THEREOF - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
175000.9918The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2020/2021. Antimicrobial resistance (AMR) data on zoonotic and indicator bacteria from humans, animals and food are collected annually by the EU Member States (MSs) and reporting countries, jointly analysed by EFSA and ECDC and presented in a yearly EU Summary Report. This report provides an overview of the main findings of the 2020-2021 harmonised AMR monitoring in Salmonella spp., Campylobacter jejuni and C. coli in humans and food-producing animals (broilers, laying hens and turkeys, fattening pigs and bovines under 1 year of age) and relevant meat thereof. For animals and meat thereof, indicator E. coli data on the occurrence of AMR and presumptive Extended spectrum β-lactamases (ESBL)-/AmpC β-lactamases (AmpC)-/carbapenemases (CP)-producers, as well as the occurrence of methicillin-resistant Staphylococcus aureus are also analysed. In 2021, MSs submitted for the first time AMR data on E. coli isolates from meat sampled at border control posts. Where available, monitoring data from humans, food-producing animals and meat thereof were combined and compared at the EU level, with emphasis on multidrug resistance, complete susceptibility and combined resistance patterns to selected and critically important antimicrobials, as well as Salmonella and E. coli isolates exhibiting ESBL-/AmpC-/carbapenemase phenotypes. Resistance was frequently found to commonly used antimicrobials in Salmonella spp. and Campylobacter isolates from humans and animals. Combined resistance to critically important antimicrobials was mainly observed at low levels except in some Salmonella serotypes and in C. coli in some countries. The reporting of a number of CP-producing E. coli isolates (harbouring bla (OXA-48), bla (OXA-181), and bla (NDM-5) genes) in pigs, bovines and meat thereof by a limited number of MSs (4) in 2021, requests a thorough follow-up. The temporal trend analyses in both key outcome indicators (rate of complete susceptibility and prevalence of ESBL-/AmpC- producers) showed that encouraging progress have been registered in reducing AMR in food-producing animals in several EU MSs over the last years.202336891283
906810.9917TnCentral: a Prokaryotic Transposable Element Database and Web Portal for Transposon Analysis. We describe here the structure and organization of TnCentral (https://tncentral.proteininformationresource.org/ [or the mirror link at https://tncentral.ncc.unesp.br/]), a web resource for prokaryotic transposable elements (TE). TnCentral currently contains ∼400 carefully annotated TE, including transposons from the Tn3, Tn7, Tn402, and Tn554 families; compound transposons; integrons; and associated insertion sequences (IS). These TE carry passenger genes, including genes conferring resistance to over 25 classes of antibiotics and nine types of heavy metal, as well as genes responsible for pathogenesis in plants, toxin/antitoxin gene pairs, transcription factors, and genes involved in metabolism. Each TE has its own entry page, providing details about its transposition genes, passenger genes, and other sequence features required for transposition, as well as a graphical map of all features. TnCentral content can be browsed and queried through text- and sequence-based searches with a graphic output. We describe three use cases, which illustrate how the search interface, results tables, and entry pages can be used to explore and compare TE. TnCentral also includes downloadable software to facilitate user-driven identification, with manual annotation, of certain types of TE in genomic sequences. Through the TnCentral homepage, users can also access TnPedia, which provides comprehensive reviews of the major TE families, including an extensive general section and specialized sections with descriptions of insertion sequence and transposon families. TnCentral and TnPedia are intuitive resources that can be used by clinicians and scientists to assess TE diversity in clinical, veterinary, and environmental samples. IMPORTANCE The ability of bacteria to undergo rapid evolution and adapt to changing environmental circumstances drives the public health crisis of multiple antibiotic resistance, as well as outbreaks of disease in economically important agricultural crops and animal husbandry. Prokaryotic transposable elements (TE) play a critical role in this. Many carry "passenger genes" (not required for the transposition process) conferring resistance to antibiotics or heavy metals or causing disease in plants and animals. Passenger genes are spread by normal TE transposition activities and by insertion into plasmids, which then spread via conjugation within and across bacterial populations. Thus, an understanding of TE composition and transposition mechanisms is key to developing strategies to combat bacterial pathogenesis. Toward this end, we have developed TnCentral, a bioinformatics resource dedicated to describing and exploring the structural and functional features of prokaryotic TE whose use is intuitive and accessible to users with or without bioinformatics expertise.202134517763
156220.9917Detection of an IMI-2 carbapenemase-producing Enterobacter asburiae at a Swedish feed mill. Occurrence of multidrug resistant Enterobacteriaceae in livestock is of concern as they can spread to humans. A potential introduction route for these bacteria to livestock could be animal feed. We therefore wanted to identify if Escherichia spp., Enterobacter spp., Klebsiella spp., or Raoutella spp. with transferable resistance to extended spectrum cephalosporins, carbapenems or colistin could be detected in the environment at feed mills in Sweden. A second aim was to compare detected isolates to previous described isolates from humans and animals in Sweden to establish relatedness which could indicate a potential transmission between sectors and feed mills as a source for antibiotic resistant bacteria. However, no isolates with transferable resistance to extended-cephalosporins or colistin could be identified, but one isolate belonging to the Enterobacter cloacae complex was shown to be carbapenem-resistant and showing carbapenemase-activity. Based on sequencing by both short-read Illumina and long-read Oxford Nanopore MinIon technologies it was shown that this isolate was an E. asburiae carrying a bla (IMI-2) gene on a 216 Kbp plasmid, designated pSB89A/IMI-2, and contained the plasmid replicons IncFII, IncFIB, and a third replicon showing highest similarity to the IncFII(Yp). In addition, the plasmid contained genes for various functions such as plasmid segregation and stability, plasmid transfer and arsenical transport, but no additional antibiotic resistance genes. This isolate and the pSB89A/IMI-2 was compared to three human clinical isolates positive for bla (IMI-2) available from the Swedish antibiotic monitoring program Swedres. It was shown that one of the human isolates carried a plasmid similar with regards to gene content to the pSB89A/IMI-2 except for the plasmid transfer system, but that the order of genes was different. The pSB89A/IMI-2 did however share the same transfer system as the bla (IMI-2) carrying plasmids from the other two human isolates. The pSB89A/IMI-2 was also compared to previously published plasmids carrying bla (IMI-2), but no identical plasmids could be identified. However, most shared part of the plasmid transfer system and DNA replication genes, and the bla (IMI-2) gene was located next the transcription regulator imiR. The IS3-family insertion element downstream of imiR in the pSB89A was also related to the IS elements in other bla (IMI)-carrying plasmids.202236338068
252530.9915Review of antimicrobial resistance surveillance programmes in livestock and meat in EU with focus on humans. OBJECTIVES: In this review, we describe surveillance programmes reporting antimicrobial resistance (AMR) and resistance genes in bacterial isolates from livestock and meat and compare them with those relevant for human health. METHODS: Publications on AMR in European countries were assessed. PubMed was reviewed and AMR monitoring programmes were identified from reports retrieved by Internet searches and by contacting national authorities in EU/European Economic Area (EEA) member states. RESULTS: Three types of systems were identified: EU programmes, industry-funded supranational programmes and national surveillance systems. The mandatory EU-financed programme has led to some harmonization in national monitoring and provides relevant information on AMR and extended-spectrum β-lactamase/AmpC- and carbapenemase-producing bacteria. At the national level, AMR surveillance systems in livestock apply heterogeneous sampling, testing and reporting modalities, resulting in results that cannot be compared. Most reports are not publicly available or are written in a local language. The industry-funded monitoring systems undertaken by the Centre Européen d'Etudes pour la Santé Animale (CEESA) examines AMR in bacteria in food-producing animals. CONCLUSIONS: Characterization of AMR genes in livestock is applied heterogeneously among countries. Most antibiotics of human interest are included in animal surveillance, although results are difficult to compare as a result of lack of representativeness of animal samples. We suggest that EU/EEA countries provide better uniform AMR monitoring and reporting in livestock and link them better to surveillance systems in humans. Reducing the delay between data collection and publication is also important to allow prompt identification of new resistance patterns.201828970159
908140.9914Identification and reconstruction of novel antibiotic resistance genes from metagenomes. BACKGROUND: Environmental and commensal bacteria maintain a diverse and largely unknown collection of antibiotic resistance genes (ARGs) that, over time, may be mobilized and transferred to pathogens. Metagenomics enables cultivation-independent characterization of bacterial communities but the resulting data is noisy and highly fragmented, severely hampering the identification of previously undescribed ARGs. We have therefore developed fARGene, a method for identification and reconstruction of ARGs directly from shotgun metagenomic data. RESULTS: fARGene uses optimized gene models and can therefore with high accuracy identify previously uncharacterized resistance genes, even if their sequence similarity to known ARGs is low. By performing the analysis directly on the metagenomic fragments, fARGene also circumvents the need for a high-quality assembly. To demonstrate the applicability of fARGene, we reconstructed β-lactamases from five billion metagenomic reads, resulting in 221 ARGs, of which 58 were previously not reported. Based on 38 ARGs reconstructed by fARGene, experimental verification showed that 81% provided a resistance phenotype in Escherichia coli. Compared to other methods for detecting ARGs in metagenomic data, fARGene has superior sensitivity and the ability to reconstruct previously unknown genes directly from the sequence reads. CONCLUSIONS: We conclude that fARGene provides an efficient and reliable way to explore the unknown resistome in bacterial communities. The method is applicable to any type of ARGs and is freely available via GitHub under the MIT license.201930935407
493850.9914Optical maps of plasmids as a proxy for clonal spread of MDR bacteria: a case study of an outbreak in a rural Ethiopian hospital. OBJECTIVES: MDR bacteria have become a prevailing health threat worldwide. We here aimed to use optical DNA mapping (ODM) as a rapid method to trace nosocomial spread of bacterial clones and gene elements. We believe that this method has the potential to be a tool of pivotal importance for MDR control. METHODS: Twenty-four Escherichia coli samples of ST410 from three different wards were collected at an Ethiopian hospital and their plasmids were analysed by ODM. Plasmids were specifically digested with Cas9 targeting the antibiotic resistance genes, stained by competitive binding and confined in nanochannels for imaging. The resulting intensity profiles (barcodes) for each plasmid were compared to identify potential clonal spread of resistant bacteria. RESULTS: ODM demonstrated that a large fraction of the patients carried bacteria with a plasmid of the same origin, carrying the ESBL gene blaCTX-M-15, suggesting clonal spread. The results correlate perfectly with core genome (cg)MLST data, where bacteria with the same plasmid also had very similar cgMLST profiles. CONCLUSIONS: ODM is a rapid discriminatory method for identifying plasmids and antibiotic resistance genes. Long-range deletions/insertions, which are challenging for short-read next-generation sequencing, can be easily identified and used to trace bacterial clonal spread. We propose that plasmid typing can be a useful tool to identify clonal spread of MDR bacteria. Furthermore, the simplicity of the method enables possible future application in low- and middle-income countries.202032653928
973360.9914The 2018 Garrod Lecture: Preparing for the Black Swans of resistance. The need for governments to encourage antibiotic development is widely agreed, with 'market entry rewards' being suggested. Unless these are to be spread widely-which is unlikely given the $1 billion sums proposed-we should be wary, for this approach is likely to evolve into one of picking, or commissioning, a few 'winners' based on extrapolation of current resistance trends. The hazard to this is that whilst the evolution of resistance has predictable components, notably mutation, it also has completely unpredictable ones, contingent upon 'Black Swan' events. These include the escape of 'new' resistance genes from environmental bacteria and the recruitment of these genes by promiscuous mobile elements and epidemic strains. Such events can change the resistance landscape rapidly and unexpectedly, as with the rise of Escherichia coli ST131 with CTX-M ESBLs and the emergence of 'impossible' VRE. Given such unpredictability, we simply cannot say with any certainty, for example, which of the four current approaches to combating MBLs offers the best prospect of sustainable prizeworthy success. Only time will tell, though it is encouraging that multiple potential approaches to overcoming these problematic enzymes are being pursued. Rather than seeking to pick winners, governments should aim to reduce development barriers, as with recent relaxation of trial regulations. In particular, once β-lactamase inhibitors have been successfully trialled with one partner drug, there is scope to facilitate licensing them for partnering with other established β-lactams, thereby insuring against new emerging resistance.201830351434
509870.9913Feature selection and aggregation for antibiotic resistance GWAS in Mycobacterium tuberculosis: a comparative study. INTRODUCTION: Drug resistance (DR) of pathogens remains a global healthcare concern. In contrast to other bacteria, acquiring mutations in the core genome is the main mechanism of drug resistance for Mycobacterium tuberculosis (MTB). For some antibiotics, the resistance of a particular isolate can be reliably predicted by identifying specific mutations, while for other antibiotics the knowledge of resistance mechanisms is limited. Statistical machine learning (ML) methods are used to infer new genes implicated in drug resistance leveraging large collections of isolates with known whole-genome sequences and phenotypic states for different drugs. However, high correlations between the phenotypic states for commonly used drugs complicate the inference of true associations of mutations with drug phenotypes by ML approaches. METHODS: Recently, several new methods have been developed to select a small subset of reliable predictors of the dependent variable, which may help reduce the number of spurious associations identified. In this study, we evaluated several such methods, namely, logistic regression with different regularization penalty functions, a recently introduced algorithm for solving the best-subset selection problem (ABESS) and "Hungry, Hungry SNPos" (HHS) a heuristic algorithm specifically developed to identify resistance-associated genetic variants in the presence of resistance co-occurrence. We assessed their ability to select known causal mutations for resistance to a specific drug while avoiding the selection of mutations in genes associated with resistance to other drugs, thus we compared selected ML models for their applicability for MTB genome wide association studies. RESULTS AND DISCUSSION: In our analysis, ABESS significantly outperformed the other methods, selecting more relevant sets of mutations. Additionally, we demonstrated that aggregating rare mutations within protein-coding genes into markers indicative of changes in PFAM domains improved prediction quality, and these markers were predominantly selected by ABESS, suggesting their high informativeness. However, ABESS yielded lower prediction accuracy compared to logistic regression methods with regularization.202540606161
492480.9913PlaScope: a targeted approach to assess the plasmidome from genome assemblies at the species level. Plasmid prediction may be of great interest when studying bacteria of medical importance such as Enterobacteriaceae as well as Staphylococcus aureus or Enterococcus. Indeed, many resistance and virulence genes are located on such replicons with major impact in terms of pathogenicity and spreading capacities. Beyond strain outbreak, plasmid outbreaks have been reported in particular for some extended-spectrum beta-lactamase- or carbapenemase-producing Enterobacteriaceae. Several tools are now available to explore the 'plasmidome' from whole-genome sequences with various approaches, but none of them are able to combine high sensitivity and specificity. With this in mind, we developed PlaScope, a targeted approach to recover plasmidic sequences in genome assemblies at the species or genus level. Based on Centrifuge, a metagenomic classifier, and a custom database containing complete sequences of chromosomes and plasmids from various curated databases, PlaScope classifies contigs from an assembly according to their predicted location. Compared to other plasmid classifiers, PlasFlow and cBar, it achieves better recall (0.87), specificity (0.99), precision (0.96) and accuracy (0.98) on a dataset of 70 genomes of Escherichia coli containing plasmids. In a second part, we identified 20 of the 21 chromosomal integrations of the extended-spectrum beta-lactamase coding gene in a clinical dataset of E. coli strains. In addition, we predicted virulence gene and operon locations in agreement with the literature. We also built a database for Klebsiella and correctly assigned the location for the majority of resistance genes from a collection of 12 Klebsiella pneumoniae strains. Similar approaches could also be developed for other well-characterized bacteria.201830265232
988090.9913Plasmid Classification in an Era of Whole-Genome Sequencing: Application in Studies of Antibiotic Resistance Epidemiology. Plasmids are extra-chromosomal genetic elements ubiquitous in bacteria, and commonly transmissible between host cells. Their genomes include variable repertoires of 'accessory genes,' such as antibiotic resistance genes, as well as 'backbone' loci which are largely conserved within plasmid families, and often involved in key plasmid-specific functions (e.g., replication, stable inheritance, mobility). Classifying plasmids into different types according to their phylogenetic relatedness provides insight into the epidemiology of plasmid-mediated antibiotic resistance. Current typing schemes exploit backbone loci associated with replication (replicon typing), or plasmid mobility (MOB typing). Conventional PCR-based methods for plasmid typing remain widely used. With the emergence of whole-genome sequencing (WGS), large datasets can be analyzed using in silico plasmid typing methods. However, short reads from popular high-throughput sequencers can be challenging to assemble, so complete plasmid sequences may not be accurately reconstructed. Therefore, localizing resistance genes to specific plasmids may be difficult, limiting epidemiological insight. Long-read sequencing will become increasingly popular as costs decline, especially when resolving accurate plasmid structures is the primary goal. This review discusses the application of plasmid classification in WGS-based studies of antibiotic resistance epidemiology; novel in silico plasmid analysis tools are highlighted. Due to the diverse and plastic nature of plasmid genomes, current typing schemes do not classify all plasmids, and identifying conserved, phylogenetically concordant genes for subtyping and phylogenetics is challenging. Analyzing plasmids as nodes in a network that represents gene-sharing relationships between plasmids provides a complementary way to assess plasmid diversity, and allows inferences about horizontal gene transfer to be made.201728232822
5065100.9913Locus of Heat Resistance (LHR) in Meat-Borne Escherichia coli: Screening and Genetic Characterization. Microbial resistance to processing treatments poses a food safety concern, as treatment tolerant pathogens can emerge. Occasional foodborne outbreaks caused by pathogenic Escherichia coli have led to human and economic losses. Therefore, this study screened for the extreme heat resistance (XHR) phenotype as well as one known genetic marker, the locus of heat resistance (LHR), in 4,123 E. coli isolates from diverse meat animals at different processing stages. The prevalences of XHR and LHR among the meat-borne E. coli were found to be 10.3% and 11.4%, respectively, with 19% agreement between the two. Finished meat products showed the highest LHR prevalence (24.3%) compared to other processing stages (0 to 0.6%). None of the LHR(+)E. coli in this study would be considered pathogens based on screening for virulence genes. Four high-quality genomes were generated by whole-genome sequencing of representative LHR(+) isolates. Nine horizontally acquired LHRs were identified and characterized, four plasmid-borne and five chromosomal. Nine newly identified LHRs belong to ClpK1 LHR or ClpK2 LHR variants sharing 61 to 68% nucleotide sequence identity, while one LHR appears to be a hybrid. Our observations suggest positive correlation between the number of LHR regions present in isolates and the extent of heat resistance. The isolate exhibiting the highest degree of heat resistance possessed four LHRs belonging to three different variant groups. Maintenance of as many as four LHRs in a single genome emphasizes the benefits of the LHR in bacterial physiology and stress response.IMPORTANCE Currently, a "multiple-hurdle" approach based on a combination of different antimicrobial interventions, including heat, is being utilized during meat processing to control the burden of spoilage and pathogenic bacteria. Our recent study (M. Guragain, G. E. Smith, D. A. King, and J. M. Bosilevac, J Food Prot 83:1438-1443, 2020, https://doi.org/10.4315/JFP-20-103) suggests that U.S. beef cattle harbor Escherichia coli that possess the locus of heat resistance (LHR). LHR seemingly contributes to the global stress tolerance in bacteria and hence poses a food safety concern. Therefore, it is important to understand the distribution of the LHRs among meat-borne bacteria identified at different stages of different meat processing systems. Complete genome sequencing and comparative analysis of selected heat-resistant bacteria provide a clearer understanding of stress and heat resistance mechanisms. Further, sequencing data may offer a platform to gain further insights into the genetic background that provides optimal bacterial tolerance against heat and other processing treatments.202133483306
5115110.9913Search Engine for Antimicrobial Resistance: A Cloud Compatible Pipeline and Web Interface for Rapidly Detecting Antimicrobial Resistance Genes Directly from Sequence Data. BACKGROUND: Antimicrobial resistance remains a growing and significant concern in human and veterinary medicine. Current laboratory methods for the detection and surveillance of antimicrobial resistant bacteria are limited in their effectiveness and scope. With the rapidly developing field of whole genome sequencing beginning to be utilised in clinical practice, the ability to interrogate sequencing data quickly and easily for the presence of antimicrobial resistance genes will become increasingly important and useful for informing clinical decisions. Additionally, use of such tools will provide insight into the dynamics of antimicrobial resistance genes in metagenomic samples such as those used in environmental monitoring. RESULTS: Here we present the Search Engine for Antimicrobial Resistance (SEAR), a pipeline and web interface for detection of horizontally acquired antimicrobial resistance genes in raw sequencing data. The pipeline provides gene information, abundance estimation and the reconstructed sequence of antimicrobial resistance genes; it also provides web links to additional information on each gene. The pipeline utilises clustering and read mapping to annotate full-length genes relative to a user-defined database. It also uses local alignment of annotated genes to a range of online databases to provide additional information. We demonstrate SEAR's application in the detection and abundance estimation of antimicrobial resistance genes in two novel environmental metagenomes, 32 human faecal microbiome datasets and 126 clinical isolates of Shigella sonnei. CONCLUSIONS: We have developed a pipeline that contributes to the improved capacity for antimicrobial resistance detection afforded by next generation sequencing technologies, allowing for rapid detection of antimicrobial resistance genes directly from sequencing data. SEAR uses raw sequencing data via an intuitive interface so can be run rapidly without requiring advanced bioinformatic skills or resources. Finally, we show that SEAR is effective in detecting antimicrobial resistance genes in metagenomic and isolate sequencing data from both environmental metagenomes and sequencing data from clinical isolates.201526197475
5125120.9913Do we still need Illumina sequencing data? Evaluating Oxford Nanopore Technologies R10.4.1 flow cells and the Rapid v14 library prep kit for Gram negative bacteria whole genome assemblies. The best whole genome assemblies are currently built from a combination of highly accurate short-read sequencing data and long-read sequencing data that can bridge repetitive and problematic regions. Oxford Nanopore Technologies (ONT) produce long-read sequencing platforms and they are continually improving their technology to obtain higher quality read data that is approaching the quality obtained from short-read platforms such as Illumina. As these innovations continue, we evaluated how much ONT read coverage produced by the Rapid Barcoding Kit v14 (SQK-RBK114) is necessary to generate high-quality hybrid and long-read-only genome assemblies for a panel of carbapenemase-producing Enterobacterales bacterial isolates. We found that 30× long-read coverage is sufficient if Illumina data are available, and that more (at least 100× long-read coverage is recommended for long-read-only assemblies. Illumina polishing is still improving single nucleotide variants (SNVs) and INDELs in long-read-only assemblies. We also examined if antimicrobial resistance genes could be accurately identified in long-read-only data, and found that Flye assemblies regardless of ONT coverage detected >96% of resistance genes at 100% identity and length. Overall, the Rapid Barcoding Kit v14 and long-read-only assemblies can be an optimal sequencing strategy (i.e., plasmid characterization and AMR detection) but finer-scale analyses (i.e., SNV) still benefit from short-read data.202438354391
2553130.9913Early-life gut microbiome modulation reduces the abundance of antibiotic-resistant bacteria. BACKGROUND: Antibiotic-resistant (AR) bacteria are a global threat. AR bacteria can be acquired in early life and have long-term sequelae. Limiting the spread of antibiotic resistance without triggering the development of additional resistance mechanisms is of immense clinical value. Here, we show how the infant gut microbiome can be modified, resulting in a significant reduction of AR genes (ARGs) and the potentially pathogenic bacteria that harbor them. METHODS: The gut microbiome was characterized using shotgun metagenomics of fecal samples from two groups of healthy, term breastfed infants. One group was fed B. infantis EVC001 in addition to receiving lactation support (n = 29, EVC001-fed), while the other received lactation support alone (n = 31, controls). Coliforms were isolated from fecal samples and genome sequenced, as well as tested for minimal inhibitory concentrations against clinically relevant antibiotics. RESULTS: Infants fed B. infantis EVC001 exhibited a change to the gut microbiome, resulting in a 90% lower level of ARGs compared to controls. ARGs that differed significantly between groups were predicted to confer resistance to beta lactams, fluoroquinolones, or multiple drug classes, the majority of which belonged to Escherichia, Clostridium, and Staphylococcus. Minimal inhibitory concentration assays confirmed the resistance phenotypes among isolates with these genes. Notably, we found extended-spectrum beta lactamases among healthy, vaginally delivered breastfed infants who had never been exposed to antibiotics. CONCLUSIONS: Colonization of the gut of breastfed infants by a single strain of B. longum subsp. infantis had a profound impact on the fecal metagenome, including a reduction in ARGs. This highlights the importance of developing novel approaches to limit the spread of these genes among clinically relevant bacteria. Future studies are needed to determine whether colonization with B. infantis EVC001 decreases the incidence of AR infections in breastfed infants. TRIAL REGISTRATION: This clinical trial was registered at ClinicalTrials.gov, NCT02457338.201931423298
173140.9912Loss of Mobile Genomic Islands in Metal-Resistant, Hydrogen-Oxidizing Cupriavidus metallidurans. The genome of the metal-resistant, hydrogen-oxidizing bacterium Cupriavidus metallidurans strain CH34 contains horizontally acquired plasmids and genomic islands. Metal-resistance determinants on the two plasmids may exert genetic dominance over other related determinants. To investigate whether these recessive determinants can be activated in the absence of the dominant ones, the transcriptome of the highly zinc-sensitive deletion mutant Δe4 (ΔcadA ΔzntA ΔdmeF ΔfieF) of the plasmid-free parent AE104 was characterized using gene arrays. As a consequence of some unexpected results, close examination by PCR and genomic resequencing of strains CH34, AE104, Δe4, and others revealed that the genomic islands CMGI2, 3, 4, D, and E, but no other islands or recessive determinants, were deleted in some of these strains. Provided that wild-type CH34 was kept under alternating zinc and nickel selection pressure, no comparable deletions occurred. All current data suggest that genes were actually deleted and were not, as surmised previously, silenced in the respective strain. As a consequence, a cured database was compiled from the newly generated and previously published gene array data. An analysis of data from this database indicated that some genes of recessive, no longer needed determinants were nevertheless expressed and upregulated. Their products may interact with those of the dominant determinants to mediate a mosaic phenotype. The ability to contribute to such a mosaic phenotype may prevent deletion of the recessive determinant. The data suggest that the bacterium actively modifies its genome to deal with metal stress and at the same time ensures metal homeostasis. IMPORTANCE In their natural environment, bacteria continually acquire genes by horizontal gene transfer, and newly acquired determinants may become dominant over related ones already present in the host genome. When a bacterium is taken into laboratory culture, it is isolated from the horizontal gene transfer network. It can no longer gain genes but instead may lose them. This phenomenon was indeed observed in Cupriavidus metallidurans for the loss key metal resistance determinants when no selection pressure was kept continuously. However, some recessive metal resistance determinants were maintained in the genome. It is proposed that they might contribute some accessory genes to related dominant resistance determinants, for instance periplasmic metal-binding proteins or two-component regulatory systems. Alternatively, they may remain in the genome only because their DNA serves as a scaffold for the nucleoid. Using C. metallidurans as an example, this study sheds light on the fate and function of horizontally acquired genes in bacteria.202234910578
1817150.9912A study at the wildlife-livestock interface unveils the potential of feral swine as a reservoir for extended-spectrum β-lactamase-producing Escherichia coli. Wildlife is known to serve as carriers and sources of antimicrobial resistance (AMR). Due to their unrestricted movements and behaviors, they can spread antimicrobial resistant bacteria among livestock, humans, and the environment, thereby accelerating the dissemination of AMR. Extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae is one of major concerns threatening human and animal health, yet transmission mechanisms at the wildlife-livestock interface are not well understood. Here, we investigated the mechanisms of ESBL-producing bacteria spreading across various hosts, including cattle, feral swine, and coyotes in the same habitat range, as well as from environmental samples over a two-year period. We report a notable prevalence and clonal dissemination of ESBL-producing E. coli in feral swine and coyotes, suggesting their persistence and adaptation within wildlife hosts. In addition, in silico studies showed that horizontal gene transfer, mediated by conjugative plasmids and insertion sequences elements, may play a key role in spreading the ESBL genes among these bacteria. Furthermore, the shared gut resistome of cattle and feral swine suggests the dissemination of antibiotic resistance genes at the wildlife-livestock interface. Taken together, our results suggest that feral swine may serve as a reservoir of ESBL-producing E. coli.202438788585
4682160.9912Revealing antimicrobial resistance profile of the novel probiotic candidate Faecalibacterium prausnitzii DSM 17677. Faecalibacterium prausnitzii, a resident anaerobic bacterium commonly found in healthy gut microbiota, has been proposed as a next generation probiotic with high potential for application in food matrices and pharmaceutical formulations. Despite its recognized health benefits, detailed information regarding its antimicrobial susceptibility profile is still lacking. However, this information is crucial to determine its safety, since the absence of acquired antimicrobial resistance is required to qualify a probiotic candidate as safe for human and animal consumption. Herein, the antimicrobial susceptibility profile of F. prausnitzii DSM 17677 strain was evaluated by integrating both phenotypic and in silico data. Phenotypic antimicrobial susceptibility was evaluated by determining minimum inhibitory concentrations of 9 antimicrobials using broth microdilution and E-test® methods. Also, the whole genome of F. prausnitzii DSM 17677 was analysed, using several databases and bioinformatics tools, to identify possible antibiotic resistance genes (ARG), genomic islands (GI) and mobile genetic elements (MGE). With exception of erythromycin, the same classification (susceptible or resistant) was obtained in both broth microdilution and E-test® methods. Phenotypic resistance to ampicillin, gentamycin, kanamycin and streptomycin were detected, which was supported by the genomic context. Other ARG were also identified but they seem not to be expressed under the tested conditions. F. prausnitzii DSM 17677 genome contains 24 annotated genes putatively involved in resistance against the following classes of antimicrobials: aminoglycosides (such as gentamycin, kanamycin and streptomycin), macrolides (such as erythromycin), tetracyclines and lincosamides. The presence of putative ARG conferring resistance to β-lactams could only be detected using a broader homology search. The majority of these genes are not encoded within GI or MGE and no plasmids were reported for this strain. Despite the fact that most genes are related with general resistance mechanisms, a streptomycin-specific ARG poses the only potential concern identified. This specific ARG is encoded within a GI and a MGE, meaning that it could have been laterally acquired and might be transferred to other bacteria present in the same environment. Thus, our findings provide relevant insights regarding the phenotypic and genotypic antimicrobial resistance profiles of the probiotic candidate F. prausnitzii DSM 17677.202234953344
9900170.9912On the origin of plasmid-borne, extended-spectrum, antibiotic resistance mutations in bacteria. Many antibiotic resistance mutations arise in pathogenic bacteria that harbor plasmids (R-plasmids). Resistance to third generation cephalosporins, for instance, largely occurs by one or more point mutations in plasmid bla genes that expand the resistance spectrum of beta-lactamases. Here I review relevant evidence underlying the worldwide emergence of extended spectrum beta-lactamases (ESBLs). The conclusion reached is that the origin of these resistance-conferring mutations cannot be explained by a series of single point mutation and selection events. Instead, highly advantageous stochastic processes might exist that generate alterations in the sequence or the conformation of particular regions in chromosomal or plasmid genomes such as bla, i.e., recombination or mutation. Several explanations for the origin of ESBLs are reviewed but direct experimental evidence to support or to invalidate them is still lacking. The cellular conditions under which ESBLs arise are unknown; however, involvement of nutritional stresses inside natural animal hosts and of plasmid conjugal functions appear likely.19989533872
3776180.9912FARME DB: a functional antibiotic resistance element database. Antibiotic resistance (AR) is a major global public health threat but few resources exist that catalog AR genes outside of a clinical context. Current AR sequence databases are assembled almost exclusively from genomic sequences derived from clinical bacterial isolates and thus do not include many microbial sequences derived from environmental samples that confer resistance in functional metagenomic studies. These environmental metagenomic sequences often show little or no similarity to AR sequences from clinical isolates using standard classification criteria. In addition, existing AR databases provide no information about flanking sequences containing regulatory or mobile genetic elements. To help address this issue, we created an annotated database of DNA and protein sequences derived exclusively from environmental metagenomic sequences showing AR in laboratory experiments. Our Functional Antibiotic Resistant Metagenomic Element (FARME) database is a compilation of publically available DNA sequences and predicted protein sequences conferring AR as well as regulatory elements, mobile genetic elements and predicted proteins flanking antibiotic resistant genes. FARME is the first database to focus on functional metagenomic AR gene elements and provides a resource to better understand AR in the 99% of bacteria which cannot be cultured and the relationship between environmental AR sequences and antibiotic resistant genes derived from cultured isolates.Database URL: http://staff.washington.edu/jwallace/farme.201728077567
3771190.9912RFPlasmid: predicting plasmid sequences from short-read assembly data using machine learning. Antimicrobial-resistance (AMR) genes in bacteria are often carried on plasmids and these plasmids can transfer AMR genes between bacteria. For molecular epidemiology purposes and risk assessment, it is important to know whether the genes are located on highly transferable plasmids or in the more stable chromosomes. However, draft whole-genome sequences are fragmented, making it difficult to discriminate plasmid and chromosomal contigs. Current methods that predict plasmid sequences from draft genome sequences rely on single features, like k-mer composition, circularity of the DNA molecule, copy number or sequence identity to plasmid replication genes, all of which have their drawbacks, especially when faced with large single-copy plasmids, which often carry resistance genes. With our newly developed prediction tool RFPlasmid, we use a combination of multiple features, including k-mer composition and databases with plasmid and chromosomal marker proteins, to predict whether the likely source of a contig is plasmid or chromosomal. The tool RFPlasmid supports models for 17 different bacterial taxa, including Campylobacter, Escherichia coli and Salmonella, and has a taxon agnostic model for metagenomic assemblies or unsupported organisms. RFPlasmid is available both as a standalone tool and via a web interface.202134846288