishes were homogenised and cultured for bacteria, as were the water samples. The bacteria were identified using matrix-assisted laser desorption/ionisation time of flight mass spectrometry (MALDI-TOF-MS). Antimicrobial susceptibility test was done using the Kirby-Bauer method. Multidrug-resistant (MDR) bacteria were selected for further testing. The double disc diffusion method was used to detect extended-spectrum beta-lactamase (ESBL) production in isolates that were resistant to third-generation cephalosporins. Whole genome sequencing was performed on the ESBL-positive isolates using the Illumina Miseq platform. RESULTS: In total, 39 different bacterial species, with their individual numbers totalling 391, were isolated. The bacteria were predominantly Escherichia coli (17%), Aeromonas veronii (11%), Citrobacter freundii (8%), Bacillus cereus (5%), and Klebsiella pneumoniae (5%). The overall ABR rates were cefotaxime (32%), gentamicin (1%), ciprofloxacin (4%), chloramphenicol (19%), tetracycline (37%), meropenem (0%), and ertapenem (0%). Overall MDR and ESBL bacteria prevalence were 13.6% and 1.3%, respectively. The sequence types of the ESBL isolates were ST4684 (80%, n = 4) and ST2005 (20%, n = 1), and the serotypes were H34:09 (80%, n = 4) and H7 (20%, n = 1); the ABR genes were blaCTX-M-15, fosA7, and qnrS1. CONCLUSION: The fishes and the pond water were contaminated with a diverse range of bacteria, mainly Escherichia coli and Aeromonas veronii. The ABR, MDR, and ESBL rates were low to moderate. Moreover, the main sequence type and serotype of the ESBL isolates were ST4684 and H34:09, respectively, and the ABR genes were blaCTX-M-15, fosA7, and qnrS1. | 2024 | 39600552 |
| 1344 | 3 | 0.9855 | Antibiotics resistance and toxin profiles of Bacillus cereus-group isolates from fresh vegetables from German retail markets. BACKGROUND: This study aimed to evaluate the safety of raw vegetable products present on the German market regarding toxin-producing Bacillus cereus sensu lato (s.l.) group bacteria. RESULTS: A total of 147 B. cereus s.l. group strains isolated from cucumbers, carrots, herbs, salad leaves and ready-to-eat mixed salad leaves were analyzed. Their toxinogenic potential was assessed by multiplex PCR targeting the hemolysin BL (hbl) component D (hblD), non-hemolytic enterotoxin (nhe) component A (nheA), cytotoxin K-2 (cytK-2) and the cereulide (ces) toxin genes. In addition, a serological test was used to detect Hbl and Nhe toxins. On the basis of PCR and serological results, none of the strains were positive for the cereulide protein/genes, while 91.2, 83.0 and 37.4% were positive for the Hbl, Nhe and CytK toxins or their genes, respectively. Numerous strains produced multiple toxins. Generally, strains showed resistance against the β-lactam antibiotics such as penicillin G and cefotaxim (100%), as well as amoxicillin/clavulanic acid combination and ampicillin (99.3%). Most strains were susceptible to ciprofloxacin (99.3%), chloramphenicol (98.6%), amikacin (98.0%), imipenem (93.9%), erythromycin (91.8%), gentamicin (88.4%), tetracycline (76.2%) and trimethoprim/sulfamethoxazole combination (52.4%). The genomes of eight selected strains were sequenced. The toxin gene profiles detected by PCR and serological test mostly agreed with those from whole-genome sequence data. CONCLUSIONS: Our study showed that B. cereus s.l. strains encoding toxin genes occur in products sold on the German market and that these may pose a health risk to the consumer if present at elevated levels. Furthermore, a small percentage of these strains harbor antibiotic resistance genes. The presence of these bacteria in fresh produce should, therefore, be monitored to guarantee their safety. | 2019 | 31706266 |
| 2182 | 4 | 0.9855 | Antibiotic resistance and virulence profiles of Proteus mirabilis isolated from broiler chickens at abattoir in South Africa. BACKGROUND: Proteus mirabilis has been identified as an important zoonotic pathogen, causing several illnesses such as diarrhoea, keratitis and urinary tract infections. OBJECTIVE: This study assessed the prevalence of P. mirabilis in broiler chickens, its antibiotic resistance (AR) patterns, ESBL-producing P. mirabilis and the presence of virulence genes. METHODS: A total of 26 isolates were confirmed as P. mirabilis from 480 pooled broiler chicken faecal samples by polymerase chain reaction (PCR). The disk diffusion method was used to evaluate the antibacterial susceptibility test, while nine virulence genes and 26 AR genes were also screened by PCR. RESULTS: All 26 P. mirabilis isolates harboured the ireA (siderophore receptors), ptA, and zapA (proteases), ucaA, pmfA, atfA, and mrpA (fimbriae), hlyA and hpmA (haemolysins) virulence genes. The P. mirabilis isolates were resistant to ciprofloxacin (62%) and levofloxacin (54%), while 8 (30.7%) of the isolates were classified as multidrug resistant (MDR). PCR analysis identified the bla(CTX-M) gene (62%), bla(TEM) (58%) and bla(CTX-M-2) (38%). Further screening for AMR genes identified mcr-1, cat1, cat2, qnrA, qnrD and mecA, 12%, 19%, 12%, 54%, 27% and 8%, respectively for P. mirabilis isolates. The prevalence of the integron integrase intI1 and intI2 genes was 43% and 4%, respectively. CONCLUSIONS: The rise of ciprofloxacin and levofloxacin resistance, as well as MDR strains, is a public health threat that points to a challenge in the treatment of infections caused by these zoonotic bacteria. Furthermore, because ESBL-producing P. mirabilis has the potential to spread to humans, the presence of bla(CTX) (-M) -producing P. mirabilis in broilers should be kept under control. This is the first study undertaken to isolate P. mirabilis from chicken faecal samples and investigate its antibiotic resistance status as well as virulence profiles in South Africa. | 2024 | 38357843 |
| 1346 | 5 | 0.9855 | High prevalence of multidrug resistant Escherichia coli isolated from fresh vegetables sold by selected formal and informal traders in the most densely populated Province of South Africa. Contaminated fresh produce has increasingly been implicated in foodborne disease outbreaks. As microbiological safety surveillance in South Africa is limited, a total of 545 vegetable samples (spinach, tomato, lettuce, cucumber, and green beans) were purchased from retailers, street traders, trolley vendors and farmers' markets. Escherichia coli, coliforms and Enterobacteriaceae were enumerated and the prevalence of Escherichia coli, Salmonella spp. and Listeria monocytogenes determined. E. coli isolates were characterized phenotypically (antibiotic resistance) and genotypically (diarrheagenic virulence genes). Coliforms, E. coli and Enterobacteriaceae counts were mostly not significantly different between formal and informal markets, with exceptions noted on occasion. When compared to international standards, 90% to 98% tomatoes, 70% to 94% spinach, 82% cucumbers, 93% lettuce, and 80% green bean samples, had satisfactory (≤ 100 CFU/g) E. coli counts. Of the 545 vegetable samples analyzed, 14.86% (n = 81) harbored E. coli, predominantly from leafy green vegetables. Virulence genes (lt, st, bfpA, eagg, eaeA, stx1, stx2, and ipaH) were not detected in the E. coli isolates (n = 67) characterized, however 40.30% were multidrug-resistant. Resistance to aminoglycosides (neomycin, 73.13%; gentamycin, < 10%), penicillins (ampicillin, 38.81%; amoxicillin, 41.79%; augmentin, < 10%), sulfonamides (cotrimoxazole, 22.39%), tetracycline (19.4%), chloramphenicol (11.94%), cephalosporins (cefepime, 34.33%), and carbapenemases (imipenem, < 10%) were observed. This study highlights the need for continued surveillance of multidrug resistant foodborne pathogens in fresh produce retailed formally and informally for potential consumer health risks. PRACTICAL APPLICATION: The results indicate that the microbiological quality of different vegetables were similar per product type, regardless of being purchased from formal retailers or informal street traders, trolley vendors or farmers' markets. Although no pathogenic bacteria (diarrheagenic E. coli, Salmonella spp. or L. monocytogenes) were isolated, high levels of multidrug-resistance was observed in the generic E. coli isolates. These findings highlight the importance of microbiological quality surveillance of fresh produce in formal and informal markets, as these products can be a reservoir of multidrug resistant bacteria harboring antibiotic resistance and virulence genes, potentially impacting human health. | 2021 | 33294974 |
| 1222 | 6 | 0.9855 | Molecular Characterization and the Antimicrobial Resistance Profile of Salmonella spp. Isolated from Ready-to-Eat Foods in Ouagadougou, Burkina Faso. The emergence of antimicrobial-resistantfood-borne bacteria is a great challenge to public health. This study was conducted to characterize and determine the resistance profile of Salmonella strains isolated from foods including sesames, ready-to-eat (RTE) salads, mango juices, and lettuce in Burkina Faso. One hundred and forty-eight biochemically identified Salmonella isolates were characterized by molecular amplification of Salmonella marker invA and spiC, misL, orfL, and pipD virulence genes. After that, all confirmed strains were examined for susceptibility to sixteen antimicrobials, and PCR amplifications were used to identify the following resistance genes: bla (TEM), temA, temB, StrA, aadA, sul1, sul2, tet(A), and tet(B). One hundred and eight isolates were genetically confirmed as Salmonella spp. Virulence genes were observed in 57.4%, 55.6%, 49.1%, and 38% isolates for pipD, SpiC, misL, and orfL, respectively. Isolates have shown moderate resistance to gentamycin (26.8%), ampicillin (22.2%), cefoxitin (19.4%), and nalidixic acid (18.5%). All isolates were sensitive to six antibiotics, including cefotaxime, ceftazidime, aztreonam, imipenem, meropenem, and ciprofloxacin. Among the 66 isolates resistant to at least one antibiotic, 11 (16.7%) were multidrug resistant. The Multiple Antimicrobial Resistance (MAR) index of Salmonella serovars ranged from 0.06 to 0.53. PCR detected 7 resistance genes (tet(A), tet(B), bla (TEM), temB, sul1, sul2, and aadA) in drug-resistant isolates. These findings raise serious concerns because ready-to-eat food in Burkina Faso could serve as a reservoir for spreading antimicrobial resistance genes worldwide. | 2022 | 36406904 |
| 1258 | 7 | 0.9854 | Occurrence of antimicrobial resistance and antimicrobial resistance genes in methicillin-resistant Staphylococcus aureus isolated from healthy rabbits. BACKGROUND AND AIM: Methicillin-resistant globally, Staphylococcus aureus (MRSA) is a major cause of disease in both humans and animals. Several studies have documented the presence of MRSA in healthy and infected animals. However, there is less information on MRSA occurrence in exotic pets, especially healthy rabbits. This study aimed to look into the antimicrobial resistance profile, hidden antimicrobial-resistant genes in isolated bacteria, and to estimate prevalence of MRSA in healthy rabbits. MATERIALS AND METHODS: Two-hundreds and eighteen samples, including 42 eyes, 44 ears, 44 oral, 44 ventral thoracic, and 44 perineal swabs, were taken from 44 healthy rabbits that visited the Prasu-Arthorn Animal Hospital, in Nakornpathom, Thailand, from January 2015 to March 2016. The traditional methods of Gram stain, mannitol fermentation, hemolysis on blood agar, catalase test, and coagulase production were used to confirm the presence of Staphylococcus aureus in all specimens. All bacterial isolates were determined by antimicrobial susceptibility test by the disk diffusion method. The polymerase chain reaction was used to identify the antimicrobial-resistant genes (blaZ, mecA, aacA-aphD, msrA, tetK, gyrA, grlA, and dfrG) in isolates of MRSA with a cefoxitin-resistant phenotype. RESULTS: From 218 specimens, 185 S. aureus were isolated, with the majority of these being found in the oral cavity (29.73%) and ventral thoracic area (22.7%), respectively. Forty-seven (25.41%) MRSAs were found in S. aureus isolates, with the majority of these being found in the perineum (16, 34.04%) and ventral thoracic area (13, 27.66%) specimens. Among MRSAs, 29 (61.7%) isolates were multidrug-resistant (MDR) strains. Most of MRSA isolates were resistant to penicillin (100%), followed by ceftriaxone (44.68%) and azithromycin (44.68%). In addition, these bacteria contained the most drug-resistance genes, blaZ (47.83%), followed by gyrA (36.17%) and tetK (23.4%). CONCLUSION: This study revealed that MRSA could be found even in healthy rabbits. Some MRSAs strains were MDR-MRSA, which means that when an infection occurs, the available antibiotics were not effective in treating it. To prevent the spread of MDR-MRSA from pets to owners, it may be helpful to educate owners about effective prevention and hygiene measures. | 2022 | 36590129 |
| 1302 | 8 | 0.9854 | A survey of prevalence and phenotypic and genotypic assessment of antibiotic resistance in Staphylococcus aureus bacteria isolated from ready-to-eat food samples collected from Tehran Province, Iran. BACKGROUND: Resistant Staphylococcus aureus (S. aureus) bacteria are considered among the major causes of foodborne diseases. This survey aims to assess genotypic and phenotypic profiles of antibiotic resistance in S. aureus bacteria isolated from ready-to-eat food samples. METHODS: According to the previously reported prevalence of S. aureus in ready-to-eat food samples, a total of 415 ready-to-eat food samples were collected from Tehran province, Iran. S. aureus bacteria were identified using culture and biochemical tests. Besides, the phenotypic antibiotic resistance profile was determined by disk diffusion. In addition, the genotypic pattern of antibiotic resistance was determined using the PCR. RESULTS: A total of 64 out of 415 (15.42%) ready-to-eat food samples were contaminated with S. aureus. Grilled mushrooms and salad olivieh harbored the highest contamination rate of (30%), while salami samples harbored the lowest contamination rate of 3.33%. In addition, S. aureus bacteria harbored the highest prevalence of resistance to penicillin (85.93%), tetracycline (85.93%), gentamicin (73.43%), erythromycin (53.12%), trimethoprim-sulfamethoxazole (51.56%), and ciprofloxacin (50%). However, all isolates were resistant to at least four antibiotic agents. Accordingly, the prevalence of tetK (70.31%), blaZ (64.06%), aacA-D (57.81%), gyrA (50%), and ermA (39.06%) was higher than that of other detected antibiotic resistance genes. Besides, AacA-D + blaZ (48.43%), tetK + blaZ (46.87%), aacA-D + tetK (39.06%), aacA-D + gyrA (20.31%), and ermA + blaZ (20.31%) were the most frequently identified combined genotypic patterns of antibiotic resistance. CONCLUSION: Ready-to-eat food samples may be sources of resistant S. aureus, which pose a hygienic threat in case of their consumption. However, further investigations are required to identify additional epidemiological features of S. aureus in ready-to-eat foods. | 2021 | 34635183 |
| 1345 | 9 | 0.9853 | Toxigenic potential and antimicrobial susceptibility of Bacillus cereus group bacteria isolated from Tunisian foodstuffs. BACKGROUND: Despite the importance of the B. cereus group as major foodborne pathogens that may cause diarrheal and/or emetic syndrome(s), no study in Tunisia has been conducted in order to characterize the pathogenic potential of the B. cereus group. The aim of this study was to assess the sanitary potential risks of 174 B. cereus group strains isolated from different foodstuffs by detecting and profiling virulence genes (hblA, hblB, hblC, hblD, nheA, nheB, nheC, cytK, bceT and ces), testing the isolates cytotoxic activity on Caco-2 cells and antimicrobial susceptibility towards 11 antibiotics. RESULTS: The entertoxin genes detected among B. cereus isolates were, in decreasing order, nheA (98.9%), nheC (97.7%) and nheB (86.8%) versus hblC (54.6%), hblD (54.6%), hblA (29.9%) and hblB (14.9%), respectively encoding for Non-hemolytic enterotoxin (NHE) and Hemolysin BL (HBL). The isolates are multi-toxigenic, harbouring at least one gene of each NHE and HBL complexes associated or not to bceT, cytK-2 and ces genes. Based on the incidence of virulence genes, the strains were separated into 12 toxigenic groups. Isolates positive for cytK (37,9%) harbored the cytK-2 variant. The detection rates of bceT and ces genes were 50.6 and 4%, respectively. When bacteria were incubated in BHI-YE at 30 °C for 18 h and for 5 d, 70.7 and 35% of the strains were shown to be cytotoxic to Caco-2 cells, respectively. The cytotoxicity of B. cereus strains depended on the food source of isolation. The presence of virulence factors is not always consistent with cytotoxicity. However, different combinations of enterotoxin genetic determinants are significantly associated to the cytotoxic potential of the bacteria. All strains were fully sensitive to rifampicin, chloramphenicol, ciprofloxacin, and gentamycin. The majority of the isolates were susceptible to streptomycin, kanamycin, erythromycin, vancomycin and tetracycline but showed resistance to ampicillin and novobiocin. CONCLUSION: Our results contribute data that are primary to facilitate risk assessments in order to prevent food poisoning due to B. cereus group. | 2019 | 31445510 |
| 1335 | 10 | 0.9853 | Prevalence of virulence factor, antibiotic resistance, and serotype genes of Pasteurella multocida strains isolated from pigs in Vietnam. AIM: The study was conducted to determine the prevalence and characterization of the Pasteurella multocida isolates from suspected pigs in Vietnam. MATERIALS AND METHODS: A total of 83 P. multocida strains were isolated from lung samples and nasal swabs collected from pigs associated with pneumonia, progressive atrophic rhinitis, or reproductive and respiratory symptoms. Isolates were subjected to multiplex polymerase chain reaction (PCR) for capsular typing, detection of virulence-associated genes and antibiotic resistance genes by PCR. The antimicrobial sensitivity profiles of the isolates were tested by disk diffusion method. RESULTS: All the isolates 83/83 (100%) were identified as P. multocida by PCR: serogroup A was obtained from 40/83 (48.19%), serogroup D was detected from 24/83 strains (28.91%), and serogroup B was found in 19/83 (22.35%) isolates. The presence of 14 virulence genes was reported including adhesins group (ptfA - 93.97%, pfhA - 93.97%, and fimA - 90.36%), iron acquisition (exbB - 100%, and exbD - 85.54%), hyaluronidase (pmHAS - 84.33%), and protectins (ompA - 56.62%, ompH 68.67%, and oma87 - 100%). The dermonecrotoxin toxA had low prevalence (19.28%). The antimicrobial susceptibility testing revealed that cephalexin, cefotaxime, ceftriaxone, ofloxacin, pefloxacin, ciprofloxacin, and enrofloxacin were the drugs most likely active against P. multocida while amoxicillin and tetracycline were inactive. The usage of PCR revealed that 63/83 isolates were carrying at least one of the drug resistance genes. CONCLUSION: Unlike other parts of the word, serotype B was prevalent among Vietnamese porcine P. multocida strains. The high antibiotic resistance detected among these isolates gives us an alert about the current state of imprudent antibiotic usage in controlling the pathogenic bacteria. | 2020 | 32636585 |
| 1338 | 11 | 0.9853 | Molecular characterization of Aeromonas hydrophila detected in Channa marulius and Sperata sarwari sampled from rivers of Punjab in Pakistan. Aeromonas hydrophila is one of the major pathogenic bacteria responsible for causing severe outbreaks at fish farms and is also a major global public health concern. This bacterium harbors many virulence genes. The current study was designed to evaluate the antidrug and virulence potential of A. hydrophila by amplifying its antimicrobial resistance and virulence genes using PCR and examining their effects on fish tissues and organs. A total of 960 fish samples of Channa marulius and Sperata sarwari were collected from four sites of the rivers of the Punjab, Pakistan. A. hydrophila isolates were subjected to biochemical identification and detection of virulence and antimicrobial resistance (AMR) genes by PCR. We retrieved 181 (6.46%) A. hydrophila isolates from C. marulius and 177 (6.25%) isolates from S. sarwari. Amplification through PCR revealed the incidence of virulence genes in 95.7% of isolates in C. marulius and 94.4% in S. sarwari. Similarly, amplification through PCR also revealed occurrence of AMR genes in 87.1% of isolates in C. marulius and 83.9% in S. sarwari. Histopathological examination revealed congestion (5.2%) and hepatocyte necrosis (4.6%) in liver, lamellar fusion (3.3%) and the presence of bacterial colonies (3.7%) in gills, fin erosion (6%), and the presence of biofilms (3.5%) in tail fins of infected fish. Phylogenetic tree analysis of 16S rRNA and gyrB gene of A. hydrophila revealed 100% and 97% similarity, respectively, with 16S rRNA gene and gyrB of A. hydrophila isolated in previous studies. The results of antimicrobial susceptibility testing showed that all isolates demonstrated resistance to sulfamethoxazole, ampicillin, neomycin, and norfloxacin, while susceptibility to gentamicin, chloramphenicol, and tetracycline, and intermediate resistance was observed against cefotaxime. The results concluded that examined fish samples were markedly contaminated with virulent and multidrug strains of A. hydrophila which may be of a potential health risk. The study emphasizes the responsible antimicrobial use in aquaculture and the urgent need for effective strategies to control the spread of virulence and antimicrobial resistance genes in A. hydrophila. | 2024 | 38551906 |
| 1294 | 12 | 0.9853 | Isolation and detection of antibiotics resistance genes of Escherichia coli from broiler farms in Sukabumi, Indonesia. OBJECTIVE: This study aimed to isolate and identify Escherichia coli from broiler samples from Sukabumi, Indonesia. Also, antibiogram studies of the isolated bacteria were carried out considering the detection of the antibiotic resistance genes. MATERIALS AND METHODS: Cloaca swabs (n = 45) were collected from broilers in Sukabumi, Indonesia. Isolation and identification of E. coli were carried out according to standard bacteriological techniques and biochemical tests, followed by confirmation of the polymerase chain reaction targeting the uspA gene. Antibiotic sensitivity test, using several antibiotics [tetracycline (TE), oxytetracycline (OT), ampicillin (AMP), gentamicin (CN), nalidixic acid (NA), ciprofloxacin (CIP), enrofloxacin (ENR), chloramphenicol, and erythromycin] was carried out following the Kirby-Bauer disk diffusion method. Detection of antibiotic resistance coding genes was carried out by PCR using specific oligonucleotide primers. Statistical analysis was carried out with one-way analysis of variance. RESULTS: The results showed that 55.6% (25/45) of the samples were associated with the presence of E. coli. Antibiotic sensitivity test showed that the E. coli isolates were resistant to TE (88%; 22/25), OT (88%; 22/25), AMP (100%; 25/25), CN (64%; 16/25), NA (100%; 22/25), CIP (88%; 22/25), ENR (72%; 18/25), chloramphenicol (0%; 0/25), and erythromycin (92%; 23/25). On the other hand, the antibiotic resistance coding genes were tetA (86.4%; 19/22), blaTEM (100%; 25/25), aac(3)-IV (0%; 0/16), gyrA (100%; 25/25), and ermB (13%; 3/23). It was found that chloramphenicol is markedly different from other antibiotic treatment groups. CONCLUSION: Escherichia coli was successfully isolated from cloacal swabs of broiler in Sukabumi, Indonesia. The bacteria were resistant to TE, OT, AMP, CN, NA, CIP, ENR, and erythromycin. Chloramphenicol was more sensitive and effective than other antibiotics in inhibiting the growth of E. coli. The antibiotic resistance genes detected were tetA, blaTEM, gyrA, and ermB. | 2021 | 33860017 |
| 1237 | 13 | 0.9852 | Characterization of Gene Families Encoding Beta-Lactamases of Gram-Negative Rods Isolated from Ready-to-Eat Vegetables in Mexico City. Beta-lactam resistant bacteria, which are commonly resident in tertiary hospitals, have emerged as a worldwide health problem because of ready-to-eat vegetable intake. We aimed to characterize the genes that provide resistance to beta-lactam antibiotics in Enterobacteriaceae, isolated from five commercial salad brands for human consumption in Mexico City. In total, twenty-five samples were collected, grown in blood agar plates, and the bacteria were biochemistry identified and antimicrobial susceptibility testing was done. The carried family genes were identified by endpoint PCR and the specific genes were confirmed with whole genome sequencing (WGS) by Next Generation Sequencing (NGS). Twelve positive cultures were identified and their microbiological distribution was as follows: 8.3% for Enterobacter aerogene (n = 1), 8.3% for Serratia fonticola (n = 1), 16.7% for Serratia marcesens (n = 2), 16.7% for Klebsiella pneumoniae (n = 2), and 50% (n = 6) for Enterobacter cloacae. The endpoint PCR results showed 11 colonies positive for blaBIL (91.7%), 11 for blaSHV (91.7%), 11 for blaCTX (97.7%), 12 for blaDHA (100%), four for blaVIM (33.3%), two for blaOXA (16.7%), two for blaIMP (16.7%), one for blaKPC (8.3%), and one for blaTEM (8.3%) gen; all samples were negative for blaROB, blaCMY, blaP, blaCFX and blaLAP gene. The sequencing analysis revealed a specific genotype for Enterobacter cloacae (blaSHV-12, blaCTX-M-15, blaDHA-1, blaKPC-2); Serratia marcescens (blaSHV-1, blaCTX-M-3, blaDHA-1, blaVIM-2); Klebsiella pneumoniae (blaSHV-12, blaCTX-M-15, blaDHA-1); Serratia fonticola (blaSHV-12, blaVIM-1, blaDHA-1); and, Enterobacter aerogene (blaSHV-1, blaCTX-M-1, blaDHA-1, blaVIM-2, blaOXA-9). Our results indicate that beta-lactam-resistant bacteria have acquired integrons with a different number of genes that provide pan-resistance to beta-lactam antibiotics, including penicillins, oxacillins, cefalosporins, monobactams, carbapenems, and imipenems. | 2018 | 30477153 |
| 1332 | 14 | 0.9852 | First study on capsular serotypes and virulence factors of Pasteurella multocida isolates from Phan Rang sheep in Vietnam. BACKGROUND AND AIM: Pasteurella multocida is considered as a main factor mediating pneumonic pasteurellosis in ruminants, including sheep. It is also a current threat to Phan Rang sheep in Vietnam. This study aimed to characterize P. multocida isolated from Phan Rang sheep, their antibiotic resistance profile, and the prevalence of some virulence-associated genes of these strains. MATERIALS AND METHODS: Bacteria were isolated on brain heart infusion, 10% sheep blood agar plates, and screened by biochemical tests. The polymerase chain reaction technique was used with specific primers to identify P. multocida, the presence of virulence-associated genes, and serotypes of isolates. Antimicrobial susceptibility and biofilm formation of isolates were examined using the disk diffusion method and crystal violet-based method, respectively. RESULTS: A total of 41 P. multocida strains were isolated from 485 samples from clinically sick and healthy sheep. Of the isolates, 58.53% were serotype A, 9.75% were serotype B, and 31.71% were serotype D. Healthy animals were infected with serotype D only. All 15 virulence genes were identified in all strains isolated from clinically sick sheep, while strains isolated from healthy sheep carried 11/15 virulence genes tested. Among virulence-associated genes exbB, exbD, tonB, ompA, oma87, fimA, hgbA, and nanB were detected in over 90% of isolates, whereas hgbB, nanH, tbpA and pfhA were less frequent. Interestingly, pmHAS and tadD were highly prevalent in capsular type A strains, whereas the toxA gene was detected in capsular type D strains only. All of the isolated strains were fully susceptible to enrofloxacin, ciprofloxacin, neomycin, and ofloxacin. About 92.68% were susceptible to chloramphenicol and 90.24% to amikacin, but there was high resistance to erythromycin, tetracycline, and amoxicillin. Our results reveal that 53.65% of 41 isolates could produce biofilm, whereas 46.34% could not. CONCLUSION: Pasteurella multocida from Phan Rang sheep possess many virulence genes and resistance to several common antibiotics such as erythromycin, tetracycline, and amoxicillin. The results are an important warning regarding antibiotic resistance of P. multocida. | 2023 | 37042011 |
| 1301 | 15 | 0.9852 | Phenotypic and Genotypic Assessment of Antibiotic Resistance of Staphylococcus aureus Bacteria Isolated from Retail Meat. BACKGROUND: Resistant Staphylococcus aureus (S. aureus) bacteria are determined to be one of the main causes of foodborne diseases. PURPOSE: This survey was done to assess the genotypic and phenotypic profiles of antibiotic resistance of S. aureus bacteria isolated from retail meat. METHODS: Four-hundred and eighty-five retail meat samples were collected and examined. S. aureus bacteria were identified using culture and biochemical tests. The phenotypic profile of antibiotic resistance was examined using the disk diffusion method. The genotypic pattern of antibiotic resistance was determined using the polymerase chain reaction. RESULTS: Forty-eight out of 485 (9.89%) raw retail meat samples were contaminated with S. aureus. Raw retail buffalo meat (16%) had the highest incidence of S. aureus, while raw camel meat (4%) had the lowest. S. aureus bacteria exhibited the uppermost incidence of resistance toward tetracycline (79.16%), penicillin (72.91%), gentamicin (60.41%), and doxycycline (41.666%). The incidence of resistance toward chloramphenicol (8.33%), levofloxacin (22.91%), rifampin (22.91%), and azithromycin (25%) was lower than other examined antibiotics. The most routinely detected antibiotic resistance genes were blaZ (58.33%), tetK (52.08%), aacA-D (33.33%), and ermA (27.08%). Cat1 (4.16%), rpoB (10.41%), msrA (12.50%), grlA (12.50%), linA (14.58%), and dfrA1 (16.66%) had the lower incidence rate. CONCLUSION: Raw meat of animals may be sources of resistant S. aureus which pose a hygienic threat about the consumption of raw meat. Nevertheless, further investigations are essential to understand supplementary epidemiological features of S. aureus in retail meat. | 2020 | 32440171 |
| 1296 | 16 | 0.9852 | Prevalence and antimicrobial resistance of Salmonellaisolates from goose farms in Northeast China. BACKGROUND: Salmonella is one of the most important enteric pathogenic bacteria that threatened poultry health. AIMS: This study aimed to investigate the prevalence and antimicrobial resistance of Salmonella isolates in goose farms. METHODS: A total of 244 cloacal swabs were collected from goose farms to detect Salmonella in Northeast China. Antimicrobial susceptibility, and resistance gene distribution of Salmonella isolates were investigated. RESULTS: Twenty-one Salmonella isolates were identified. Overall prevalence of Salmonella in the present study was 8.6%. Among the Salmonella isolates, the highest resistance frequencies belonged to amoxicillin (AMX) (85.7%), tetracycline (TET) and trimethoprim/sulfamethoxazole (SXT) (81%), followed by chloramphenicol (CHL) (76.2%), florfenicol (FLO) (71.4%), kanamycin (KAN) (47.6%), and gentamycin (GEN) (38.1%). Meanwhile, only 4.8% of the isolates were resistant to ciprofloxacin (CIP) and cefotaxime (CTX). None of the isolates was resistant to cefoperazone (CFP) and colistin B (CLB). Twenty isolates (95%) were simultaneously resistant to at least two antimicrobials. Ten resistance genes were detected among which the bla (TEM-1), cmlA, aac(6')-Ib-cr, sul1, sul2, sul3, and mcr-1.1 were the most prevalent, and presented in all 21 isolates followed by tetB (20/21), qnrB (19/21), and floR (15/21). CONCLUSION: Results indicated that Salmonella isolates from goose farms in Northeast China exhibited multi-drug resistance (MDR), harboring multiple antimicrobial resistance genes. Our results will be useful to design prevention and therapeutic strategies against Salmonella infection in goose farms. | 2020 | 33584841 |
| 947 | 17 | 0.9852 | Environmental bovine subclinical mastitis gram-negative pathogens: Prevalence, antimicrobial resistance with special reference to extended-spectrum β-lactamases and carbapenemase production. This study investigates mastitis in the dairy industry, with a focus on the issue of antibiotic resistance. This study was designed to evaluate mastitis prevalence and investigate the bacteriological profiles of subclinical mastitis (SCM) milk, mastitis-free milk, and market milk. Out of 374 quarter milk samples, 26.2 % were from animals with SCM. Bacteriological examination identified 87 Gram-negative bacterial strains from subclinical mastitis milk (SCMM) (42.9 %), subclinical mastitis-free milk (SCMFM) (17.97 %), and market milk (MM) (58 %). MALDI-TOF MS identified species including E. coli, K. pneumoniae, Enterobacter cloacae, Citrobacter freundii, Serratia marcescens, and Acinetobacter baumannii, with E. coli being the most frequent. Multi-drug resistant (MDR) phenotype was found in 43.7 % of isolates, with 57.1 % from SCMM, 43.8 % from SCMFM, and 24.1 % from MM. Biofilm production was observed in 44.8 % of isolates, with a significant correlation between MDR and biofilm formation. Eight strains (9.2 %) were extended-spectrum β-lactamases (ESBLs) producers, with bla(CTX-M), bla(TEM), and bla(SHV) genes detected. A. baumannii harbored multiple resistance genes, including bla(TEM), bla(CTX-M), bla(OXA51), bla(OXA23), and bla(NDM), showing both phenotypic and genotypic ESBLs and carbapenemase activity. The presence of MDR, ESBLs, and carbapenemase producing Gram-negative bacteria in SCMM, SCMFM, and MM indicates a concerning exchange of bacteria and antimicrobial resistance genes between human and animal hosts, posing risks of milk contamination and environmental hazards. A one-health approach is essential for controlling antimicrobial-resistant bacteria, emphasizing prudent antimicrobial use in human and animal healthcare, and improving farm hygiene practices. | 2025 | 40424737 |
| 2706 | 18 | 0.9852 | Prevalence and antimicrobial resistance profile of bacterial foodborne pathogens in Nile tilapia fish (Oreochromis niloticus) at points of retail sale in Nairobi, Kenya. Proteus spp., Staphylococcus spp., Pseudeomonas spp., and pathogenic Vibrios are among the major foodborne pathogens associated with the consumption of contaminated fish. The increasing occurrence of antimicrobial resistance in these pathogens is a serious public health concern globally and therefore continuous monitoring of antimicrobial resistance of these bacteria along the food chain is crucial for for control of foodborne illnesses. The aim of this study was to assess the prevalence, antimicrobial resistance patterns, antibiotic resistance genes, and genetic diversity of bacterial foodborne pathogens recovered from fresh Nile tilapia (Oreochromis niloticus) obtained from retail markets in Nairobi, Kenya. A total of 68 O. niloticus fish with an average weight of 300.12 ± 25.66 g and body length of 23.00 ± 0.82 cm were randomly sampled from retail markets and tested for the presence of Proteus, Staphylococcus aureus, Pseudomonas aeruginosa, Vibrio cholerae, and Vibrio parahaemolyticus. Standard culture-based microbiological and Kirby-Bauer agar disk diffusion methods were used to isolate and determine the antimicrobial resistance patterns of the isolates to 11 selected antibiotics. Statistical analysis was performed using Minitab v17.1, with p < 0.05 considered significant. The genetic diversity of the multidrug-resistant (MDR) and extensively drug-resistant (XDR) bacteria was determined using 16S rRNA sequencing and phylogenetic analysis, and polymerase chain reaction (PCR) was used for detection of antibiotic resistance genes in MDR bacterial isolates. High levels of bacterial contamination were detected in fresh O. niloticus fish (44/68, 64.71%). The most prevalent bacteria were Proteus spp. (44.12%), with the rest of the bacterial species registering a prevalence of 10.29%, 4.41%, 2.94%, and 2.94% (for S. aureus, P. aeruginosa, V. cholerae, and V. parahaemolyticus, respectively). Antimicrobial resistance was detected in all the bacteria species and all the isolates were resistant to at least one antibiotic except cefepime (30 µg). Additionally, 86.36% of the isolates exhibited multidrug resistance, with higher multiple antibiotic resistance indices (MAR index >0.3) indicating that fresh O. niloticus fish were highly contaminated with MDR bacteria. Results of 16S rRNA sequences, BLASTn analysis, and phylogenetic trees confirmed the identified MDR bacterial isolates as Proteus mirabilis and other Proteus spp., S. aureus, P. aeruginosa, V. cholerae, and V. parahaemolyticus. PCR analysis confirmed the presence of multiple antibiotic resistance genes blaTEM-1, blaCMY-2, tetA, tetC, Sul2, dfrA7, strA, and aadA belonging to β-lactamases, tetracycline, sulfonamide, trimethoprim, and aminoglycosides in all the MDR bacterial isolates. There was strong correlation between antibiotic- resistant genes and phenotypic resistance to antibiotics of MDR bacteria. This study showed high prevalence of multidrug resistance among foodborne bacterial isolates from fresh O. niloticus fish obtained from retail markets. From this study, we conclude that fresh O. niloticus fish are a potential source of MDR bacteria, which could be a major risk to public health as a consequence of their dissemination along the human food chain. These results highlight the prevalence of antimicrobial-resistant foodborne pathogens in fish purchased from retail markets and underscore the risk associated with improper handling of fish. | 2023 | 39816642 |
| 1333 | 19 | 0.9851 | Virulence-encoding genes related to extraintestinal pathogenic E. coli and multidrug resistant pattern of strains isolated from neonatal calves with different severity scores of umbilical infections. Umbilical infections in calves comprise a major cause of neonatal mortality and have been related to a variety of microorganisms. E. coli is an opportunistic enteropathogen characterized by a diversity of virulence factors (VF). Nonetheless, the gene profiles that encode VF associated with umbilical infections in calves and their effect on the clinical severity remains unclear. In this scenario, microbial identification (with an emphasis on E. coli), was carried out among 150 neonatal calves (≤30 days of age) with umbilical infections, where the omphalopathies were clinically scored as mild, moderate, or severe. Also, a panel of 16 virulence-encoding genes related to extraintestinal pathogenic E. coli (ExPEC) were investigated, i.e., fimbriae/adhesins (sfa/focDEa, papA, papC, afaBC), toxins (hlyA, sat, cnf1, cdt), siderophores (iroN, irp2, iucD, ireA), invasins (ibeA), and serum resistance (ompT, traT, kpsMT II). Bacteria and yeasts isolates were identified using mass spectrometry. Bacteria, yeasts, and fungi were isolated in 94.7% (142/150) of neonatal calves sampled. E. coli was the agent most frequently isolated (59/150 = 39.3%), in pure culture (27/59 = 45.8%) and combined infections (32/59 = 54.2%), although a great variety (n = 83) of other species of microorganisms were identified. Clinical severity scores of 1, 2, and 3 were observed in 32.2% (19/59), 23.7% (14/59), and 44.1% (26/59) of E. coli infections, respectively. The ExPEC genes detected were related to serum resistance (traT, 42/59 = 72.2%; ompT, 35/59 = 59.3%, kpsMTII, 10/59 = 17%), invasins (ibeA, 11/59 = 18.6%), siderophores (iucD, 9/59 = 15.3%; iroN, 8/59 = 13.6%), and adhesins/fimbriae (papA, 8/59 = 13.6%; papC, 15/59 = 9.6%). The presence of each virulence gene was not associated with the case's clinical score. Among all isolates, 89.8% (53/59) showed in vitro resistance to sulfamethoxazole/trimethoprim and 59.3% to ampicillin (35/59), while 94.1% (55/59) revealed a multidrug resistant profile. Great complexity of bacteria, yeast, and fungi species was identified, reinforcing the umbilical infections of neonatal calves as a polymicrobial disorder. The high occurrence of E. coli (39.3%) highlights the role of this pathogen in the etiology of umbilical infections in calves. Furthermore, a panel of ExPEC genes was investigated for the first time among calves that were clinically scored for case severity. The high prevalence of traT and ompT indicates that these serum resistance-related genes could be used as biomarkers for further investigations of ExPEC isolates from umbilical infections. Our results contribute to the etiological investigation, clinical severity scoring, antimicrobial resistance pattern, and virulence-related to ExPEC genes involved in umbilical infections of neonatal calves. | 2023 | 36427660 |