THREATENS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
650700.9972What Are the Drivers Triggering Antimicrobial Resistance Emergence and Spread? Outlook from a One Health Perspective. Antimicrobial resistance (AMR) has emerged as a critical global public health threat, exacerbating healthcare burdens and imposing substantial economic costs. Currently, AMR contributes to nearly five million deaths annually worldwide, surpassing mortality rates of any single infectious disease. The economic burden associated with AMR-related disease management is estimated at approximately $730 billion per year. This review synthesizes current research on the mechanisms and multifaceted drivers of AMR development and dissemination through the lens of the One Health framework, which integrates human, animal, and environmental health perspectives. Intrinsic factors, including antimicrobial resistance genes (ARGs) and mobile genetic elements (MGEs), enable bacteria to evolve adaptive resistance mechanisms such as enzymatic inactivation, efflux pumps, and biofilm formation. Extrinsic drivers span environmental stressors (e.g., antimicrobials, heavy metals, disinfectants), socioeconomic practices, healthcare policies, and climate change, collectively accelerating AMR proliferation. Horizontal gene transfer and ecological pressures further facilitate the spread of antimicrobial-resistant bacteria across ecosystems. The cascading impacts of AMR threaten human health and agricultural productivity, elevate foodborne infection risks, and impose substantial economic burdens, particularly in low- and middle-income countries. To address this complex issue, the review advocates for interdisciplinary collaboration, robust policy implementation (e.g., antimicrobial stewardship), and innovative technologies (e.g., genomic surveillance, predictive modeling) under the One Health paradigm. Such integrated strategies are essential to mitigate AMR transmission, safeguard global health, and ensure sustainable development.202540558133
650810.9970Synergizing Ecotoxicology and Microbiome Data Is Key for Developing Global Indicators of Environmental Antimicrobial Resistance. The One Health concept recognises the interconnectedness of humans, plants, animals and the environment. Recent research strongly supports the idea that the environment serves as a significant reservoir for antimicrobial resistance (AMR). However, the complexity of natural environments makes efforts at AMR public health risk assessment difficult. We lack sufficient data on key ecological parameters that influence AMR, as well as the primary proxies necessary for evaluating risks to human health. Developing environmental AMR 'early warning systems' requires models with well-defined parameters. This is necessary to support the implementation of clear and targeted interventions. In this review, we provide a comprehensive overview of the current tools used globally for environmental AMR human health risk assessment and the underlying knowledge gaps. We highlight the urgent need for standardised, cost-effective risk assessment frameworks that are adaptable across different environments and regions to enhance comparability and reliability. These frameworks must also account for previously understudied AMR sources, such as horticulture, and emerging threats like climate change. In addition, integrating traditional ecotoxicology with modern 'omics' approaches will be essential for developing more comprehensive risk models and informing targeted AMR mitigation strategies.202439611949
665620.9970Understanding the Evolution and Transmission Dynamics of Antibiotic Resistance Genes: A Comprehensive Review. Antibiotic resistance poses a formidable challenge to global public health, necessitating comprehensive understanding and strategic interventions. This review explores the evolution and transmission dynamics of antibiotic resistance genes, with a focus on Bangladesh. The indiscriminate use of antibiotics, compounded by substandard formulations and clinical misdiagnosis, fuels the emergence and spread of resistance in the country. Studies reveal high resistance rates among common pathogens, emphasizing the urgent need for targeted interventions and rational antibiotic use. Molecular assessments uncover a diverse array of antibiotic resistance genes in environmental reservoirs, highlighting the complex interplay between human activities and resistance dissemination. Horizontal gene transfer mechanisms, particularly plasmid-mediated conjugation, facilitate the exchange of resistance determinants among bacterial populations, driving the evolution of multidrug-resistant strains. The review discusses clinical implications, emphasizing the interconnectedness of environmental and clinical settings in resistance dynamics. Furthermore, bioinformatic and experimental evidence elucidates novel mechanisms of resistance gene transfer, underscoring the dynamic nature of resistance evolution. In conclusion, combating antibiotic resistance requires a multifaceted approach, integrating surveillance, stewardship, and innovative research to preserve the efficacy of antimicrobial agents and safeguard public health.202439113256
666530.9969A One-Health Perspective of Antimicrobial Resistance (AMR): Human, Animals and Environmental Health. Antibiotics are essential for treating bacterial and fungal infections in plants, animals, and humans. Their widespread use in agriculture and the food industry has significantly enhanced animal health and productivity. However, extensive and often inappropriate antibiotic use has driven the emergence and spread of antimicrobial resistance (AMR), a global health crisis marked by the reduced efficacy of antimicrobial treatments. Recognized by the World Health Organization (WHO) as one of the top ten global public health threats, AMR arises when certain bacteria harbor antimicrobial resistance genes (ARGs) that confer resistance that can be horizontally transferred to other bacteria, accelerating resistance spread in the environment. AMR poses a significant global health challenge, affecting humans, animals, and the environment alike. A One-Health perspective highlights the interconnected nature of these domains, emphasizing that resistant microorganisms spread across healthcare, agriculture, and the environment. Recent scientific advances such as metagenomic sequencing for resistance surveillance, innovative wastewater treatment technologies (e.g., ozonation, UV, membrane filtration), and the development of vaccines and probiotics as alternatives to antibiotics in livestock are helping to mitigate resistance. At the policy level, global initiatives including the WHO Global Action Plan on AMR, coordinated efforts by (Food and Agriculture Organization) FAO and World Organisation for Animal Health (WOAH), and recommendations from the O'Neill Report underscore the urgent need for international collaboration and sustainable interventions. By integrating these scientific and policy responses within the One-Health framework, stakeholders can improve antibiotic stewardship, reduce environmental contamination, and safeguard effective treatments for the future.202541157271
817140.9969Advancements in CRISPR-Cas-based strategies for combating antimicrobial resistance. Multidrug resistance (MDR) in bacteria presents a significant global health threat, driven by the widespread dissemination of antibiotic-resistant genes (ARGs). The CRISPR-Cas system, known for its precision and adaptability, holds promise as a tool to combat antimicrobial resistance (AMR). Although previous studies have explored the use of CRISPR-Cas to target bacterial genomes or plasmids harboring resistance genes, the application of CRISPR-Cas-based antimicrobial therapies is still in its early stages. Challenges such as low efficiency and difficulties in delivering CRISPR to bacterial cells remain. This review provides an overview of the CRISPR-Cas system, highlights recent advancements in CRISPR-Cas-based antimicrobials and delivery strategies for combating AMR. The review also discusses potential challenges for the future development of CRISPR-Cas-based antimicrobials. Addressing these challenges would enable CRISPR therapies to become a practical solution for treating AMR infections in the future.202540440869
665750.9969From Cure to Crisis: Understanding the Evolution of Antibiotic-Resistant Bacteria in Human Microbiota. The growing prevalence of antibiotic-resistant bacteria within the human microbiome has become a pressing global health crisis. While antibiotics have revolutionized medicine by significantly reducing mortality and enabling advanced medical interventions, their misuse and overuse have led to the emergence of resistant bacterial strains. Key resistance mechanisms include genetic mutations, horizontal gene transfer, and biofilm formation, with the human microbiota acting as a reservoir for antibiotic resistance genes (ARGs). Industrialization and environmental factors have exacerbated this issue, contributing to a rise in infections with multidrug-resistant (MDR) bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA) and carbapenem-resistant Enterobacteriaceae. These resistant pathogens compromise the effectiveness of essential treatments like surgical prophylaxis and chemotherapy, increase healthcare costs, and prolong hospital stays. This crisis highlights the need for a global One-Health approach, particularly in regions with weak regulatory frameworks. Innovative strategies, including next-generation sequencing (NGS) technologies, offer promising avenues for mitigating resistance. Addressing this challenge requires coordinated efforts, encompassing research, policymaking, public education, and antibiotic stewardship, to safeguard current antibiotics and foster the development of new therapeutic solutions. An integrated, multidimensional strategy is essential to tackle this escalating problem and ensure the sustainability of effective antimicrobial treatments.202539858487
650660.9968Mitigating antimicrobial resistance through effective hospital wastewater management in low- and middle-income countries. Hospital wastewater (HWW) is a significant environmental and public health threat, containing high levels of pollutants such as antibiotic-resistant bacteria (ARB), antibiotic-resistant genes (ARGs), antibiotics, disinfectants, and heavy metals. This threat is of particular concern in low- and middle-income countries (LMICs), where untreated effluents are often used for irrigating vegetables crops, leading to direct and indirect human exposure. Despite being a potential hotspot for the spread of antimicrobial resistance (AMR), existing HWW treatment systems in LMICs primarily target conventional pollutants and lack effective standards for monitoring the removal of ARB and ARGs. Consequently, untreated or inadequately treated HWW continues to disseminate ARB and ARGs, exacerbating the risk of AMR proliferation. Addressing this requires targeted interventions, including cost-effective treatment solutions, robust AMR monitoring protocols, and policy-driven strategies tailored to LMICs. This perspective calls for a paradigm shift in HWW management in LMIC, emphasizing the broader implementation of onsite treatment systems, which are currently rare. Key recommendations include developing affordable and contextually adaptable technologies for eliminating ARB and ARGs and enforcing local regulations for AMR monitoring and control in wastewater. Addressing these challenges is essential for protecting public health, preventing the environmental spread of resistance, and contributing to a global effort to preserve the efficacy of antibiotics. Recommendations include integrating scalable onsite technologies, leveraging local knowledge, and implementing comprehensive AMR-focused regulatory frameworks.202439944563
980870.9968Understanding Recent Developments in Colistin Resistance: Mechanisms, Clinical Implications, and Future Perspectives. Colistin resistance, driven by chromosomal mutations and the spread of plasmid-mediated MCR genes, has emerged as a critical challenge in combating multidrug-resistant Gram-negative bacteria. This resistance compromises the efficacy of colistin, leading to higher treatment failure rates, prolonged hospitalizations, and increased mortality. Recent studies have highlighted key mechanisms, including lipid A modifications, that enable bacteria to evade colistin's effects. The global spread of MCR genes exacerbates the issue, underlining the need for improved diagnostics and rapid detection of resistant strains to prevent adverse patient outcomes. To combat this growing threat, a multifaceted approach is essential, involving enhanced antimicrobial stewardship, stricter infection control measures, and continued research into alternative therapies and diagnostic methods. Collaborative efforts from researchers, healthcare providers, policymakers, and the pharmaceutical industry are crucial to preserving colistin's effectiveness and mitigating the broader impact on public health.202541148650
666480.9968Addressing the global challenge of bacterial drug resistance: insights, strategies, and future directions. The COVID-19 pandemic underscored bacterial resistance as a critical global health issue, exacerbated by the increased use of antibiotics during the crisis. Notwithstanding the pandemic's prevalence, initiatives to address bacterial medication resistance have been inadequate. Although an overall drop in worldwide antibiotic consumption, total usage remains substantial, requiring rigorous regulatory measures and preventive activities to mitigate the emergence of resistance. Although National Action Plans (NAPs) have been implemented worldwide, significant disparities persist, particularly in low- and middle-income countries (LMICs). Settings such as farms, hospitals, wastewater treatment facilities, and agricultural environments include a significant presence of Antibiotic Resistant Bacteria (ARB) and antibiotic-resistance genes (ARG), promoting the propagation of resistance. Dietary modifications and probiotic supplementation have shown potential in reshaping gut microbiota and reducing antibiotic resistance gene prevalence. Combining antibiotics with adjuvants or bacteriophages may enhance treatment efficacy and mitigate resistance development. Novel therapeutic approaches, such as tailored antibiotics, monoclonal antibodies, vaccines, and nanoparticles, offer alternate ways of addressing resistance. In spite of advancements in next-generation sequencing and analytics, gaps persist in comprehending the role of gut microbiota in regulating antibiotic resistance. Effectively tackling antibiotic resistance requires robust policy interventions and regulatory measures targeting root causes while minimizing public health risks. This review provides information for developing strategies and protocols to prevent bacterial colonization, enhance gut microbiome resilience, and mitigate the spread of antibiotic resistance.202540066274
817890.9967Unraveling resistance mechanisms in combination therapy: A comprehensive review of recent advances and future directions. Antimicrobial resistance is a global health threat. Misuse and overuse of antimicrobials are the main drivers in developing drug-resistant bacteria. The emergence of the rapid global spread of multi-resistant bacteria requires urgent multisectoral action to generate novel treatment alternatives. Combination therapy offers the potential to exploit synergistic effects for enhanced antibacterial efficacy of drugs. Understanding the complex dynamics and kinetics of drug interactions in combination therapy is crucial. Therefore, this review outlines the current advances in antibiotic resistance's evolutionary and genetic dynamics in combination therapies-exposed bacteria. Moreover, we also discussed four pivotal future research areas to comprehend better the development of antibiotic resistance in bacteria treated with combination strategies.202438510041
6655100.9967Futuristic Non-antibiotic Therapies to Combat Antibiotic Resistance: A Review. The looming problem of resistance to antibiotics in microorganisms is a global health concern. The drug-resistant microorganisms originating from anthropogenic sources and commercial livestock farming have posed serious environmental and health challenges. Antibiotic-resistant genes constituting the environmental "resistome" get transferred to human and veterinary pathogens. Hence, deciphering the origin, mechanism and extreme of transfer of these genetic factors into pathogens is extremely important to develop not only the therapeutic interventions to curtail the infections, but also the strategies to avert the menace of microbial drug-resistance. Clinicians, researchers and policymakers should jointly come up to develop the strategies to prevent superfluous exposure of pathogens to antibiotics in non-clinical settings. This article highlights the present scenario of increasing antimicrobial-resistance in pathogenic bacteria and the clinical importance of unconventional or non-antibiotic therapies to thwart the infectious pathogenic microorganisms.202133574807
8181110.9967Bacterial resistance to antibacterial agents: Mechanisms, control strategies, and implications for global health. The spread of bacterial drug resistance has posed a severe threat to public health globally. Here, we cover bacterial resistance to current antibacterial drugs, including traditional herbal medicines, conventional antibiotics, and antimicrobial peptides. We summarize the influence of bacterial drug resistance on global health and its economic burden while highlighting the resistance mechanisms developed by bacteria. Based on the One Health concept, we propose 4A strategies to combat bacterial resistance, including prudent Application of antibacterial agents, Administration, Assays, and Alternatives to antibiotics. Finally, we identify several opportunities and unsolved questions warranting future exploration for combating bacterial resistance, such as predicting genetic bacterial resistance through the use of more effective techniques, surveying both genetic determinants of bacterial resistance and the transmission dynamics of antibiotic resistance genes (ARGs).202336435256
6690120.9966Antimicrobial resistance situation in animal health of Bangladesh. Antimicrobial resistance (AMR) is a crucial multifactorial and complex global problem and Bangladesh poses a regional and global threat with a high degree of antibiotic resistance. Although the routine application of antimicrobials in the livestock industry has largely contributed to the health and productivity, it correspondingly plays a significant role in the evolution of different pathogenic bacterial strains having multidrug resistance (MDR) properties. Bangladesh is implementing the National Action Plan (NAP) for containing AMR in human, animal, and environment sectors through "One Health" approach where the Department of Livestock Services (DLS) is the mandated body to implement NAP strategies in the animal health sector of the country. This review presents a "snapshot" of the predisposing factors, and current situations of AMR along with the weakness and strength of DLS to contain the problem in animal farming practices in Bangladesh. In the present review, resistance monitoring data and risk assessment identified several direct and/or indirect predisposing factors to be potentially associated with AMR development in the animal health sector of Bangladesh. The predisposing factors are inadequate veterinary healthcare, monitoring and regulatory services, intervention of excessive informal animal health service providers, and farmers' knowledge gap on drugs, and AMR which have resulted in the misuse and overuse of antibiotics, ultimate in the evolution of antibiotic-resistant bacteria and genes in all types of animal farming settings of Bangladesh. MDR bacteria with extreme resistance against antibiotics recommended to use in both animals and humans have been reported and been being a potential public health hazard in Bangladesh. Execution of extensive AMR surveillance in veterinary practices and awareness-building programs for stakeholders along with the strengthening of the capacity of DLS are recommended for effective containment of AMR emergence and dissemination in the animal health sector of Bangladesh.202033487990
6666130.9966Antibiotic residues in poultry products and bacterial resistance: A review in developing countries. Antimicrobial resistance (AMR) is a growing global concern, particularly in poultry farming, where antibiotics are widely used for both disease prevention and growth promotion. This review examines the misuse of antibiotics in poultry production, especially in developing countries, and its contribution to the emergence of antibiotic-resistant bacteria. The findings highlight that factors such as increasing demand for poultry protein, the availability of inexpensive antibiotics, and weak regulatory oversight have led to widespread misuse, accelerating the spread of resistance genes. Although evidence links poultry farming to AMR, significant data gaps remain, especially regarding resistance transmission from poultry to humans. The review underscores the urgent need for stronger regulatory frameworks, phased-out use of antimicrobial growth promoters, and enhanced awareness campaigns to address this issue. Improving the capacity of regulatory bodies and developing more robust national data monitoring systems are essential steps to mitigate the threat of AMR in poultry farming and to protect both animal and human health.202439551017
6446140.9966Ecological consequences of antimicrobial residues and bioactive chemicals on antimicrobial resistance in agroecosystems. BACKGROUND: The widespread use of antimicrobials in agriculture, coupled with bioactive chemicals like pesticides and growth-promoting agents, has accelerated the global crisis of antimicrobial resistance (AMR). Agroecosystems provides a platform in the evolution and dissemination of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which pose significant threats to both environmental and public health. AIM OF REVIEW: This review explores the ecological consequences of antimicrobial residues and bioactive chemicals in agroecosystems, with a focus on their role in shaping AMR. It delves into the mechanisms by which these substances enter agricultural environments, their interactions with soil microbiomes, and the subsequent impacts on microbial community structure. KEY SCIENTIFIC CONCEPTS OF REVIEW: Evidence indicates that the accumulation of antimicrobials promotes resistance gene transfer among microorganisms, potentially compromising ecosystem health and agricultural productivity. By synthesizing current research, we identify critical gaps in knowledge and propose strategies for mitigating the ecological risks associated with antimicrobial residues. Moreover, this review highlights the urgent need for integrated management approaches to preserve ecosystem health and combat the spread of AMR in agricultural settings.202539414225
6668150.9965Complexities in understanding antimicrobial resistance across domesticated animal, human, and environmental systems. Antimicrobial resistance (AMR) is a significant threat to both human and animal health. The spread of AMR bacteria and genes across systems can occur through a myriad of pathways, both related and unrelated to agriculture, including via wastewater, soils, manure applications, direct exchange between humans and animals, and food exposure. Tracing origins and drivers of AMR bacteria and genes is challenging due to the array of contexts and the complexity of interactions overlapping health practice, microbiology, genetics, applied science and engineering, as well as social and human factors. Critically assessing the diverse and sometimes contradictory AMR literature is a valuable step in identifying tractable mitigation options to stem AMR spread. In this article we review research on the nonfoodborne spread of AMR, with a focus on domesticated animals and the environment and possible exposures to humans. Attention is especially placed on delineating possible sources and causes of AMR bacterial phenotypes, including underpinning the genetics important to human and animal health.201930924539
9556160.9965Recent insights into actinobacteria research in antimicrobial resistance: a review. Antimicrobial resistance (AMR) has emerged as a global health crisis, taking 4.71 million lives in the year 2021 and posing significant challenges to healthcare systems. Actinobacteria, particularly Streptomyces sp., are a well-established source of bioactive secondary metabolites, including antibiotics such as polyketides, aminoglycosides, and macrolides with activity against multidrug-resistant (MDR) bacteria. However, only 10% of the antibiotic genes are expressed, and others are silent in cryptic biosynthetic gene clusters (BGCs) that remain inactive under standard laboratory conditions. Advances in genome mining, bioinformatics tools like antiSMASH, and molecular techniques such as CRISPR-Cas have facilitated the identification of these clusters. Furthermore, innovative strategies such as co-culturing and HDAC inhibitors have shown promise in activating cryptic biosynthetic pathways to combat emerging antimicrobial resistance. Despite these advancements, the rapid evolution of resistance requires continuous research and global collaboration to ensure a sustainable pipeline of effective antibiotics. This review provides insight into actinobacteria-derived antibiotics, resistance mechanisms, and emerging biotechnological interventions to address the AMR crisis, underscoring the urgent need for multidisciplinary antibiotic discovery and stewardship efforts.202540627029
6647170.9965Potential Elimination of Human Gut Resistome by Exploiting the Benefits of Functional Foods. Recent advances in technology over the last decades have strived to elucidate the diverse and abundant ecosystem of the human microbiome. The intestinal microbiota represents a densely inhabited environment that offers a plethora of beneficial effects to the host's wellbeing. On the other hand, it can serve as a potential reservoir of Multi-Drug Resistant (MDR) bacteria and their antibiotic-resistant genes (ARgenes), which comprise the "gut resistome." ARgenes, like antibiotics, have been omnipresent in the environment for billions of years. In the context of the gut microbiome, these genes may conflate into exogenous MDR or emerge in commensals due to mutations or gene transfers. It is currently generally accepted that Antimicrobial Resistance (AMR) poses a serious threat to public health worldwide. It is of paramount importance that researchers focus on, amongst other parameters, elaborating strategies to manage the gut resistome, particularly focusing on the diminution of AMR. Potential interventions in the gut microbiome field by Fecal Microbiota Transplant (FMT) or functional foods are newly emerged candidates for the uprooting of MDR strains and restoring dysbiosis and resilience. Probiotic nutrition is thought to diminish gut colonization from pathobionts. Yet only a few studies have explored the effects of antibiotics use on the reservoir of AR genes and the demanding time for return to normal by gut microbiota-targeted strategies. Regular administration of probiotic bacteria has recently been linked to restoration of the gut ecosystem and decrease of the gut resistome and AR genes carriers. This review summarizes the latest information about the intestinal resistome and the intriguing methods of fighting against AMR through probiotic-based methods and gut microbial shifts that have been proposed. This study contains some key messages: (1) AMR currently poses a lethal threat to global health, and it is pivotal for the scientific community to do its utmost in fighting against it; (2) human gut microbiome research, within the last decade especially, seems to be preoccupied with the interface of numerous diseases and identifying a potential target for a variety of interventions; (3) the gut resistome, comprised of AR genesis, presents very early on in life and is prone to shifts due to the use of antibiotics or dietary supplements; and (4) future strategies involving functional foods seem promising for the battle against AMR through intestinal resistome diminution.202032117102
6678180.9965Bacteriophage Therapy to Combat Microbial Infections and Antimicrobial Resistance. Antimicrobial resistance (AMR) is a global issue; however, in lower resource settings, uncontrolled measures and uncontrolled use of antibiotics in human, animal, and agricultural practices have increased their prevalence in developing countries. Various mechanisms have been implicated to explain the AMR, like the circulation of the plasmid carrying antibiotic resistance genes (ARG), mutation in target genes (intrinsic and plasmid), overexpression of efflux pumps, underexpression of porins, etc. Various therapeutic strategies used to combat AMR exist, such as nonantibiotic approaches (vaccinations or immunotherapy, nano-derived treatments, and bacteriophage therapy), Anti-plasmid and plasmid curing approaches, combinatorial approaches (combination of antibiotics as well as a combination of two different approaches), and plant-based therapeutics. In this focused review, we have discussed the potential use of bacteriophage-based therapy to combat AMR and biofilm formation through multifaceted ways, including lysis of the drug-resistant bacteria, targeting the pili of AMR plasmids conjugation systems, and use of phage-derived lytic proteins. Phages can also be used to decontaminate surfaces in healthcare settings, prevent bacterial contamination in food (meat and dairy), and control bacterial populations in environmental settings, such as water and soil. Therefore, the bacteriophages-based approach served as a dual sword and could not only prevent the spread of infectious diseases but also manage the AMR.202540757460
6616190.9965The menace of colistin resistance across globe: Obstacles and opportunities in curbing its spread. Colistin-resistance in bacteria is a big concern for public health, since it is a last resort antibiotic to treat infectious diseases of multidrug resistant and carbapenem resistant Gram-negative pathogens in clinical settings. The emergence of colistin resistance in aquaculture and poultry settings has escalated the risks associated with colistin resistance in environment as well. The staggering number of reports pertaining to the rise of colistin resistance in bacteria from clinical and non-clinical settings is disconcerting. The co-existence of colistin resistant genes with other antibiotic resistant genes introduces new challenges in combatting antimicrobial resistance. Some countries have banned the manufacture, sale and distribution of colistin and its formulations for food producing animals. However, to tackle the issue of antimicrobial resistance, a one health approach initiative, inclusive of human, animal, and environmental health needs to be developed. Herein, we review the recent reports in colistin resistance in bacteria of clinical and non-clinical settings, deliberating on the new findings obtained regarding the development of colistin resistance. This review also discusses the initiatives implemented globally in mitigating colistin resistance, their strength and weakness.202336812837