# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 4291 | 0 | 0.9994 | Reduced Susceptibility and Increased Resistance of Bacteria against Disinfectants: A Systematic Review. Disinfectants are used to reduce the concentration of pathogenic microorganisms to a safe level and help to prevent the transmission of infectious diseases. However, bacteria have a tremendous ability to respond to chemical stress caused by biocides, where overuse and improper use of disinfectants can be reflected in a reduced susceptibility of microorganisms. This review aims to describe whether mutations and thus decreased susceptibility to disinfectants occur in bacteria during disinfectant exposure. A systematic literature review following PRISMA guidelines was conducted with the databases PubMed, Science Direct and Web of Science. For the final analysis, 28 sources that remained of interest were included. Articles describing reduced susceptibility or the resistance of bacteria against seven different disinfectants were identified. The important deviation of the minimum inhibitory concentration was observed in multiple studies for disinfectants based on triclosan and chlorhexidine. A reduced susceptibility to disinfectants and potentially related problems with antibiotic resistance in clinically important bacterial strains are increasing. Since the use of disinfectants in the community is rising, it is clear that reasonable use of available and effective disinfectants is needed. It is necessary to develop and adopt strategies to control disinfectant resistance. | 2021 | 34946151 |
| 4302 | 1 | 0.9993 | Control of antibiotic-resistant bacteria: memorandum from a WHO meeting. Control of the prevalence of antibiotic-resistant bacteria is essential for the appropriate use of antibiotics for prophylaxis and treatment of infections. Hospitals are regarded as the place where antibiotic-resistant bacteria might often develop. Control of antibiotic use in hospitals is therefore one of the most important measures for effective control of antibiotic resistance. Another effective means to control antibiotic resistance is to develop a surveillance programme on a national, and international scale. This would be of great assistance, especially for forecasting future changes in the resistance of bacteria. The prevention of disease by measures other than the use of antibiotics could also reduce antibiotic resistance.This Memorandum of the WHO Scientific Working Group on Antibiotic Resistance describes the measures for controlling the prevalence of antibiotic-resistant bacteria by (a) the surveillance of antibiotic resistance, including surveillance of resistance in human pathogens and resistance determinants in the general population, and (b) control of antibiotic use in hospitals, the essential elements of which are the establishment of appropriate hospital antibiotic policy, elaboration of general strategy, and the monitoring of antibiotic use. Further research needs are also described and a number of areas are indicated where research might lead to improvements in antibiotic use and in methods for the containment of resistance. Guidelines for the appropriate use of antibiotics are presented in an Annex. | 1983 | 6603916 |
| 4188 | 2 | 0.9993 | Use of antimicrobial agents in aquaculture. The aquaculture industry has grown dramatically, and plays an important role in the world's food supply chain. Antimicrobial resistance in bacteria associated with food animals receives much attention, and drug use in aquaculture is also an important issue. There are many differences between aquatic and terrestrial management systems, such as the methods used for administration of drugs. Unique problems are related to the application of drugs in aquatic environments. Residual drugs in fish products can affect people who consume them, and antimicrobials released into aquatic environments can select for resistant bacteria. Moreover, these antimicrobial-resistant bacteria, or their resistance genes, can be transferred to humans. To decrease the risks associated with the use of antimicrobials, various regulations have been developed. In addition, it is necessary to prevent bacterial diseases in aquatic animals by vaccination, to improve culture systems, and to monitor the amount of antimicrobial drugs used and the prevalence of antimicrobial-resistant bacteria. | 2012 | 22849275 |
| 9576 | 3 | 0.9993 | Review on Multiple Facets of Drug Resistance: A Rising Challenge in the 21st Century. With the advancements of science, antibiotics have emerged as an amazing gift to the human and animal healthcare sectors for the treatment of bacterial infections and other diseases. However, the evolution of new bacterial strains, along with excessive use and reckless consumption of antibiotics have led to the unfolding of antibiotic resistances to an excessive level. Multidrug resistance is a potential threat worldwide, and is escalating at an extremely high rate. Information related to drug resistance, and its regulation and control are still very little. To interpret the onset of antibiotic resistances, investigation on molecular analysis of resistance genes, their distribution and mechanisms are urgently required. Fine-tuned research and resistance profile regarding ESKAPE pathogen is also necessary along with other multidrug resistant bacteria. In the present scenario, the interaction of bacterial infections with SARS-CoV-2 is also crucial. Tracking and in-silico analysis of various resistance mechanisms or gene/s are crucial for overcoming the problem, and thus, the maintenance of relevant databases and wise use of antibiotics should be promoted. Creating awareness of this critical situation among individuals at every level is important to strengthen the fight against this fast-growing calamity. The review aimed to provide detailed information on antibiotic resistance, its regulatory molecular mechanisms responsible for the resistance, and other relevant information. In this article, we tried to focus on the correlation between antimicrobial resistance and the COVID-19 pandemic. This study will help in developing new interventions, potential approaches, and strategies to handle the complexity of antibiotic resistance and prevent the incidences of life-threatening infections. | 2021 | 34940513 |
| 4199 | 4 | 0.9993 | Resistance in bacteria of the food chain: epidemiology and control strategies. Bacteria have evolved multiple mechanisms for the efficient evolution and spread of antimicrobial resistance. Modern food production facilitates the emergence and spread of resistance through the intensive use of antimicrobial agents and international trade of both animals and food products. The main route of transmission between food animals and humans is via food products, although other modes of transmission, such as direct contact and through the environment, also occur. Resistance can spread as resistant pathogens or via transferable genes in different commensal bacteria, making quantification of the transmission difficult. The exposure of humans to antimicrobial resistance from food animals can be controlled by either limiting the selective pressure from antimicrobial usage or by limiting the spread of the bacteria/genes. A number of control options are reviewed, including drug licensing, removing financial incentives, banning or restricting the use of certain drugs, altering prescribers behavior, improving animal health, improving hygiene and implementing microbial criteria for certain types of resistant pathogens for use in the control of trade of both food animals and food. | 2008 | 18847409 |
| 4076 | 5 | 0.9993 | Overuse of food-grade disinfectants threatens a global spread of antimicrobial-resistant bacteria. Food-grade disinfectants are extensively used for microbial decontamination of food processing equipment. In recent years, food-grade disinfectants have been increasingly used. However, the overuse of disinfectants causes another major issue, which is the emergence and spread of antimicrobial-resistant bacteria on a global scale. As the ongoing pandemic takes global attention, bacterial infections with antibiotic resistance are another ongoing pandemic that often goes unnoticed and will be the next real threat to humankind. Here, the effects of food-grade disinfectant overuse on the global emergence and spread of antimicrobial-resistant bacteria were reviewed. It was found that longtime exposure to the most common food-grade disinfectants promoted resistance to clinically important antibiotics in pathogenic bacteria, namely cross-resistance. Currently, the use of disinfectants is largely unregulated. The mechanisms of cross-resistance are regulated by intrinsic molecular mechanisms including efflux pumps, DNA repair system, modification of the molecular target, and metabolic adaptation. Cross-resistance can also be acquired by mobile genetic elements. Long-term exposure to disinfectants has an impact on the dissemination of antimicrobial resistance in soil, plants, animals, water, and human gut environments. | 2024 | 36756870 |
| 4196 | 6 | 0.9993 | Emergence and spread of antibiotic-resistant foodborne pathogens from farm to table. Antibiotics have been overused and misused for preventive and therapeutic purposes. Specifically, antibiotics are frequently used as growth promoters for improving productivity and performance of food-producing animals such as pigs, cattle, and poultry. The increasing use of antibiotics has been of great concern worldwide due to the emergence of antibiotic resistant bacteria. Food-producing animals are considered reservoirs for antibiotic resistance genes (ARGs) and residual antibiotics that transfer from the farm through the table. The accumulation of residual antibiotics can lead to additional antibiotic resistance in bacteria. Therefore, this review evaluates the risk of carriage and spread of antibiotic resistance through food chain and the potential impact of antibiotic use in food-producing animals on food safety. This review also includes in-depth discussion of promising antibiotic alternatives such as vaccines, immune modulators, phytochemicals, antimicrobial peptides, probiotics, and bacteriophages. | 2022 | 36065433 |
| 6641 | 7 | 0.9993 | Environmental antibiotics and resistance genes as emerging contaminants: Methods of detection and bioremediation. In developing countries, the use of antibiotics has helped to reduce the mortality rate by minimizing the deaths caused by pathogenic infections, but the costs of antibiotic contamination remain a major concern. Antibiotics are released into the environment, creating a complicated environmental problem. Antibiotics are used in human, livestock and agriculture, contributing to its escalation in the environment. Environmental antibiotics pose a range of risks and have significant effects on human and animal health. Nevertheless, this is the result of the development of antibiotic-resistant and multi-drug-resistant bacteria. In the area of health care, animal husbandry and crop processing, the imprudent use of antibiotic drugs produces antibiotic-resistant bacteria. This threat is the deepest in the developing world, with an estimated 700,000 people suffering from antibiotic-resistant infections each year. The study explores how bacteria use a wide variety of antibiotic resistance mechanism and how these approaches have an impact on the environment and on our health. The paper focuses on the processes by which antibiotics degrade, the health effects of these emerging contaminants, and the tolerance of bacteria to antibiotics. | 2021 | 34841318 |
| 9438 | 8 | 0.9993 | The challenge of antibiotic resistance: need to contemplate. "Survival of the fittest " holds good for men and animals as also for bacteria. A majority of bacteria in nature are nonpathogenic, a large number of them, live as commensals on our body leading a symbiotic existence. A limited population of bacteria which has became pathogenic was also sensitive to antibiotics to begin with. It is the man made antibiotic pressure, which has led to the emergence and spread of resistant genes amongst bacteria. Despite the availability of a large arsenal of antibiotics, the ability of bacteria to become resistant to antibacterial agents is amazing. This is more evident in the hospital settings where the antibiotic usage is maximum. The use of antibiotics is widespread in clinical medicine, agriculture, aquaculture, veterinary practice, poultry and even in household products. The major reason for this is the inappropriate use of antibiotics due to a lack of uniform policy and disregard to hospital infection control practices. The antibiotic cover provided by newer antibiotics has been an important factor responsible for the emergence of multi-drug resistant bacteria. Bacterial infections increase the morbidity and mortality, increase the cost of treatment, and prolong hospital stay adding to the economical burden on the nation. The problem is further compounded by the lack of education and " over the counter " availability of antibiotics in developing countries. Antibiotic resistance is now all pervasive with the developed world as much vulnerable to the problem. Despite advancement in medical technology for diagnosis and patient care, a person can still die of an infection caused by a multi-drug resistant bacteria. It is time to think, plan and formulate a strong antibiotic policy to address the burgeoning hospital infection. | 2005 | 15756040 |
| 4232 | 9 | 0.9993 | Alternatives to antibiotics for treatment of mastitis in dairy cows. Mastitis is considered the costliest disease on dairy farms and also adversely affects animal welfare. As treatment (and to a lesser extent prevention) of mastitis rely heavily on antibiotics, there are increasing concerns in veterinary and human medicine regarding development of antimicrobial resistance. Furthermore, with genes conferring resistance being capable of transfer to heterologous strains, reducing resistance in strains of animal origin should have positive impacts on humans. This article briefly reviews potential roles of non-steroidal anti-inflammatory drugs (NSAIDs), herbal medicines, antimicrobial peptides (AMPs), bacteriophages and their lytic enzymes, vaccination and other emerging therapies for prevention and treatment of mastitis in dairy cows. Although many of these approaches currently lack proven therapeutic efficacy, at least some may gradually replace antibiotics, especially as drug-resistant bacteria are proliferating globally. | 2023 | 37404775 |
| 6608 | 10 | 0.9993 | Trends in antimicrobial resistance in Malaysia. INTRODUCTION: Antibiotic resistance is a burgeoning problem worldwide. The trend of bacterial resistance has increased over the past decade in which more common bacteria are becoming resistant to almost all the antibiotics currently in use, posing a threat to humans and even livestock. METHODS: The databases used to search for the relevant articles for this review include PubMed, Science Direct, and Scopus. The following keywords were used in the search: Antimicrobial resistance, Malaysian action plan, antibioticresistant bacteria, and Malaysian National Surveillance on Antimicrobial Resistance (NSAR). The relevant articles published in English were considered. RESULTS: The antibiotic-resistant bacteria highlighted in this review showed an increase in resistance patterns to the majority of the antibiotics tested. The Malaysian government has come up with an action plan to create public awareness and to educate them regarding the health implications of antibiotic resistance. CONCLUSION: Antimicrobial resistance in Malaysia continues to escalate and is attributed to the overuse and misuse of antibiotics in various fields. As this crisis impacts the health of both humans and animals, therefore a joined continuous effort from all sectors is warranted to reduce the spread and minimize its development. | 2021 | 34508377 |
| 4064 | 11 | 0.9993 | Antimicrobial resistance. The development of antimicrobial drugs, and particularly of antibiotics, has played a considerable role in substantially reducing the morbidity and mortality rates of many infectious diseases. However, the fact that bacteria can develop resistance to antibiotics has produced a situation where antimicrobial agents are losing their effectiveness because of the spread and persistence of drug-resistant organisms. To combat this, more and more antibiotics with increased therapeutic and prophylactic action will need to be developed.This article is concerned with antibiotic resistance in bacteria which are pathogenic to man and animals. The historical background is given, as well as some information on the present situation and trends of antibiotic resistance to certain bacteria in different parts of the world. Considerable concern is raised over the use of antibiotics in man and animals. It is stated that antibiotic resistance in human pathogens is widely attributed to the "misuse" of antibiotics for treatment and prophylaxis in man and to the administration of antibiotics to animals for a variety of purposes (growth promotion, prophylaxis, or therapy), leading to the accumulation of resistant bacteria in their flora. Factors favouring the development of resistance are discussed. | 1983 | 6603914 |
| 4200 | 12 | 0.9993 | Antibiotic resistance: are we all doomed? Antibiotic resistance is a growing and worrying problem associated with increased deaths and suffering for people. Overall, there are only two factors that drive antimicrobial resistance, and both can be controlled. These factors are the volumes of antimicrobials used and the spread of resistant micro-organisms and/or the genes encoding for resistance. The One Health concept is important if we want to understand better and control antimicrobial resistance. There are many things we can do to better control antimicrobial resistance. We need to prevent infections. We need to have better surveillance with good data on usage patterns and resistance patterns available across all sectors, both human and agriculture, locally and internationally. We need to act on these results when we see either inappropriate usage or resistance levels rising in bacteria that are of concern for people. We need to ensure that food and water sources do not spread multi-resistant micro-organisms or resistance genes. We need better approaches to restrict successfully what and how antibiotics are used in people. We need to restrict the use of 'critically important' antibiotics in food animals and the entry of these drugs into the environment. We need to ensure that 'One Health' concept is not just a buzz word but implemented. We need to look at all sectors and control not only antibiotic use but also the spread and development of antibiotic resistant bacteria - both locally and internationally. | 2015 | 26563691 |
| 4115 | 13 | 0.9993 | Antibiotic Use for Growth Promotion in Animals: Ecologic and Public Health Consequences. Antibiotics have successfully treated infectious diseases in man, animals and agricultural plants. However, one consequence of usage at any level, subtherapeutic or therapeutic, has been selection of microorganisms resistant to these valuable agents. Today clinicians worldwide face singly resistant and multiply resistant bacteria which complicate treatment of even common infectious agents. This situation calls for a critical evaluation of the numerous ways in which antibiotics are being used so as to evaluate benefits and risks. About half of the antibiotics produced in the United States arc used in animals, chiefly in subtherapeutic amounts for growth promotion. This usage is for prolonged periods leading to selection of multiply-resistant bacteria which enter a common environmental pool. From there, resistance determinants from different sources spread from one bacterium to another, from one animal host to another, from one area to another. The same resistance determinants have been traced to many different genera associated with humans, animals and foods where they pose a continued threat to public health. Since alternative measures for growth promotion, such as antimicrobials which are not used for human therapy and which do not select for multiple-resistances are available, their use, instead of antibiotics, would remove a major factor contributing to the environmental pool of transferable resistance genes. | 1987 | 30965484 |
| 3967 | 14 | 0.9993 | Exploring Post-Treatment Reversion of Antimicrobial Resistance in Enteric Bacteria of Food Animals as a Resistance Mitigation Strategy. Antimicrobial drug use in food animals is associated with an elevation in relative abundance of bacteria resistant to the drug among the animal enteric bacteria. Some of these bacteria are potential foodborne pathogens. Evidence suggests that at least in the enteric nontype-specific Escherichia coli, after treatment the resistance abundance reverts to the background pre-treatment levels, without further interventions. We hypothesize that it is possible to define the distribution of the time period after treatment within which resistance to the administered drug, and possibly other drugs in case of coselection, in fecal bacteria of the treated animals returns to the background pre-treatment levels. Furthermore, it is possible that a novel resistance mitigation strategy for microbiological food safety could be developed based on this resistance reversion phenomenon. The strategy would be conceptually similar to existing antimicrobial drug withdrawal periods, which is a well-established and accepted mitigation strategy for avoiding violative drug residues in the edible products from the treated animals. For developing resistance-relevant withdrawals, a mathematical framework can be used to join the necessary pharmacological, microbiological, and animal production components to project the distributions of the post-treatment resistance reversion periods in the production animal populations for major antimicrobial drug classes in use. The framework can also help guide design of empirical studies into the resistance-relevant withdrawal periods and development of mitigation approaches to reduce the treatment-associated elevation of resistance in animal enteric bacteria. We outline this framework, schematically and through exemplar equations, and how its components could be formulated. | 2016 | 27552491 |
| 3966 | 15 | 0.9993 | A model of antibiotic resistance genes accumulation through lifetime exposure from food intake and antibiotic treatment. Antimicrobial resistant bacterial infections represent one of the most serious contemporary global healthcare crises. Acquisition and spread of resistant infections can occur through community, hospitals, food, water or endogenous bacteria. Global efforts to reduce resistance have typically focussed on antibiotic use, hygiene and sanitation and drug discovery. However, resistance in endogenous infections, e.g. many urinary tract infections, can result from life-long acquisition and persistence of resistance genes in commensal microbial flora of individual patients, which is not normally considered. Here, using individual based Monte Carlo models calibrated using antibiotic use data and human gut resistomes, we show that the long-term increase in resistance in human gut microbiomes can be substantially lowered by reducing exposure to resistance genes found food and water, alongside reduced medical antibiotic use. Reduced dietary exposure is especially important during patient antibiotic treatment because of increased selection for resistance gene retention; inappropriate use of antibiotics can be directly harmful to the patient being treated for the same reason. We conclude that a holistic approach to antimicrobial resistance that additionally incorporates food production and dietary considerations will be more effective in reducing resistant infections than a purely medical-based approach. | 2023 | 37590256 |
| 4331 | 16 | 0.9993 | Infectious drug resistance. The emergence of antibiotic-resistant bacteria is a serious threat to public health. Infectious drug resistance, the transmission of resistant determinants from antibiotic-resistant bacteria to antibiotic-sensitive bacterial populations, creates clinical problems that must be addressed. Adequate knowledge of the mechanisms responsible for bacteria resistance is important for ensuring the benefits of antimicrobial therapy. | 1985 | 3981648 |
| 4328 | 17 | 0.9993 | Bugs for the next century: the issue of antibiotic resistance. OBJECTIVE: To address the issue of emerging antibiotic resistance and examine which organisms will continue to pose problems in the new century. METHODS: Review of articles pertaining to bacteria recognised for increasing resistance. RESULTS: Changing resistance patterns are correlated with patterns of antibiotic use. This results in fewer effective drugs against "old" established bacteria e.g. gram-positives such as Streptococcus pneumoniae and Staphylococcus aureus. Resistance in gram-negative bacteria is also steadily increasing. Nosocomial gram-negative bacteria are capable of many different resistance mechanisms, often rendering them multiply-resistant. Antibiotic resistance results in morbidity and mortality from treatment failures and increased health care costs. CONCLUSION: Despite extensive research and enormous resources spent, the pace of drug development has not kept up with the development of resistance. As resistance spreads, involving more and more organisms, there is concern that we may be nearing the end of the antimicrobial era. Measures that can and should be taken to counter this threat of antimicrobial resistance include co-ordinated surveillance, rational antibiotic usage, better compliance with infection control and greater use of vaccines. | 2001 | 11379419 |
| 4078 | 18 | 0.9992 | Antibiotic resistance in bacteria associated with food animals: a United States perspective of livestock production. The use of antimicrobial compounds in food animal production provides demonstrated benefits, including improved animal health, higher production and, in some cases, reduction in foodborne pathogens. However, use of antibiotics for agricultural purposes, particularly for growth enhancement, has come under much scrutiny, as it has been shown to contribute to the increased prevalence of antibiotic-resistant bacteria of human significance. The transfer of antibiotic resistance genes and selection for resistant bacteria can occur through a variety of mechanisms, which may not always be linked to specific antibiotic use. Prevalence data may provide some perspective on occurrence and changes in resistance over time; however, the reasons are diverse and complex. Much consideration has been given this issue on both domestic and international fronts, and various countries have enacted or are considering tighter restrictions or bans on some types of antibiotic use in food animal production. In some cases, banning the use of growth-promoting antibiotics appears to have resulted in decreases in prevalence of some drug resistant bacteria; however, subsequent increases in animal morbidity and mortality, particularly in young animals, have sometimes resulted in higher use of therapeutic antibiotics, which often come from drug families of greater relevance to human medicine. While it is clear that use of antibiotics can over time result in significant pools of resistance genes among bacteria, including human pathogens, the risk posed to humans by resistant organisms from farms and livestock has not been clearly defined. As livestock producers, animal health experts, the medical community, and government agencies consider effective strategies for control, it is critical that science-based information provide the basis for such considerations, and that the risks, benefits, and feasibility of such strategies are fully considered, so that human and animal health can be maintained while at the same time limiting the risks from antibiotic-resistant bacteria. | 2007 | 17600481 |
| 4060 | 19 | 0.9992 | Current status of antibiotic resistance in animal production. It is generally accepted that the more antibiotics we use, the faster bacteria will develop resistance. Further it has been more or less accepted that once an antibiotic is withdrawn from the clinic, the resistance genes will eventually disappear, [table: see text] since they will no more be of any survival value for the bacterial cell. However, recent research has shown that after a long time period of exposure to antibiotics, certain bacterial species may adapt to this environment in such a way that they keep their resistance genes stably also after the removal of antibiotics. Thus, there is reason to believe that once resistance has developed it will not even in the long term be eradicated. What then can we do not to increase further the already high level of antibiotic-resistant bacteria in animals? We should of course encourage a prudent use of these valuable drugs. In Sweden antibiotics are not used for growth promoting purposes and are available only after veterinary prescription on strict indications. Generally, antimicrobial treatment of animals on individual or on herd basis should not be considered unless in connection with relevant diagnostics. The amounts of antibiotics used and the development of resistance in important pathogens should be closely monitored. Furthermore, resistance monitoring in certain non-pathogenic intestinal bacteria, which may serve as a reservoir for resistance genes is probably more important than hitherto anticipated. Once the usage of or resistance to a certain antibiotic seems to increase in an alarming way, steps should be taken to limit the usage of the drug in order to prevent further spread of resistance genes in animals, humans and the environment. Better methods for detecting and quantifying antibiotic resistance have to be developed. Screening methods must be standardized and evaluated in order to obtain comparable and reliable results from different countries. The genetic mechanisms for development of resistance and spread of resistance genes should be studied in detail. Research in these areas will lead to new ideas on how to inhibit the resistance mechanisms. So far, it has been well established that a heavy antimicrobial drug selective pressure in overcrowded populations of production animals creates favourable environments both for the emergence and the spread of antibiotic resistance genes. | 1999 | 10783714 |