# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 4891 | 0 | 0.9994 | From food to hospital: we need to talk about Acinetobacter spp. Some species of the genus Acinetobacter are admittedly important hospital pathogens. Additionally, various animal and plant foods have been linked to the presence of Acinetobacter, including resistant strains. However, due to isolation difficulties and the lack of official standard methods, there is a dearth of work and epidemiological data on foodborne diseases caused by this microorganism. Considering that Acinetobacter spp. may represent a serious public health problem, especially because of their resistance to carbapenems and colistin, and because of the fact that these pathogens may transfer resistance genes to other bacteria, studies are needed to evaluate the pathogenicity of both food and clinical isolates and to search for them using control strategies, such as the adoption of more efficient disinfection measures and use of antimicrobial substances (AMS). In contrast, AMS production by strains of the genus Acinetobacter has already been described, and its potential for application against other Gram-negative food or clinical pathogens, reveals a new field to be explored. | 2020 | 33134199 |
| 3944 | 1 | 0.9994 | Bacteriological, Clinical and Virulence Aspects of Aeromonas-associated Diseases in Humans. Aeromonads have been isolated from varied environmental sources such as polluted and drinking water, as well as from tissues and body fluids of cold and warm-blooded animals. A phenotypically and genotypically heterogenous bacteria, aeromonads can be successfully identified by ribotyping and/or by analysing gyrB gene sequence, apart from classical biochemical characterization. Aeromonads are known to cause scepticemia in aquatic organisms, gastroenteritis and extraintestinal diseases such as scepticemia, skin, eye, wound and respiratory tract infections in humans. Several virulence and antibiotic resistance genes have been identified and isolated from this group, which if present in their mobile genetic elements, may be horizontally transferred to other naive environmental bacteria posing threat to the society. The extensive and indiscriminate use of antibiotics has given rise to many resistant varieties of bacteria. Multidrug resistance genes, such as NDM1, have been identified in this group of bacteria which is of serious health concern. Therefore, it is important to understand how antibiotic resistance develops and spreads in order to undertake preventive measures. It is also necessary to search and map putative virulence genes of Aeromonas for fighting the diseases caused by them. This review encompasses current knowledge of bacteriological, environmental, clinical and virulence aspects of the Aeromonas group and related diseases in humans and other animals of human concern. | 2018 | 30015452 |
| 9791 | 2 | 0.9994 | Beta-lactam resistance and the effectiveness of antimicrobial peptides against KPC-producing bacteria. Bacterial resistance is a problem that is giving serious cause for concern because bacterial strains such as Acinetobacter baumannii and Pseudomonas aeruginosa are difficult to treat and highly opportunistic. These bacteria easily acquire resistance genes even from other species, which confers greater persistence and tolerance towards conventional antibiotics. These bacteria have the highest death rate in hospitalized intensive care patients, so strong measures must be taken. In this review, we focus on the use of antimicrobial peptides (AMPs) as an alternative to traditional drugs, due to their rapid action and lower risk of generating resistance by microorganisms. We also present an overview of beta-lactams and explicitly explain the activity of AMPs against carbapenemase-producing bacteria as potential alternative agents for infection control. | 2022 | 36042694 |
| 4865 | 3 | 0.9994 | Molecular mechanisms related to colistin resistance in Enterobacteriaceae. Colistin is an effective antibiotic for treatment of most multidrug-resistant Gram-negative bacteria. It is used currently as a last-line drug for infections due to severe Gram-negative bacteria followed by an increase in resistance among Gram-negative bacteria. Colistin resistance is considered a serious problem, due to a lack of alternative antibiotics. Some bacteria, including Pseudomonas aeruginosa, Acinetobacter baumannii, Enterobacteriaceae members, such as Escherichia coli, Salmonella spp., and Klebsiella spp. have an acquired resistance against colistin. However, other bacteria, including Serratia spp., Proteus spp. and Burkholderia spp. are naturally resistant to this antibiotic. In addition, clinicians should be alert to the possibility of colistin resistance among multidrug-resistant bacteria and development through mutation or adaptation mechanisms. Rapidly emerging bacterial resistance has made it harder for us to rely completely on the discovery of new antibiotics; therefore, we need to have logical approaches to use old antibiotics, such as colistin. This review presents current knowledge about the different mechanisms of colistin resistance. | 2019 | 31190901 |
| 4181 | 4 | 0.9994 | The place of molecular genetic methods in the diagnostics of human pathogenic anaerobic bacteria. A minireview. Anaerobic infections are common and can cause diseases associated with severe morbidity, but are easily overlooked in clinical settings. Both the relatively small number of infections due to exogenous anaerobes and the much larger number of infections involving anaerobic species that are originally members of the normal flora, may lead to a life-threatening situation unless appropriate treatment is instituted. Special laboratory procedures are needed for the isolation, identification and susceptibility testing of this diverse group of bacteria. Since many anaerobes grow more slowly than the facultative or aerobic bacteria, and particularly since clinical specimens yielding anaerobic bacteria commonly contain several organisms and often very complex mixtures of aerobic and anaerobic bacteria, considerable time may elapse before the laboratory is able to provide a final report. Species definition based on phenotypic features is often time-consuming and is not always easy to carry out. Molecular genetic methods may help in the everyday clinical microbiological practice in laboratories dealing with the diagnostics of anaerobic infections. Methods have been introduced for species diagnostics, such as 16S rRNA PCR-RFLP profile determination, which can help to distinguish species of Bacteroides, Prevotella, Actinomyces, etc. that are otherwise difficult to differentiate. The use of DNA-DNA hybridization and the sequencing of special regions of the 16S rRNA have revealed fundamental taxonomic changes among anaerobic bacteria. Some anaerobic bacteria are extremely slow growing or not cultivatable at all. To detect them in special infections involving flora changes due to oral malignancy or periodontitis, for instance, a PCR-based hybridization technique is used. Molecular methods have demonstrated the spread of specific resistance genes among the most important anaerobic bacteria, the members of the Bacteroides genus. Their detection and investigation of the IS elements involved in their expression may facilitate following of the spread of antibiotic resistance among anaerobic bacteria involved in infections and in the normal flora members. Molecular methods (a search for toxin genes and ribotyping) may promote a better understanding of the pathogenic features of some anaerobic infections, such as the nosocomial diarrhoea caused by C. difficile and its spread in the hospital environment and the community. The investigation of toxin production at a molecular level helps in the detection of new toxin types. This mini-review surveys some of the results obtained by our group and others using molecular genetic methods in anaerobic diagnostics. | 2006 | 16956128 |
| 4317 | 5 | 0.9994 | Development and spread of bacterial resistance to antimicrobial agents: an overview. Resistance to antimicrobial agents is emerging in a wide variety of nosocomial and community-acquired pathogens. The emergence and spread of multiply resistant organisms represent the convergence of a variety of factors that include mutations in common resistance genes that extend their spectrum of activity, the exchange of genetic information among microorganisms, the evolution of selective pressures in hospitals and communities that facilitate the development and spread of resistant organisms, the proliferation and spread of multiply resistant clones of bacteria, and the inability of some laboratory testing methods to detect emerging resistance phenotypes. Twenty years ago, bacteria that were resistant to antimicrobial agents were easy to detect in the laboratory because the concentration of drug required to inhibit their growth was usually quite high and distinctly different from that of susceptible strains. Newer mechanisms of resistance, however, often result in much more subtle shifts in bacterial population distributions. Perhaps the most difficult phenotypes to detect, as shown in several proficiency testing surveys, are decreased susceptibility to beta-lactams in pneumococci and decreased susceptibility to vancomycin in staphylococci. In summary, emerging resistance has required adaptations and modifications of laboratory diagnostic techniques, empiric anti-infective therapy for such diseases as bacterial meningitis, and infection control measures in health care facilities of all kinds. Judicious use is imperative if we are to preserve our arsenal of antimicrobial agents into the next decade. | 2001 | 11524705 |
| 4759 | 6 | 0.9993 | Recent advances in rapid antimicrobial susceptibility testing systems. INTRODUCTION: Until recently antimicrobial susceptibility testing (AST) methods based on the demonstration of phenotypic susceptibility in 16-24 h remained largely unchanged. AREAS COVERED: Advances in rapid phenotypic and molecular-based AST systems. EXPERT OPINION: AST has changed over the past decade, with many rapid phenotypic and molecular methods developed to demonstrate phenotypic or genotypic resistance, or biochemical markers of resistance such as β-lactamases associated with carbapenem resistance. Most methods still require isolation of bacteria from specimens before both legacy and newer methods can be used. Bacterial identification by MALDI-TOF mass spectroscopy is now widely used and is often key to the interpretation of rapid AST results. Several PCR arrays are available to detect the most frequent pathogens associated with bloodstream infections and their major antimicrobial resistance genes. Many advances in whole-genome sequencing of bacteria and fungi isolated by culture as well as directly from clinical specimens have been made but are not yet widely available. High cost and limited throughput are the major obstacles to uptake of rapid methods, but targeted use, continued development and decreasing costs are expected to result in more extensive use of these increasingly useful methods. | 2021 | 33926351 |
| 4857 | 7 | 0.9993 | The emergence of bacterial resistance and its influence on empiric therapy. The discovery of antimicrobial agents had a major impact on the rate of survival from infections. However, the changing patterns of antimicrobial resistance caused a demand for new antibacterial agents. Within a few years of the introduction of penicillin, the majority of staphylococci were resistant to that drug. In the 1960s the production of the semisynthetic penicillins provided an answer to the problem of staphylococcal resistance. In the early 1960s most Escherichia coli were susceptible to the new beta-lactam antibiotic ampicillin; by the end of that decade, plasmid-mediated beta-lactamase resistance was found in 30%-50% of hospital-acquired E. coli. Use of certain agents resulted in the selection of bacteria, such as Klebsiella, that are intrinsically resistant to ampicillin. The original cephalosporins were stable to beta-lactamase, but the use of these agents was in part responsible for the appearance of infections due to Enterobacter species, Citrobacter species, and Pseudomonas aeruginosa. These bacteria, as well as Serratia, were resistant to many of the available beta-lactam agents. Aminoglycosides initially provided excellent activity against most of the facultative gram-negative bacteria. However, the widespread dissemination of the genes that cause production of the aminoglycoside-inactivating enzymes altered the use of those agents. Clearly, the evolution of bacterial resistance has altered the prescribing patterns for antimicrobial agents. Knowledge that beta-lactam resistance to ampicillin or cephalothin is prevalent is causing physicians to select as empiric therapy either a combination of two or more agents or agents to which resistance is uncommon. The new cephalosporins offer a broad spectrum of anti-bacterial activity coupled with low toxicity. However, physicians must closely follow the changing ecology of bacteria when these agents are used, because cephalosporins can also select bacteria resistant to themselves and thereby abolish their value as empiric therapy. | 1983 | 6342103 |
| 4834 | 8 | 0.9993 | A retrospective view of beta-lactamases. The discovery of a penicillinase (later shown be a beta-lactamase) 50 years ago in Oxford came from the thought that the resistance of many Gram-negative bacteria to Fleming's penicillinase might be due to their production of a penicillin-destroying enzyme. The emergence of penicillinase-producing staphylococci in the early 1950s, particularly in hospitals, raised the question whether the medical value of penicillin would decline. The introduction of new semi-synthetic penicillins and cephalosporins in the 1960s began to reveal many beta-lactamases distinguishable by their different substrate profiles. In this period it was established that genes encoding beta-lactamases from Gram-negative bacilli could be carried from one organism to another on plasmids and also that penicillin inhibited a transpeptidase involved in bacterial cell wall synthesis. During the last two decades a number of these enzymes have been purified and the genes encoding them have been cloned. Much has now been learned, with the aid of powerful modern techniques, about their structures, their active sites, their relationship to penicillin-sensitive proteins in bacteria and to their likely evolution. Further knowledge may contribute to a more rational approach to chemotherapy in this area. Experience suggests that a need for new substances will continue. | 1991 | 1875234 |
| 9927 | 9 | 0.9993 | Induction of beta-lactamase enzymes: clinical applications for the obstetric-gynecologic patient. The emergence of bacteria resistant to antibiotics has resulted in intensive research for new and improved beta-lactam antibiotics. Many improvements in antimicrobial agents are based on a knowledge of the mechanism responsible for resistance. This has led to the development of new extended-spectrum antibiotic compounds. However, several features have been noted since the development of extended-spectrum antibiotics, such as the rapid development of bacterial resistance, the induction of beta-lactamase enzyme activity by these stable antibiotics, failure to detect induced enzyme activity and resistance in the laboratory, and beta-lactam antagonism. The resistance of bacteria to antimicrobial agents has obvious impact on the selection of appropriate therapy against infections caused by these pathogens. Gram-negative anaerobic bacteria, such as Bacteroides fragilis and Bacteroides bivius, are organisms frequently recovered from women whose initial therapy for pelvic infection failed. The transfer of antimicrobial resistance in bacteria indicates that these organisms have a system for the spread of such resistance. Therefore determination of antimicrobial susceptibilities and prompt eradication of isolates from infected patients are necessary to delay the emergence of resistant organisms. | 1987 | 3548378 |
| 9928 | 10 | 0.9993 | The emergence and implications of metallo-beta-lactamases in Gram-negative bacteria. The increase in Gram-negative broad-spectrum antibiotic resistance is worrisome, particularly as there are few, if any, ''pipeline'' antimicrobial agents possessing suitable activity against Pseudomonas spp. or Acinetobacter spp. The increase in resistance will be further enhanced by the acquisition of metallo-beta-lactamase (MBL) genes that can potentially confer broad-spectrum beta-lactam resistance. These genes encode enzymes that can hydrolyse all classes of beta-lactams and the activity of which cannot be neutralised by beta-lactamase inhibitors. MBL genes are often associated with aminoglycoside resistant genes and thus bacteria that possess MBL genes are often co-resistant to aminoglycosides, further compromising therapeutic regimes. Both types of genes can be found as gene cassettes carried by integrons that in turn are embedded within transposons providing a highly ambulatory genetic element. The dissemination of MBL genes is typified by the spread of blaVIM-2, believed to originate from a Portuguese patient in 1995, and is now present in over 20 counties. The increase in international travel is likely to be a contributory factor for the ascendancy of mobile MBL genes as much as the mobility among individual bacteria. Fitness, acquisition and host dependency are key areas that need to be addressed to enhance our understanding of how antibiotic resistance spreads. There is also a pressing need for new, and hopefully novel, compounds active against pan-resistant Gram-negative bacteria--a growing problem that needs to be addressed by both government and industry. | 2005 | 16209700 |
| 4758 | 11 | 0.9993 | Development of New Tools to Detect Colistin-Resistance among Enterobacteriaceae Strains. The recent discovery of the plasmid-mediated mcr-1 gene conferring resistance to colistin is of clinical concern. The worldwide screening of this resistance mechanism among samples of different origins has highlighted the urgent need to improve the detection of colistin-resistant isolates in clinical microbiology laboratories. Currently, phenotypic methods used to detect colistin resistance are not necessarily suitable as the main characteristic of the mcr genes is the low level of resistance that they confer, close to the clinical breakpoint recommended jointly by the CLSI and EUCAST expert systems (S ≤ 2 mg/L and R > 2 mg/L). In this context, susceptibility testing recommendations for polymyxins have evolved and are becoming difficult to implement in routine laboratory work. The large number of mechanisms and genes involved in colistin resistance limits the access to rapid detection by molecular biology. It is therefore necessary to implement well-defined protocols using specific tools to detect all colistin-resistant bacteria. This review aims to summarize the current clinical microbiology diagnosis techniques and their ability to detect all colistin resistance mechanisms and describe new tools specifically developed to assess plasmid-mediated colistin resistance. Phenotyping, susceptibility testing, and genotyping methods are presented, including an update on recent studies related to the development of specific techniques. | 2018 | 30631384 |
| 4340 | 12 | 0.9993 | Predicting antimicrobial susceptibility from the bacterial genome: A new paradigm for one health resistance monitoring. The laboratory identification of antibacterial resistance is a cornerstone of infectious disease medicine. In vitro antimicrobial susceptibility testing has long been based on the growth response of organisms in pure culture to a defined concentration of antimicrobial agents. By comparing individual isolates to wild-type susceptibility patterns, strains with acquired resistance can be identified. Acquired resistance can also be detected genetically. After many decades of research, the inventory of genes underlying antimicrobial resistance is well known for several pathogenic genera including zoonotic enteric organisms such as Salmonella and Campylobacter and continues to grow substantially for others. With the decline in costs for large scale DNA sequencing, it is now practicable to characterize bacteria using whole genome sequencing, including the carriage of resistance genes in individual microorganisms and those present in complex biological samples. With genomics, we can generate comprehensive, detailed information on the bacterium, the mechanisms of antibiotic resistance, clues to its source, and the nature of mobile DNA elements by which resistance spreads. These developments point to a new paradigm for antimicrobial resistance detection and tracking for both clinical and public health purposes. | 2021 | 33010049 |
| 4212 | 13 | 0.9993 | Review on the occurrence of the mcr-1 gene causing colistin resistance in cow's milk and dairy products. Both livestock farmers and the clinic use significant amount of antibiotics worldwide, in many cases the same kind. Antibiotic resistance is not a new phenomenon, however, it is a matter of concern that resistance genes (mcr - Mobilized Colistin Resistance - genes) that render last-resort drugs (Colistin) ineffective, have already evolved. Nowadays, there is a significant consumption of milk and dairy products, which, if not treated properly, can contain bacteria (mainly Gram-negative bacteria). We collected articles and reviews in which Gram-negative bacteria carrying the mcr-1 gene have been detected in milk, dairy products, or cattle. Reports have shown that although the incidence is still low, unfortunately the gene has been detected in some dairy products on almost every continent. In the interest of our health, the use of colistin in livestock farming must be banned as soon as possible, and new treatments should be applied so that we can continue to have a chance in fighting multidrug-resistant bacteria in human medicine. | 2021 | 33898852 |
| 4634 | 14 | 0.9993 | Genome analysis reveals a biased distribution of virulence and antibiotic resistance genes in the genus Enterococcus and an abundance of safe species. Enterococci are lactic acid bacteria (LAB) that, as their name implies, often are found in the gastrointestinal tract of animals. Like many other gut-dwelling LAB, for example, various lactobacilli, they are frequently found in other niches as well, including plants and fermented foods from all over the world. In fermented foods, they contribute to flavor and other organoleptic properties, help extend shelf life, and some even possess probiotic properties. There are many positive attributes of enterococci; however, they have been overshadowed by the occurrence of antibiotic-resistant and virulent strains, often reported for the two species, Enterococcus faecalis and Enterococcus faecium. More than 40,000 whole-genome sequences covering 64 Enterococcus type species are currently available in the National Center for Biotechnology Information repository. Closer inspection of these sequences revealed that most represent the two gut-dwelling species E. faecalis and E. faecium. The remaining 62 species, many of which have been isolated from plants, are thus quite underrepresented. Of the latter species, we found that most carried no potential virulence and antibiotic resistance genes, an observation that is aligned with these species predominately occupying other niches. Thus, the culprits found in the Enterococcus genus mainly belong to E. faecalis, and a biased characterization has resulted in the opinion that enterococci do not belong in food. Since enterococci possess many industrially desirable traits and frequently are found in other niches besides the gut of animals, we suggest that their use as food fermentation microorganisms is reconsidered.IMPORTANCEWe have retrieved a large number of Enterococcus genome sequences from the National Center for Biotechnology Information repository and have scrutinized these for the presence of virulence and antibiotic resistance genes. Our results show that such genes are prevalently found in the two species Enterococcus faecalis and Enterococcus faecium. Most other species do not harbor any virulence and antibiotic resistance genes and display great potential for use as food fermentation microorganisms or as probiotics. The study contributes to the current debate on enterococci and goes against the mainstream perception of enterococci as potentially dangerous microorganisms that should not be associated with food and health. | 2025 | 40202320 |
| 4796 | 15 | 0.9993 | The specter of glycopeptide resistance: current trends and future considerations. Two glycopeptide antibiotics, vancomycin and teicoplanin, are currently available for clinical use in various parts of the world, whereas a third, avoparcin, is available for use in agricultural applications and in veterinary medicine in some countries. Because of their outstanding activity against a broad spectrum of gram-positive bacteria, vancomycin and teicoplanin have often been considered the drugs of "last resort" for serious infections due to drug-resistant gram-positive pathogens. Glycopeptides had been in clinical use for almost 30 years before high-level resistance, first reported in enterococcal species, emerged. More recently, there have been disturbing reports of low- and intermediate-level resistance to vancomycin in strains of Staphylococcus aureus. A review of earlier reports reveals, however, that S. aureus strains with reduced susceptibility to glycopeptides were first identified >40 years ago. Such strains may occur in nature or may have developed low-level mutational resistance in response to the selection pressure of glycopeptide therapy. Of considerably greater concern is the possibility that vancomycin resistance genes found in enterococci may be transferred to more virulent organisms such as staphylococci or Streptococcus pneumoniae. | 1998 | 9684651 |
| 4341 | 16 | 0.9993 | Antimicrobial Resistance in Nontyphoidal Salmonella. Non-typhoidal Salmonella is the most common foodborne bacterial pathogen in most countries. It is widely present in food animal species, and therefore blocking its transmission through the food supply is a prominent focus of food safety activities worldwide. Antibiotic resistance in non-typhoidal Salmonella arises in large part because of antibiotic use in animal husbandry. Tracking resistance in Salmonella is required to design targeted interventions to contain or diminish resistance and refine use practices in production. Many countries have established systems to monitor antibiotic resistance in Salmonella and other bacteria, the earliest ones appearing the Europe and the US. In this chapter, we compare recent Salmonella antibiotic susceptibility data from Europe and the US. In addition, we summarize the state of known resistance genes that have been identified in the genus. The advent of routine whole genome sequencing has made it possible to conduct genomic surveillance of resistance based on DNA sequences alone. This points to a new model of surveillance in the future that will provide more definitive information on the sources of resistant Salmonella, the specific types of resistance genes involved, and information on how resistance spreads. | 2018 | 30027887 |
| 4388 | 17 | 0.9993 | Detection of Genes Related to Antibiotic Resistance in Leptospira. Leptospirosis is a disease caused by the bacteria of the Leptospira genus, which can usually be acquired by humans through contact with urine from infected animals; it is also possible for this urine to contaminate soils and bodies of water. The disease can have deadly consequences in some extreme cases. Fortunately, until now, patients with leptospirosis have responded adequately to treatment with doxycycline and azithromycin, and no cases of antibiotic resistance have been reported. However, with the extensive use of such medications, more bacteria, such as Staphylococci and Enterococci, are becoming resistant. The purpose of this study is to determine the presence of genes related to antibiotic resistance in the Leptospira genus using bioinformatic tools, which have not been undertaken in the past. Whole genomes from the 69 described Leptospira species were downloaded from NCBI's GeneBank and analyzed using CARD (The Comprehensive Antibiotic Resistant Database) and RAST (Rapid Annotations using Subsystem Technology). After a detailed genomic search, 12 genes associated with four mechanisms were found: resistance to beta-lactamases, vancomycin, aminoglycoside adenylyltransferases, as well as multiple drug efflux pumps. Some of these genes are highly polymorphic among different species, and some of them are present in multiple copies in the same species. In conclusion, this study provides evidence of the presence of genes related to antibiotic resistance in the genomes of some species of the genus Leptospira, and it is the starting point for future experimental evaluation to determine whether these genes are transcriptionally active in some species and serovars. | 2024 | 39330892 |
| 4890 | 18 | 0.9993 | Understanding of Colistin Usage in Food Animals and Available Detection Techniques: A Review. Progress in the medical profession is determined by the achievements and effectiveness of new antibiotics in the treatment of microbial infections. However, the development of multiple-drug resistance in numerous bacteria, especially Gram-negative bacteria, has limited the treatment options. Due to this resistance, the resurgence of cyclic polypeptide drugs like colistin remains the only option. The drug, colistin, is a well-known growth inhibitor of Gram-negative bacteria like Acinetobacter baumanni, Enterobacter cloacae, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Technological advancements have uncovered the role of the mcr-1(mobilized colistin resistance) gene, which is responsible for the development of resistance in Gram-negative bacteria, which make them distinct from other bacteria without this gene. Additionally, food animals have been determined to be the reservoir for colistin resistance microbes, from which they spread to other hosts. Due to the adverse effects of colistin, many developed countries have prohibited its usage in animal foods, but developing countries are still using colistin in animal food production, thereby imposing a major risk to the public health. Therefore, there is a need for implementation of sustainable measures in livestock farms to prevent microbial infection. This review highlights the negative effects (increased resistance) of colistin consumption and emphasizes the different approaches used for detecting colistin in animal-based foods as well as the challenges associated with its detection. | 2020 | 33081121 |
| 4336 | 19 | 0.9993 | Antibiotic Resistance in Bacteria-A Review. A global problem of multi-drug resistance (MDR) among bacteria is the cause of hundreds of thousands of deaths every year. In response to the significant increase of MDR bacteria, legislative measures have widely been taken to limit or eliminate the use of antibiotics, including in the form of feed additives for livestock, but also in metaphylaxis and its treatment, which was the subject of EU Regulation in 2019/6. Numerous studies have documented that bacteria use both phenotypis and gentic strategies enabling a natural defence against antibiotics and the induction of mechanisms in increasing resistance to the used antibacterial chemicals. The mechanisms presented in this review developed by the bacteria have a significant impact on reducing the ability to combat bacterial infections in humans and animals. Moreover, the high prevalence of multi-resistant strains in the environment and the ease of transmission of drug-resistance genes between the different bacterial species including commensal flora and pathogenic like foodborne pathogens (E. coli, Campylobacter spp., Enterococcus spp., Salmonella spp., Listeria spp., Staphylococcus spp.) favor the rapid spread of multi-resistance among bacteria in humans and animals. Given the global threat posed by the widespread phenomenon of multi-drug resistance among bacteria which are dangerous for humans and animals, the subject of this study is the presentation of the mechanisms of resistance in most frequent bacteria called as "foodborne pathoges" isolated from human and animals. In order to present the significance of the global problem related to multi-drug resistance among selected pathogens, especially those danger to humans, the publication also presents statistical data on the percentage range of occurrence of drug resistance among selected bacteria in various regions of the world. In addition to the phenotypic characteristics of pathogen resistance, this review also presents detailed information on the detection of drug resistance genes for specific groups of antibiotics. It should be emphasized that the manuscript also presents the results of own research i.e., Campylobacter spp., E. coli or Enetrococcus spp. This subject and the presentation of data on the risks of drug resistance among bacteria will contribute to initiating research in implementing the prevention of drug resistance and the development of alternatives for antimicrobials methods of controlling bacteria. | 2022 | 36009947 |