# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7868 | 0 | 0.9541 | A double-quenching paperclip ECL biosensing platform for ultrasensitive detection of antibiotic resistance genes (mecA) based on Ti(3)C(2) MXene-Au NPs as a coreactant accelerator. The global spread of environmental biological pollutants, such as antibiotic-resistant bacteria and their antibiotic resistance genes (ARGs), has emerged as a critical public health concern. It is imperative to address this pressing issue due to its potential implications for public health. Herein, a DNA paperclip probe with double-quenching function of target cyclic cleavage was proposed, and an electrochemiluminescence (ECL) biosensing platform was constructed using Ti(3)C(2) MXene in-situ reduction growth of Au NPs (TCM-Au) as a coreactant accelerator, and applied to the sensitive detection of ARGs. Thanks to the excellent catalytic performance, large surface area and Au-S affinity of TCM-Au, the ECL performance of CdS QDs have been significantly improved. By cleverly utilizing the negative charge of the paperclip nucleic acid probe and its modification group, double-quenching of the ECL signal was achieved. This innovative approach, combined with target cyclic amplification, facilitated specific and sensitive detection of the mecA gene. This biosensing platform manifested highly selective and sensitive determination of mecA genes in the range of 10 fM to 100 nM and a low detection limit of 2.7 fM. The credible detectability and anti-interference were demonstrated in Yangtze river and Aeration tank outlet, indicating its promising application toward pollution monitoring of ARGs. | 2023 | 37666010 |
| 8431 | 1 | 0.9523 | A quaternary ammonium salt grafted tannin-based flocculant boosts the conjugative transfer of plasmid-born antibiotic resistance genes: The nonnegligible side of their flocculation-sterilization properties. This study developed dual-function tannin-based flocculants, namely tannin-graft-acrylamide-diallyl dimethyl ammonium chloride (TGCC-A/TGCC-C), endowed with enhanced flocculation-sterilization properties. The impacts of these flocculants on proliferation and transformation of antibiotic resistance genes (ARGs) among bacteria during the flocculation-deposition process were examined. TGCC-A/TGCC-C exhibited remarkable flocculation capacities towards both Escherichia coli and Staphylococcus aureus, encompassing a logarithmic range of initial cell density (10(8)-10(9) CFU/mL) and a broad pH spectrum (pH 2-11). The grafted quaternary ammonium salt groups played pivotal parts in flocculation through charge neutralization and bridging mechanisms, concurrently contributing to sterilization by disrupting cellular membranes. The correlation between flocculation and sterilization entails a sequential progression, where an excess of TGCC, initially employed for flocculation, is subsequently consumed for sterilization purposes. The frequencies of ARGs conjugative transfer were enhanced in bacterial flocs across all TGCC treatments, stemming from augmented bacterial aggregation and cell membrane permeability, elicited stress response, and up-regulated genes encoding plasmid transfer. These findings underscore the indispensable role of flocculation-sterilization effects in mediating the propagation of ARGs, consequently providing substantial support for the scientific evaluation of the environmental risks associated with flocculants in the context of ARGs dissemination during the treatment of raw water featuring high bacterial density. | 2023 | 37619725 |
| 7853 | 2 | 0.9518 | Natural pyrite and ascorbic acid co-enhance periodate activation for inactivation of antibiotic resistant bacteria and inhibition of resistance genes transmission: A green disinfection process dominated by singlet oxygen. The transmission of antibiotic resistance genes (ARGs) and the propagation of antibiotic resistant bacteria (ARB) threaten public health security and human health, and greener and more efficient disinfection technologies are expected to be discovered for wastewater treatment. In this study, natural pyrite and ascorbic acid (AA) were proposed as environmental-friendly activator and reductant for periodate (PI) activation to inactivate ARB. The disinfection treatment of PI/pyrite/AA system could inactivate 5.62 log ARB within 30 min, and the lower pH and higher PI and natural pyrite dosage could further boost the disinfection efficiency. The (1)O(2) and SO(4)(•-) were demonstrated to be crucial for the inactivation of ARB in PI/pyrite/AA system. The disinfection process destroyed the morphological structure of ARB, inducing oxidative stress and stimulating the antioxidant system. The PI/pyrite/AA system effectively reduced the intracellular and extracellular DNA concentration and ARGs abundance, inhibiting the propagation of ARGs. The presence of AA facilitated the activation of PI with natural pyrite and significantly increased the concentration of Fe(2+) in solution. The reusability of natural pyrite, the safety of the disinfection by-products and the inhibition of ARB regeneration indicated the application potential of PI/pyrite/AA system in wastewater disinfection. | 2024 | 39038380 |
| 7935 | 3 | 0.9518 | Removal of antibiotic resistance genes by Cl(2)-UV process: Direct UV damage outweighs free radicals in effectiveness. Antibiotic resistance genes (ARGs) pose significant environmental health problems and have become a major global concern. This study investigated the efficacy and mechanism of the Cl(2)-UV process (chlorine followed by UV irradiation) for removing ARGs in various forms. The Cl(2)-UV process caused irreversible damage to nearly all ARB at typical disinfectant dosages. In solutions containing only extracellular ARGs (eARGs), the Cl₂-UV process achieved over 99.0 % degradation of eARGs. When both eARGs and intracellular ARGs (iARGs) were present, the process reached a 97.2 % removal rate for iARGs. While the abundance of eARGs initially increased due to the release of iARGs from lysed cells during pre-chlorination, subsequent UV irradiation rapidly degraded the released eARGs, restoring their abundance to near-initial levels by the end of the Cl₂-UV process. Analysis of the roles in degrading eARGs and iARGs during the Cl(2)-UV process revealed that UV, rather than free radicals, was the dominant factor causing ARG damage. Pre-chlorination enhanced direct UV damage to eARGs and iARGs by altering plasmid conformation and promoting efficient damage to high UV-absorbing cellular components. Furthermore, no further natural transformation of residual ARGs occurred following the Cl(2)-UV treatment. This study demonstrated strong evidence for the effectiveness of the Cl(2)-UV process in controlling antibiotic resistance. | 2025 | 40048777 |
| 7828 | 4 | 0.9516 | Simultaneous elimination of antibiotic-resistant bacteria and antibiotic resistance genes by different Fe-N co-doped biochars activating peroxymonosulfate: The key role of pyridine-N and Fe-N sites. The coexistence of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in the environment poses a potential threat to public health. In our study, we have developed a novel advanced oxidation process for simultaneously removing ARGs and ARB by two types of iron and nitrogen-doped biochar derived from rice straw (FeN-RBC) and sludge (FeN-SBC). All viable ARB (approximately 10(8) CFU mL(-1)) was inactivated in the FeN-RBC/ peroxymonosulfate (PMS) system within 40 min and did not regrow after 48 h even in real water samples. Flow cytometry identified 96.7 % of dead cells in the FeN-RBC/PMS system, which verified the complete inactivation of ARB. Thorough disinfection of ARB was associated with the disruption of cell membranes and intracellular enzymes related to the antioxidant system. Whereas live bacteria (approximately 200 CFU mL(-1)) remained after FeN-SBC/PMS treatment. Intracellular and extracellular ARGs (tetA and tetB) were efficiently degraded in the FeN-RBC/PMS system. The production of active species, primarily •OH, SO(4)(•-) and Fe (IV), as well as electron transfer, were essential to the effective disinfection of FeN-RBC/PMS. In comparison with FeN-SBC, the better catalytic performance of FeN-RBC was mainly ascribed to its higher amount of pyridine-N and Fe(0), and more reactive active sites (such as CO group and Fe-N sites). Density functional theory calculations indicated the greater adsorption energy and Bader charge, more stable Fe-O bond, more easily broken OO bond in FeN-RBC/PMS, which demonstrated the stronger electron transfer capacity between FeN-RBC and PMS. To encapsulate, our study provided an efficient and dependable method for the simultaneous elimination of ARGs and ARB in water. | 2024 | 38669989 |
| 334 | 5 | 0.9515 | Transformation of soybean protoplasts from permanent suspension cultures by cocultivation with cells of Agrobacterium tumefaciens. Cell wall regenerating protoplasts from soybean cells kept in suspension culture were cocultivated with bacteria which were derived from the nopaline strain C58 of Agrobacterium tumefaciens. When the bacteria carried an oncogenic Ti-plasmid, about 5% of the surviving protoplasts were able to form calli on hormone-free agar in contrast to controls, where bacteria without Ti-plasmid were applied, and where no calli were formed. After isolation of DNA from hormone-independently growing cells further evidence for transformation was obtained by hybridization to Ti-plasmid specific RNA and by rescue of a segment with a bacterial resistance gene which had been inserted before into the T-DNA. Transfer of T-DNA harboring a neomycin-resistance gene activated by the nos-promoter resulted in calli growing on kanamycin. Verification of segments located at the left and the right part of the T-DNA indicated the presence of its entire length in transformed soybean cells. Expression of T-DNA genes was measured by the assay of nopaline-synthase. Cells cultured on agar had a much higher level of nopaline-synthase than fast growing cells in suspension culture. Transferring them to agar or treatment with azacytidine strongly increased synthesis of nopaline-synthase indicating a reversible repression presumably via a methylation mechanism. | 1987 | 24276903 |
| 8492 | 6 | 0.9511 | Promotion effects and mechanisms of molybdenum disulfide on the propagation of antibiotic resistance genes in soil. The rapid development of nanotechnology has aroused considerable attentions toward understanding the effects of engineered nanomaterials (ENMs) on the propagation of antibiotic resistance. Molybdenum disulfide (MoS(2)) is an extensively used ENM and poses potential risks associated with environmental exposure; nevertheless, the role of MoS(2) toward antibiotic resistance genes (ARGs) transfer remains largely unknown. Herein, it was discovered that MoS(2) nanosheets accelerated the horizontal transfer of RP4 plasmid across Escherichia coli in a dose-dependent manner (0.5-10 mg/L), with the maximum transfer frequency 2.07-fold higher than that of the control. Integration of physiological, transcriptomics, and metabolomics analyses demonstrated that SOS response in bacteria was activated by MoS(2) due to the elevation of oxidative damage, accompanied by cell membrane permeabilization. MoS(2) promoted bacterial adhesion and intercellular contact via stimulating the secretion of extracellular polysaccharides. The ATP levels were maximally increased by 305.7 % upon exposure to MoS(2), and the expression of plasmid transfer genes was up-regulated, contributing to the accelerated plasmid conjugation and increased ARG abundance in soil. Our findings highlight the roles of emerging ENMs (e.g., MoS(2)) in ARGs dissemination, which is significant for the safe applications and risk management of ENMs under the development scenarios of nanotechnology. | 2023 | 37062264 |
| 7810 | 7 | 0.9511 | Photoelectrocatalytic coupling system synergistically removal of antibiotics and antibiotic resistant bacteria from aquatic environment. Antibiotics, antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are ubiquitous in the reclaimed water, posing a potential threat to human and ecological health. Nowadays, the reuse technology of reclaimed water has been widely concerned, but the removal of antibiotics, ARB and ARGs in reclaimed water has not been sufficiently studied. This study used TiO2 nanotube arrays (TNTs) decorated with Ag/SnO2-Sb nanoparticles (TNTs-Ag/SnO2-Sb) as the anode and Ti-Pd/SnO2-Sb as the cathode to construct an efficient photoelectrocatalytic (PEC) system. In this system, 99.9% of ARB was inactivated in 20 min, meanwhile, ARGs was removed within 30 min, and antibiotics were almost completely degraded within 1 h. Furthermore, the effects of system parameters on the removals of antibiotics, ARB and ARGs were also studied. The redox performance of the system was verified by adding persulfate. Escherichia coli, as a representative microorganism in aquatic environments, was used to evaluate the ecotoxicity of PEC treated chloramphenicol (CAP) solution. The ecotoxicity of CAP solution was significantly reduced after being treated by PEC. In addition, transformation intermediates of CAP were identified using liquid chromatography-tandems mass spectrometry (LC-MS/MS) and the possible degradation pathways were proposed. This study could provide a potential alternative method for controlling antibiotic resistance and protecting the quality of reclaimed water. | 2022 | 34736195 |
| 8 | 8 | 0.9510 | The hawthorn CpLRR-RLK1 gene targeted by ACLSV-derived vsiRNA positively regulate resistance to bacteria disease. Virus-derived small interfering RNAs (vsiRNAs) can target not only viruses but also plant genes. Apple chlorotic leaf spot virus (ACLSV) is an RNA virus that infects Rosaceae plants extensively, including apple, pear and hawthorn. Here, we report an ACLSV-derived vsiRNA [vsiR1360(-)] that targets and down-regulates the leucine-rich repeat receptor-like kinase 1 (LRR-RLK1) gene of hawthorn (Crataegus pinnatifida). The targeting and cleavage of the CpLRR-RLK1 gene by vsiR1360(-) were validated by RNA ligase-mediated 5' rapid amplification of cDNA ends and tobacco transient transformation assays. And the CpLRR-RLK1 protein fused to green fluorescent protein localized to the cell membrane. Conserved domain and phylogenetic tree analyses showed that CpLRR-RLK1 is closely related to the proteins of the LRRII-RLK subfamily. The biological function of CpLRR-RLK1 was explored by heterologous overexpression of CpLRR-RLK1 gene in Arabidopsis. The results of inoculation of Pst DC3000 in Arabidopsis leaves showed that the symptoms of CpLRR-RLK1 overexpression plants infected with Pst DC3000 were significantly reduced compared with the wild type. In addition, the detection of reactive oxygen species and callose deposition and the expression analysis of defense-related genes showed that the CpLRR-RLK1 gene can indeed enhance the resistance of Arabidopsis to bacteria disease. | 2020 | 33180701 |
| 7848 | 9 | 0.9509 | Simultaneous Removal of Antibiotic Resistant Bacteria, Antibiotic Resistance Genes, and Micropollutants by FeS(2)@GO-Based Heterogeneous Photo-Fenton Process. The co-occurrence of various chemical and biological contaminants of emerging concerns has hindered the application of water recycling. This study aims to develop a heterogeneous photo-Fenton treatment by fabricating nano pyrite (FeS(2)) on graphene oxide (FeS(2)@GO) to simultaneously remove antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs), and micropollutants (MPs). A facile and solvothermal process was used to synthesize new pyrite-based composites. The GO coated layer forms a strong chemical bond with nano pyrite, which enables to prevent the oxidation and photocorrosion of pyrite and promote the transfer of charge carriers. Low reagent doses of FeS(2)@GO catalyst (0.25 mg/L) and H(2)O(2) (1.0 mM) were found to be efficient for removing 6-log of ARB and 7-log of extracellular ARG (e-ARG) after 30 and 7.5 min treatment, respectively, in synthetic wastewater. Bacterial regrowth was not observed even after a two-day incubation. Moreover, four recalcitrant MPs (sulfamethoxazole, carbamazepine, diclofenac, and mecoprop at an environmentally relevant concentration of 10 μg/L each) were completely removed after 10 min of treatment. The stable and recyclable composite generated more reactive species, including hydroxyl radicals (HO(•)), superoxide radicals (O(2)(• -)), singlet oxygen ((1)O(2)). These findings highlight that the synthesized FeS(2)@GO catalyst is a promising heterogeneous photo-Fenton catalyst for the removal of emerging contaminants. | 2022 | 35759741 |
| 7831 | 10 | 0.9508 | Integration of nanowire-confined electroporation of antibiotic-resistant bacteria and electroactivation of peracetic acid for eliminating intracellular resistance genes. Antimicrobial resistance is one of the most substantial challenges for global public health. To address the inefficient elimination of intracellular resistance genes (i-ARGs) in antibiotic-resistant bacteria (ARB) by peracetic acid (PAA) oxidation, we developed an integration strategy (NW-EP/EA) of nanowire-confined electroporation (NW-EP) of ARB cells and nanowire-confined electroactivation (NW-EA) of PAA with a sequential oxidation-reduction process. The locally enhanced electric field and electrocatalytic activity over NW tips prompted the formation of electroporation pores on ARB cells and the generation of reactive ⋅OH and RO⋅ radicals by PAA electroactivation. The NW-EP/EA with Pd-coated TiO(2)NW cathode with atomic H* evolution exhibited 0.6 -2.8-log higher i-ARG removal than the pristine TiO(2)NW cathode, especially achieving ∼5.0-log i-ARG removal (99.999 %) at 4.0 V and 2.0 mM PAA with ∼4.1-log synergistic effect and ∼10 times lower energy consumption as compared with the individual NW-EP (∼0.32-log and 52.1 %) and PAA (∼0.56-log and 74.4 %). For the sequential oxidation-reduction process, the electrooxidative activation of PAA on TiO(2)NW anode produced H(+) ions, ⋅OH and RO⋅ radicals for enlarging electroporation pores, and the generated H(+) ions promoted the evolution of atomic H* and electroreduction of PAA on subsequent Pd-TiO(2)NW cathode for further facilitating ARB cell damages, i-ARG leakage and degradation. The effective i-ARGs removal and HGT inhibition in tap water suggested the great application potentials of NW-EP/EA in the control of ARGs dissemination risks in drinking water. | 2025 | 40907311 |
| 7829 | 11 | 0.9508 | Insights into capture-inactivation/oxidation of antibiotic resistance bacteria and cell-free antibiotic resistance genes from waters using flexibly-functionalized microbubbles. The spread of antibiotic resistance in the aquatic environment severely threatens the public health and ecological security. This study investigated simultaneously capturing and inactivating/oxidizing the antibiotic resistant bacteria (ARB) and cell-free antibiotic resistance genes (ARGs) in waters by flexibly-functionalized microbubbles. The microbubbles were obtained by surface-modifying the bubbles with coagulant (named as coagulative colloidal gas aphrons, CCGAs) and further encapsulating ozone in the gas core (named as coagulative colloidal ozone aphrons, CCOAs). CCGAs removed 92.4-97.5% of the sulfamethoxazole-resistant bacteria in the presence of dissolved organic matter (DOM), and the log reduction of cell-free ARGs (particularly, those encoded in plasmid) reached 1.86-3.30. The ozone release from CCOAs led to efficient in-situ oxidation: 91.2% of ARB were membrane-damaged and inactivated. In the municipal wastewater matrix, the removal of ARB increased whilst that of cell-free ARGs decreased by CCGAs with the DOM content increasing. The ozone encapsulation into CCGAs reinforced the bubble performance. The predominant capture mechanism should be electrostatic attraction between bubbles and ARB (or cell-free ARGs), and DOM enhanced the sweeping and bridging effect. The functionalized microbubble technology can be a promising and effective barrier for ARB and cell-free ARGs with shortened retention time, lessened chemical doses and simplified treatment unit. | 2022 | 35063836 |
| 8529 | 12 | 0.9507 | Investigating and Modeling the Regulation of Extracellular Antibiotic Resistance Gene Bioavailability by Naturally Occurring Nanoparticles. Extracellular antibiotic resistance genes (eARGs) are widespread in the environment and can genetically transform bacteria. This work examined the role of environmentally relevant nanoparticles (NPs) in regulating eARG bioavailability. eARGs extracted from antibiotic-resistant B. subtilis were incubated with nonresistant recipient B. subtilis cells. In the mixture, particle type (either humic acid coated nanoparticles (HASNPs) or their micron-sized counterpart (HASPs)), DNase I concentration, and eARG type were systematically varied. Transformants were counted on selective media. Particles decreased bacterial growth and eARG bioavailability in systems without nuclease. When DNase I was present (≥5 μg/mL), particles increased transformation via chromosomal (but not plasmid-borne) eARGs. HASNPs increased transformation more than HASPs, indicating that the smaller nanoparticle with greater surface area per volume is more effective in increasing eARG bioavailability. These results were also modeled via particle aggregation theory, which represented eARG-bacteria interactions as transport leading to collision, followed by attachment. Using attachment efficiency as a fitting factor, the model predicted transformant concentrations within 35% of experimental data. These results confirm the ability of NPs to increase eARG bioavailability and suggest that particle aggregation theory may be a simplified and suitable framework to broadly predict eARG uptake. | 2022 | 35853206 |
| 7854 | 13 | 0.9507 | Removal of antibiotic resistant bacteria and plasmid-encoded antibiotic resistance genes in water by ozonation and electro-peroxone process. The electro-peroxone (EP) process is an electricity-based oxidation process enabled by electrochemically generating hydrogen peroxide (H(2)O(2)) from cathodic oxygen (O(2)) reduction during ozonation. In this study, the removal of antibiotic resistant bacteria (ARB) and plasmid-encoded antibiotic resistance genes (ARGs) during groundwater treatment by ozonation alone and the EP process was compared. Owing to the H(2)O(2)-promoted ozone (O(3)) conversion to hydroxyl radicals (•OH), higher •OH exposures, but lower O(3) exposures were obtained during the EP process than ozonation alone. This opposite change of O(3) and •OH exposures decreases the efficiency of ARB inactivation and ARG degradation moderately during the EP process compared with ozonation alone. These results suggest that regarding ARB inactivation and ARG degradation, the reduction of O(3) exposures may not be fully counterbalanced by the rise of •OH exposures when changing ozonation to the EP process. However, due to the rise of •OH exposure, plasmid DNA was more effectively cleaved to shorter fragments during the EP process than ozonation alone, which may decrease the risks of natural transformation of ARGs. These findings highlight that the influence of the EP process on ARB and ARG inactivation needs to be considered when implementing this process in water treatment. | 2023 | 36738938 |
| 566 | 14 | 0.9503 | Characterizing Transcriptional Interference between Converging Genes in Bacteria. Antisense transcription is common in naturally occurring genomes and is increasingly being used in synthetic genetic circuitry as a tool for gene expression control. Mutual influence on the expression of convergent genes can be mediated by antisense RNA effects and by transcriptional interference (TI). We aimed to quantitatively characterize long-range TI between convergent genes with untranslated intergenic spacers of increasing length. After controlling for antisense RNA-mediated effects, which contributed about half of the observed total expression inhibition, the TI effect was modeled. To achieve model convergence, RNA polymerase processivity and collision resistance were assumed to be modulated by ribosome trailing. The spontaneous transcription termination rate in regions of untranslated DNA was experimentally determined. Our modeling suggests that an elongating RNA polymerase with a trailing ribosome is about 13 times more likely to resume transcription than an opposing RNA polymerase without a trailing ribosome, upon head-on collision of the two. | 2019 | 30717589 |
| 7860 | 15 | 0.9503 | Enhanced removal of antibiotic-resistant bacteria and resistance genes by three-dimensional electrochemical process using MgFe(2)O(4)-loaded biochar as both particle electrode and catalyst for peroxymonosulfate activation. In this study, MgFe(2)O(4)-loaded biochar (MFBC) was used as a three-dimensional particle electrode to active peroxymonosulfate (EC/MFBC/PMS) for the removal of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). The results demonstrated that, under the conditions of 1.0 mM PMS concentration, 0.4 g/L material dosage, 5 V voltage intensity, and MFBC preparation temperature of 600 °C, the EC/MFBC600/PMS system achieved complete inactivation of E. coli DH5α within 5 min and the intracellular sul1 was reduced by 81.5 % after 30 min of the treatment. Compared to EC and PMS alone treatments, the conjugation transfer frequency of sul1 rapidly declined by 92.9 % within 2 min. The cell membrane, proteins, lipids, as well as intracellular and extracellular ARGs in E. coli DH5α were severely damaged by free radicals in solution and intracellular reactive oxygen species (ROS). Furthermore, up-regulation was observed in genes associated with oxidative stress, SOS response and cell membrane permeability in E. coli DH5α, however, no significant changes were observed in functional genes related to gene conjugation and transfer mechanisms. This study would contribute to the underlying of PMS activation by three-dimensional particle electrode, and provide novel insights into the mechanism of ARB inactivation and ARGs degradation under PMS advanced oxidation treatment. | 2024 | 39197284 |
| 7870 | 16 | 0.9503 | Hierarchical Bi(2)O(2)CO(3) wrapped with modified graphene oxide for adsorption-enhanced photocatalytic inactivation of antibiotic resistant bacteria and resistance genes. There is growing pressure for wastewater treatment plants to mitigate the discharge of antibiotic resistant bacteria (ARB) and extracellular resistance genes (eARGs), which requires technological innovation. Here, hierarchical Bi(2)O(2)CO(3) microspheres were wrapped with nitrogen-doped, reduced graphene oxide (NRGO) for enhanced inactivation of multidrug-resistant E. coli NDM-1 and degradation of the plasmid-encoded ARG (bla(NDM-1)) in secondary effluent. The NRGO shell enhanced reactive oxygen species (ROS) generation (•OH and H(2)O(2)) by about three-fold, which was ascribed to broadened light absorption region (red-shifted up to 459 nm) and decreased electron-transfer time (from 55.3 to 19.8 ns). Wrapping enhanced E. coli adsorption near photocatalytic sites to minimize ROS scavenging by background constituents, which contributed to the NRGO-wrapped microspheres significantly outperforming commercial TiO(2) photocatalyst. ROS scavenger tests indicated that wrapping also changed the primary inactivation pathway, with photogenerated electron holes and surface-attached hydroxyl radicals becoming the predominant oxidizing species with wrapped microspheres, versus free ROS (e.g., •OH, H(2)O(2) and •O(2)(-)) for bare microspheres. Formation of resistance plasmid-composited microsphere complexes, primary due to the π-π stacking and hydrogen bonding between the shell and nucleotides, also minimized ROS scavenging and kept free plasmid concentrations below 10(2) copies/mL. As proof-of-concept, this work offers promising insight into the utilization of NRGO-wrapped microspheres for mitigating antibiotic resistance propagation in the environment. | 2020 | 32679343 |
| 7858 | 17 | 0.9501 | Photocatalytic Reactive Ultrafiltration Membrane for Removal of Antibiotic Resistant Bacteria and Antibiotic Resistance Genes from Wastewater Effluent. Biological wastewater treatment is not effective in removal of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). In this study, we fabricated a photocatalytic reactive membrane by functionalizing polyvinylidene fluoride (PVDF) ultrafiltration (UF) membrane with titanium oxide (TiO(2)) nanoparticles for the removal of ARB and ARGs from a secondary wastewater effluent. The TiO(2)-modified PVDF membrane provided complete retention of ARB and effective photocatalytic degradation of ARGs and integrons. Specifically, the total removal efficiency of ARGs (i.e., plasmid-mediated floR, sul1, and sul2) with TiO(2)-modified PVDF membrane reached ∼98% after exposure to UV irradiation. Photocatalytic degradation of ARGs located in the genome was found to be more efficient than those located in plasmid. Excellent removal of integrons (i.e., intI1, intI2, and intI3) after UV treatment indicated that the horizontal transfer potential of ARGs was effectively controlled by the TiO(2) photocatalytic reaction. We also evaluated the antifouling properties of the TiO(2)-UF membrane to demonstrate its potential application in wastewater treatment. | 2018 | 29984583 |
| 508 | 18 | 0.9501 | Insights into the chaotropic tolerance of the desert cyanobacterium Chroococcidiopsis sp. 029 (Chroococcidiopsales, Cyanobacteria). The mechanism of perchlorate resistance of the desert cyanobacterium Chroococcidiopsis sp. CCMEE 029 was investigated by assessing whether the pathways associated with its desiccation tolerance might play a role against the destabilizing effects of this chaotropic agent. During 3 weeks of growth in the presence of 2.4 mM perchlorate, an upregulation of trehalose and sucrose biosynthetic pathways was detected. This suggested that in response to the water stress triggered by perchlorate salts, these two compatible solutes play a role in the stabilization of macromolecules and membranes as they do in response to dehydration. During the perchlorate exposure, the production of oxidizing species was observed by using an oxidant-sensing fluorochrome and determining the expression of the antioxidant defense genes, namely superoxide dismutases and catalases, while the presence of oxidative DNA damage was highlighted by the over-expression of genes of the base excision repair. The involvement of desiccation-tolerance mechanisms in the perchlorate resistance of this desert cyanobacterium is interesting since, so far, chaotropic-tolerant bacteria have been identified among halophiles. Hence, it is anticipated that desert microorganisms might possess an unrevealed capability of adapting to perchlorate concentrations exceeding those naturally occurring in dry environments. Furthermore, in the endeavor of supporting future human outposts on Mars, the identified mechanisms might contribute to enhance the perchlorate resistance of microorganisms relevant for biologically driven utilization of the perchlorate-rich soil of the red planet. | 2024 | 38156502 |
| 7861 | 19 | 0.9500 | The removal of antibiotic resistant bacteria and genes and inhibition of the horizontal gene transfer by contrastive research on sulfidated nanoscale zerovalent iron activating peroxymonosulfate or peroxydisulfate. Antibiotic resistant bacteria (ARB) and the antibiotic resistance genes (ARGs) dissemination via plasmid-mediated conjugation have attracted considerable attentions. In this research, sulfidated nanoscale zerovalent iron (S-nZVI)/peroxymonosulfate (PMS) and S-nZVI/peroxydisulfate (PDS) process were investigated to inactivate ARB (Escherichia coli DH5α with RP4 plasmid, Pseudomonas. HLS-6 contains sul1 and intI1 on genome DNA sequence). S-nZVI/PMS system showed higher efficiency than S-nZVI/PDS on ARB inactivation. Thus, the optimal condition 28 mg/L S-nZVI coupled with 153.7 mg/L (0.5 mM) PMS was applied to remove both intracellular ARGs (iARGs) and ARB. The oxidative damage of ARB cell was systemically studied by cell viability, intracellular Mg(2+) levels, the changes of extracellular and internal structure, integrity of cell walls and membranes and enzymatic activities. S-nZVI/PMS effectively inactivated ARB (~7.32 log) within 15 min. These effects were greatly higher than those achieved individually. Moreover, removal efficiencies of iARGs sul1, intI1 and tetA were 1.52, 1.79 and 1.56 log, respectively. These results revealed that S-nZVI and PMS have a synergistic effect against ARB and iARGs. The regrowth assays illustrated that the ARB were effectively inactivated. By verifying the inhibitory impacts of S-nZVI/PMS treatment on conjugation transfer, this work highlights a promising alternative technique for inhibiting the horizontal gene transfer. | 2022 | 34482079 |