THAN - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
724800.9994Fate and transport of tylosin-resistant bacteria and macrolide resistance genes in artificially drained agricultural fields receiving swine manure. Application of manure from swine treated with antibiotics introduces antibiotics and antibiotic resistance genes to soil with the potential for further movement in drainage water, which may contribute to the increase in antibiotic resistance in non-agricultural settings. We compared losses of antibiotic-resistant Enterococcus and macrolide-resistance (erm and msrA) genes in water draining from plots with or without swine manure application under chisel plow and no till conditions. Concentrations of ermB, ermC and ermF were all >10(9)copies g(-1) in manure from tylosin-treated swine, and application of this manure resulted in short-term increases in the abundance of these genes in soil. Abundances of ermB, ermC and ermF in manured soil returned to levels identified in non-manured control plots by the spring following manure application. Tillage practices yielded no significant differences (p>0.10) in enterococci or erm gene concentrations in drainage water and were therefore combined for further analysis. While enterococci and tylosin-resistant enterococci concentrations in drainage water showed no effects of manure application, ermB and ermF concentrations in drainage water from manured plots were significantly higher (p<0.01) than concentrations coming from non-manured plots. ErmB and ermF were detected in 78% and 44%, respectively, of water samples draining from plots receiving manure. Although ermC had the highest concentrations of the three genes in drainage water, there was no effect of manure application on ermC abundance. MsrA was not detected in manure, soil or water. This study is the first to report significant increases in abundance of resistance genes in waters draining from agricultural land due to manure application.201626874610
803410.9994Adding a complex microbial agent twice to the composting of laying-hen manure promoted doxycycline degradation with a low risk on spreading tetracycline resistance genes. Poultry manure is a reservoir for antibiotics and antibiotic resistance genes and composting is an effective biological treatment for manure. This study explored the effect of using two methods of adding a complex microbial agent to the composting of laying-hen manure on doxycycline degradation and tetracycline resistance genes elimination. The results showed that incorporating a complex microbial agent at 0.8% (w/w) on the 0(th) and 11th day (group MT2) effectively degraded doxycycline with a final degradation rate of 46.83 ± 0.55%. The half-life of doxycycline in this group was 21.90 ± 0.00 days and was significantly lower than that of group MT1 (1.6% (w/w) complex microbial agent added on the 0(th) day) and group DT (compost without complex microbial agent). But there was no significant difference in the final degradation rate of doxycycline between group DT and group MT1. The addictive with the complex microbial agent changed the microbial community structure. Bacteroidetes, Firmicutes and Proteobacteria were the dominant phyla during composting. Aerococcus, Desemzia, Facklamia, Lactobacillus, Streptococcus, and Trichococcus were the bacteria related to the degradation of doxycycline. Moreover, the incorporation of a complex microbial agent could decrease the risk on spreading tetracycline resistance genes. The single addition promoted the elimination of tetM, whose possible hosts were Enterococcus, Lactobacillus, Staphylococcus, and Trichococcus. Adding the complex microbial agent twice promoted the elimination of tetX, which was related to the low abundance of Chryseobacterium, Flavobacterium and Neptunomonas in group MT2. Redundancy analysis showed that the bacterial community, residual doxycycline and physiochemical properties have a potential effect on the variation in tetracycline resistance genes levels. Overall, adding the complex microbial agent twice is an effective measure to degrade doxycycline.202032806409
719720.9994The response of copper resistance genes, antibiotic resistance genes, and intl1/2 to copper addition during anaerobic digestion in laboratory. Heavy metal pollution can serve as a selective pressure for antibiotic resistance genes in polluted environments. Anaerobic fermentation, as a recommended wastewater treatment method, is an effective mitigation measure of antibiotic resistance diffusion. To explore the influence of copper on anaerobic fermentation, we exposed the fermentation substrate to copper in a laboratory setup. We found that the relative abundance of 8 genes (pcoD, tetT, tetA, tetB, tetO, qnrS, ermA and ermB) increased at the late stage of fermentation and their abundance was linked to copper content. Corynebacterium and Streptococcus were significantly positively correlated with ermA, ermB, tetA and tetB (P < 0.05). The relative abundance of tetT was significantly positively correlated with Terrisporobacter, Clostridium_sensu_stricto_1 and Turicibacter (P < 0.05). We screened 90 strains of copper resistant bacteria from blank, medium and high copper test groups on days 25, 31 and 37. The number of fragments carried by a single strain increased with time while intl1, ermA and ermB existed in almost all combinations of the multiple fragments we identified. The relative abundance of these three genes were linearly correlated with Corynebacterium and Streptococcus. The antibiotic resistance genes carried by class 1 integrons gradually increased with time in the fermentation system and integrons carrying ermA and ermB most likely contributed to host survival through the late stages of fermentation. The genera Corynebacterium and Streptococcus may be the primary carriers of such integrated mobile gene element and this was most likely the reason for their rebound in relative abundance during the late fermentation stages.202133418156
724630.9994Tetracycline resistance genes are more prevalent in wet soils than in dry soils. This study aimed to reveal the effects of water content on the spread of tetracycline resistance genes (TRGs) in the soil. Amendments of four samples with different soil water contents, namely 16% (dry soil) and 25% (wet soil), and with or without pig manures (PM) were conducted under laboratory conditions. Quantitative polymerase chain reaction (q-PCR) results showed that the relative abundance of TRGs (tetB, tetC, tetM, tetO, tetT, and tetZ) in the wet soils was significantly higher than that in the dry soils whether under fertilization or non-fertilization conditions. Moreover, PM application enhanced the relative abundance of TRGs. The absolute copies of TRGs did not decline with the decrease in 16S rRNA genes in wet soils, implying that most TRGs were probably located in facultative anaerobic bacteria. However, cultivable tetracycline-resistant bacteria (TRB) in the wet soils were not in line with the q-PCR results, further indicating that aerobes might not account for the increases in the relative abundance of TRGs. Diversities of aerobic TRB were significantly higher in the wet soils than in the dry soils, especially on days 14 and 28. The patterns of community structures of aerobic TRB in the wet soils or dry soils containing PM were different from those in the dry soils. Together, this study showed that the variations in bacterial communities between the wet and dry soils, especially reflected in the diversity of aerobic TRB and/or community structure of facultative anaerobic TRB, might be an important reason behind the changes in the abundance of TRGs.201829573724
803740.9994Dosage effects of lincomycin mycelial residues on lincomycin resistance genes and soil microbial communities. Lincomycin mycelial residues (LMRs) are one kind of byproduct of the pharmaceutical industry. Hydrothermal treatment has been used to dispose of them and land application is an attractive way to reuse the treated LMRs. However, the safe dose for soil amendment remains unclear. In this study, a lab-scale incubation experiment was conducted to investigate the influence of the amendment dosage on lincomycin resistance genes and soil bacterial communities via quantitative PCR and 16S rRNA sequencing. The results showed that introduced lincomycin degraded quickly in soil and became undetectable after 50 days. Degradation rate of the high amendment amount (100 mg kg(-1)) was almost 4 times faster than that of low amendment amount (10 mg kg(-1)). Moreover, the introduced LMRs induced the increase of lincomycin resistance genes after incubation for 8 days, and two genes (lmrA and lnuB) showed a dosage-related increase. For example, the abundance of gene lmrA was 17.78, 74.13 and 128.82 copies g(-1) soil for lincomycin concentration of 10, 50 and 100 mg kg(-1), respectively. However, the abundance of lincomycin resistance genes recovered to the control level as the incubation period extended to 50 days, indicating a low persistence in soil. In addition, LMRs application markedly shifted the bacterial composition and significant difference was found between control soil, 10 mg kg(-1) and 50 mg kg(-1) lincomycin amended soil. Actually, several genera bacteria were significantly related to the elevation of lincomycin resistance genes. These results provided a comprehensive understanding of the effects of lincomycin dosage on the fate of resistance genes and microbial communities in LMRs applied soil.202031662263
801450.9994Contributions of the microbial community and environmental variables to antibiotic resistance genes during co-composting with swine manure and cotton stalks. Understanding the main drivers that affect the spread of antibiotic resistance genes (ARGs) during the composting process is important for the removal of ARGs. In this study, three levels of tylosin (25, 50, and 75 mg kg(-1) on a dry weight basis) were added to swine manure plus a control, which was composted with cotton stalks. Each treatment was repeated in triplicate and the ARG profiles were determined with different levels of tylosin. The top 35 genera and ARGs profiles were clustered together based on the composting time. Combined composting parameters (temperature, pH, NH(4)(+)-N, NO(3)-N, and moisture content) accounted for 78.4% of the total variation in the changes in the potential host bacteria. In addition, the selected five composting parameters and six phyla (including 25 potential host bacterial genera) explained 46.9% and 30.7% of the variation in the ARG profiles according to redundancy analysis, respectively. The variations in ARGs during the composting process were mainly affected by the dynamics of potential host bacteria rather than integrons and the selective pressure due to bio-Cu and bio-Zn.201829990821
803560.9994Effects of hydrothermal treatment on the reduction of antibiotic-resistant Escherichia coli and antibiotic resistance genes and the fertilizer potential of liquid product from cattle manure. In this study, the reduction in the abundance of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) and the fertilizer potential of liquid products from hydrothermally treated cattle manure were investigated. Hydrothermal treatment (HTT) was conducted under different reaction temperatures (125, 150, 175 and 200 °C) and retention times (60, 90 and 120 min). The total organic carbon (TOC) and total nitrogen (TN) of the liquid product increased with increasing reaction temperature. The germination index (GI), a measure of the percentage of germination, exceeded 90 % at 125, 150, and 175 °C in diluted samples, while it decreased to 18 % at 200 °C. Although a longer retention time contributed to an increase in TOC of liquid products, it did not increase the GI values. The liquid product should be diluted or adjusted before use as fertilizer to prevent phytotoxicity. In our analysis of ARB and ARGs, E. coli and antibiotic-resistant E. coli were completely reduced after HTT, except for the operating conditions of 125 °C and 60 min. Although both a higher reaction temperature and longer retention time tended to be better for the reduction of ARGs and intI1, it was found that the longer retention time is much more effective than the higher reaction temperature. The reduction of target ARGs and intI1 was 2.9-log under175 °C and 120 min. Comprehensively considering the fertilizer potential of liquid product and the reduction of ARB and ARGs, 175 °C of reaction temperature and 120 min of retention time of operating conditions for HTT were recommended.202438744164
352470.9993Evaluating the effects of chlortetracycline on the proliferation of antibiotic-resistant bacteria in a simulated river water ecosystem. Antibiotics and antibiotic metabolites have been found in the environment, but the biological activities of these compounds are uncertain, especially given the low levels that are typically detected in the environment. The objective of this study was to estimate the selection potential of chlortetracycline (CTC) on the antibiotic resistance of aerobic bacterial populations in a simulated river water ecosystem. Six replicates of a 10-day experiment using river water in continuous flow chemostat systems were conducted. Each replicate used three chemostats, one serving as a control to which no antibiotic was added and the other two receiving low and high doses of CTC (8 microg/liter and 800 microg/liter, respectively). The addition of CTC to the chemostats did not impact the overall level of cultivable aerobic bacteria (P = 0.51). The high-CTC chemostat had significantly higher tetracycline-resistant bacterial colony counts than both the low-CTC and the control chemostats (P < 0.035). The differences in resistance between the low-CTC and control chemostats were highly nonsignificant (P = 0.779). In general a greater diversity of tet resistance genes was detected in the high-CTC chemostat and with a greater frequency than in the low-CTC and control chemostats. Low levels of CTC in this in vitro experiment did not select for increased levels of tetracycline resistance among cultivable aerobic bacteria. This finding should not be equated with the absence of environmental risk, however. Low concentrations of antibiotics in the environment may select for resistant bacterial populations once they are concentrated in sediments or other locations.200717616621
803680.9993Abundances of Tetracycline Resistance Genes and Tetracycline Antibiotics during Anaerobic Digestion of Swine Waste. The impact of anaerobic digestion of animal waste on the persistence of antibiotic resistance genes (ARGs) and antibiotics is not widely studied. Two identical, 800-L digesters seeded with swine slurry were followed up to 100 d in three separate trials. The trials received varying amounts of antibiotic-free corn ( L.) mixed with water to maintain the digestion process. Biogas production, seven tetracycline resistance () genes, and three tetracyclines and their transformation products were measured. Biogas production proportionally increased as the feeding loads increased between trials. In Trial 1, log gene copies showed small but statistically significant ( < 0.01) increases during digestion. In Trial 2, anaerobic digestion did not have a significant ( > 0.05) effect except for significant reductions in B ( < 0.0001) and G ( = 0.0335) log gene copies. In Trial 3, which received the highest amount of corn mix, log copies of the 16S ribosomal RNA and the genes significantly ( < 0.0001) reduced over time during digestion. Up to 36 μg L tetracycline, 112 μg L chlortetracycline, 11.9 mg L isochlortetracycline, and 30 μg L 4-epitetracycline were detected both in the liquid and solid digestates. Results of this study revealed that although anaerobic digestion of swine waste can produce useful biogas, it does not result in complete removal of bacteria, ARGs, and antibiotics regardless of differences in the feeding loads between trials. Further effluent and sludge treatments are required prior to their downstream use in crop production to minimize emergence and environmental dissemination of antimicrobial-resistant bacteria through animal manure.201930640349
803390.9993Fate of pirlimycin and antibiotic resistance genes in dairy manure slurries in response to temperature and pH adjustment. Quantifying the fate of antibiotics and antibiotic resistance genes (ARGs) in response to physicochemical factors during storage of manure slurries will aid in efforts to reduce the spread of resistance when manure is land-applied. The objectives of this study were to determine the effects of temperature (10, 35, and 55 °C) and initial pH (5, 7, 9, and 12) on the removal of pirlimycin and prevalence of ARGs during storage of dairy manure slurries. We collected and homogenized feces and urine from five lactating dairy cows treated with pirlimycin and prepared slurries by mixing manure and sterile water. Aliquots (200 mL) of slurry were transferred and incubated in 400 mL glass beakers under different temperatures (10, 35, and 55 °C) or initial pH (5, 7, 9, and 12). Pirlimycin concentration and abundances of 16S rRNA, mefA, tet(W), and cfxA as indicators of total bacteria and ARGs corresponding to macrolide, tetracycline, and β-lactam resistance, respectively, were analyzed during manure incubation. The thermophilic environment (55 °C) increased the deconjugation and removal of pirlimycin, while the acidic shock at pH 5 increased deconjugation but inhibited removal of pirlimycin, suggesting that the chemical stability of pirlimycin could be affected by temperature and pH. The thermophilic environment decreased mefA relative abundance on day 7 and 28 (P = 0.02 and 0.04), which indicates that the bacteria that encoded mefA gene were not thermotolerant. Although mefA relative abundance was greater at the pH 9 shock than the rest of pH treatments on day 7 (P = 0.04), no significant pH effect was observed on day 28. The tet(W) abundance under initial pH 12 shock was less than other pH shocks on day 28 (P = 0.01), while no temperature effect was observed on day 28. There was no significant temperature and initial pH effect on cfxA abundance at any time point during incubation, implying that the bacteria that carrying cfxA gene are relatively insensitive to these environmental factors. Overall, directly raising temperature and pH can facilitate pirlimycin removal and decrease mefA and tet(W) relative abundances during storage of manure slurries.202032050366
8019100.9993In-feed antibiotic use changed the behaviors of oxytetracycline, sulfamerazine, and ciprofloxacin and related antibiotic resistance genes during swine manure composting. The dynamics of oxytetracycline (OTC), sulfamerazine (SM1), ciprofloxacin (CIP) and related antibiotic resistance genes (ARGs) during swine manure composting were compared between manure collected from swine fed a diet containing these three antibiotics (T(D)) and manure directly spiked with these drugs (T(S)). The composting removal efficiency of OTC (94.9 %) and CIP (87.8 %) in the T(D) treatment was significantly higher than that of OTC (83.8 %, P <  0.01) and CIP (83.9 %, P <  0.05) in the T(S) treatment, while SM1 exhibited no significant difference (P >  0.05) between the two treatments. Composting effectively reduced the majority of ARGs in both T(D) and T(S) types of manure, especially tetracycline resistance genes (TRGs). Compared with the T(S) treatment, the abundance of some ARGs, such as tetG, qepA, sul1 and sul2, increased dramatically up to 309-fold in the T(D) treatment. The microbial composition of the composting system changed significantly during composting due to antibiotic feeding. Redundancy analysis suggested that the abundance of ARGs had a considerable impact on alterations in the physicochemical parameters (C/N, pH and temperature) and bacterial communities (Actinobacteria, Proteobacteria and Firmicutes) during the composting of swine manure.202133254754
3521110.9993Indirect evidence of transposon-mediated selection of antibiotic resistance genes in aquatic systems at low-level oxytetracycline exposures. Subinhibitory levels of antibiotics can promote the development of antibiotic resistance in bacteria. However, it is unclear whether antibiotic concentrations released into aquatic systems exert adequate pressure to select populations with resistance traits. To examine this issue, 15 mesocosms containing pristine surface water were treated with oxytetracycline (OTC) for 56 days at five levels (0, 5, 20, 50, and 250 microg L(-1)), and six tetracycline-resistance genes (tet(B), tet(L), tet(M), ted(O), tet(Q), and tet(W)), the sum of those genes (tet(R)), "total" 16S-rRNA genes, and transposons (Tn916 and Tn 1545) were monitored using real-time PCR. Absolute water-column resistance-gene abundances did not change at any OTC exposure. However, an increase was observed in the ratio of tet(R) to 16S-rRNA genes in the 250 microg L(-1) OTC units, and an increase in the selection rate of Tc(r) genes (relative to 16S-rRNA genes) was seen when OTC levels were at 20 microg L(-1). Furthermore, tet(M) and Tn916/1545 gene abundances correlated among all treatments (r2 = 0.701, p = 0.05), and there were similar selection patterns of tetR and Tn916/1545 genes relative to the OTC level, suggesting a possible mechanism for retention of specific resistance genes within the systems.200818754392
7251120.9993Effects of tetracycline antibiotics in chicken manure on soil microbes and antibiotic resistance genes (ARGs). China is the world's largest livestock and poultry breeding country, but also the largest use of veterinary antibiotics. When a large amount of chicken manure is applied to the soil, it will cause the number of antibiotic residues and resistant bacteria to increase, which will bring about the pollution of antibiotic resistance genes (ARGs) in the soil, and then increase the risk of environmental pollution and human health. Field experiments were conducted to study the changes of soil tetracycline antibiotic residues, resistant bacteria and resistance genes treated with different types and dosage of chicken manure (no chicken manure, (CK), low fresh chicken manure treatment (300 kg·667 m(-2)), high fresh chicken manure treatment (600 kg·667 m(-2)), low decomposed chicken manure treatment (300 kg·667 m(-2)) and high decomposed chicken manure treatment (600 kg·667 m(-2))). After one-year application of chicken manure, content of soil organic matter increased by 1.0%-3.2% compared with the control. The activity of soil catalase significantly increased by 84.3-91.5%, 81.9-102.9% in fresh and decomposed chicken manure treatments compared with the control, respectively. The amount of soil resistant bacteria under the same treatment was in the order of Anti-OTC > Anti-TC > Anti-CTC. After one-year application of chicken manure, the total tetracycline amount in the soil was increased by 168.5-217.9% compared with the control. The amount of antibiotic residue in soil treated with fresh chicken manure was 3.0-9.1% higher than that treated with decomposed chicken manure. The abundance of ARGs in the soil was in the order of that treated with high fresh chicken manure > low fresh chicken manure > high decomposed chicken manure > low decomposed chicken manure. The risk of tetracycline antibiotics to soil ecological environment may be greatly reduced after chicken manure decomposed.202234114159
7247130.9993Environmental analysis of typical antibiotic-resistant bacteria and ARGs in farmland soil chronically fertilized with chicken manure. Antibiotics and the corresponding resistant bacteria and resistance genes (ARGs) are generally considered emerging pollutants. To assess the impacts of tetracycline (TC) and sulfonamide (SA) antibiotics that are eliminated with fecaluria as drug prototypes, farmland soil used to research long-term fertilization with chicken manure was collected at four sites in Shandong Province. In this study, the rates of bacterial drug resistance to the same antibiotic decreased with an increase in the concentration of that antibiotic, and the resistance rates to TCs were lower than those to SAs. PCR of ARGs revealed that the ARGs detected at the highest frequency were the TC resistance genes tetW and tetO and the SA resistance genes sul1 and sul2. Real-time qPCR showed that the quantities of ARGs in farmland soil fertilized with chicken manure were significantly greater compared with the control soil. Moreover, significant correlations (R(2)=0.9525, p<0.05) between the number of sul ARGs and the total SA concentration were observed in all of the soil samples. In summary, this study showed that SAs can induce the appearance of ARGs and pollute the soil environment.201728340477
7243140.9993Responses and successions of sulfonamides, tetracyclines and fluoroquinolones resistance genes and bacterial community during the short-term storage of biogas residue and organic manure under the incubator and natural conditions. Biogas residue and organic manure are frequently used for crop planting. However, the evaluation of antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs) and bacterial community before their applications to fields is still lacking. This study monitored the variations of bacteria resistant to sulfadiazine, tetracycline and norfloxacin, 57 resistance genes for sulfonamides, tetracyclines and fluoroquinolones as well as the bacterial community during the 28-day aerobic storage of biogas residue and organic manure by using viable plate counts, high-throughput qPCR and Illumina MiSeq sequencing methods. Then two storage conditions, incubator (25 °C) and natural environment, were used to assess the responses of ARB and ARGs to the environmental factors. Results showed that a total of 35 and 21 ARGs were detected in biogas residue and organic manure, respectively. ARB and ARGs were enriched up to 8.01-fold in biogas residue after the 28-day storage, but varied in a narrow range during the storage of organic manure. Compared with the incubator condition, the proliferation of ARB and ARGs in biogas residue under the natural condition was relatively inhibited by the varied and complicated environmental factors. However, we found that there was no significant difference of ARB and ARGs in organic manure between the incubator and natural conditions. Bacterial community was also shifted during the storage of biogas residue, especially Bacteroidetes_VC2.1_Bac22, Aequorivita, Luteimonas and Arenimonas. Network analysis revealed that the relationship in biogas residue was much more complicated than that in organic manure, which ultimately resulted in large successions of ARB and ARGs during the short-term storage of biogas residue. Therefore, we suggest that further measures should be taken before the application of biogas residue to fields.201830031308
8013150.9993New insight into fates of sulfonamide and tetracycline resistance genes and resistant bacteria during anaerobic digestion of manure at thermophilic and mesophilic temperatures. This study investigated the variations in antibiotic (sulfonamide and tetracycline) resistance genes (ARGs) and resistant bacteria (ARB) during manure anaerobic digestion (AD) at 35 ℃ and 55 ℃, and discussed the mechanisms of variations in ARGs. The AD lasted for 60 days, five ARGs and intI1 each decreased in abundance after AD at the thermophilic temperature, while only half decreased at the mesophilic temperature. On days 10, 30, and 60, sulfonamide and tetracycline ARB were screened on selective media. During thermophilic AD, ARB numbers reduced by 4-log CFUs per gram dry manure, but only by approximately 1-log CFU at the mesophilic temperature. However, ARB composition analysis showed that at either temperature, no significant reduction in identified ARB species was observed. Furthermore, 72 ARB clones were randomly selected to detect the ARGs they harbored, and the results showed that each ARG was harbored by various hosts, and no definitive link existed between ARGs and bacterial species. In addition, by comparison with the identified host by culture method, the host prediction results based on the correlation analysis between ARGs and the bacterial community was proven to be unreliable. Overall, these findings indicated that relationships between ARB and ARGs were intricate.202031685315
8081160.9993Potential threat of antibiotics resistance genes in bioleaching of heavy metals from sediment. Bioleaching is considered a promising technology for remediating heavy metals pollution in sediments. During bioleaching, the pressure from the metals bioleached is more likely to cause the spread of antibiotic resistance genes (ARGs). The changes in abundance of ARGs in two typical heavy metal bioleaching treatments using indigenous bacteria or functional bacteria agent were compared in this study. Results showed that both treatments successfully bioleached heavy metals, with a higher removal ratio of Cu with functional bacteria agent. The absolute abundances of most ARGs decreased by one log unit after bioleaching, particularly tetR (p = 0.02) and tetX (p = 0.04), and intI1 decreased from 10(6) to 10(4) copies/g. As for the relative abundance, ARGs in the non-agent treatment increased from 3.90 × 10(-4) to 1.67 × 10(-3) copies/16S rRNA gene copies (p = 0.01), and in the treatment with agent, it reached 6.65 × 10(-2) copies/16S rRNA gene copies, and intI1 relative abundance was maintained at 10(-3) copies/16S rRNA gene copies. The relative abundance of ARGs associated with efflux pump mechanism and ribosomal protection mechanism increased the most. The co-occurrence network indicated that Cu bioleached was the environmental factor determining the distribution of ARGs, Firmicutes might be the potential hosts of ARGs. Compared to bioleaching with indigenous bacteria, the addition of functional bacteria agent engendered a decrease in microbial alpha diversity and an increase in the amount of Cu bioleached, resulting in a higher relative abundance of ARGs. Heavy metal pollution can be effectively removed from sediments using the two bioleaching treatments, however, the risk of ARGs propagation posed by those procedures should be considered, especially the treatment with functional bacteria agents. In the future, an economical and efficient green technology that simultaneously reduces both the absolute abundance and relative abundance of ARGs should be developed.202234979232
7223170.9993Characterization of metal resistance genes carried by waterborne free-living and particle-attached bacteria in the Pearl River Estuary. Toxic metals can substantially change the bacterial community and functions thereof in aquatic environments. Herein, metal resistance genes (MRGs) are the core genetic foundation for microbial responses to the threats of toxic metals. In this study, waterborne bacteria collected from the Pearl River Estuary (PRE) were separated into the free-living bacteria (FLB) and particle-attached bacteria (PAB), and analyzed using metagenomic approaches. MRGs were ubiquitous in the PRE water and mainly related to Cu, Cr, Zn, Cd and Hg. The levels of PAB MRGs in the PRE water ranged from 8.11 × 10(9) to 9.93 × 10(12) copies/kg, which were significantly higher than those of the FLB (p < 0.01). It could be attributed to a large bacterial population attached on the suspended particulate matters (SPMs), which was evidenced by a significant correlation between the PAB MRGs and 16S rRNA gene levels in the PRE water (p < 0.05). Moreover, the total levels of PAB MRGs were also significantly correlated with those of FLB MRGs in the PRE water. The spatial pattern of MRGs of both FLB and PAB exhibited a declining trend from the low reaches of the PR to the PRE and on to the coastal areas, which was closely related to metal pollution degree. MRGs likely carried by plasmids were also enriched on the SPMs with a range from to 3.85 × 10(8) to 3.08 × 10(12) copies/kg. MRG profiles and taxonomic composition of the predicted MRG hosts were significantly different between the FLB and PAB in the PRE water. Our results suggested that FLB and PAB could behave differential response to heavy metals in the aquatic environments from the perspective of MRGs.202337028791
8026180.9993A comparison of antibiotics, antibiotic resistance genes, and bacterial community in broiler and layer manure following composting. Animal manure is an important source of antibiotics and antibiotic resistance genes (ARGs) in the environment. However, the difference of antibiotic residues and ARG profiles in layer and broiler manure as well as their compost remains unexplored. In this study, we investigated the profiles of twelve antibiotics, seventeen ARGs, and class 1 integrase gene (intI1) in layer and broiler manure, and the corresponding compost at large-scale. Compared with layer manure, broiler manure exhibited approximately six times more residual tetracyclines, especially chlortetracycline. The relative abundances of qnrS and ermA genes in broiler manure were significantly higher than those in layer manure. The concentration of tetracyclines not only had a significantly positive correlation with tetracycline resistance genes (tetA and tetC) but was also positively correlated with quinolone resistance (qepA, qnrB, and qnrS) and macrolide resistance (ermA and ermT). Most ARGs in manure were reduced after composting. However, the relative abundance of sulfonamide resistance gene sul1 increased up to 2.41% after composting, which was significantly higher than that of broiler (0.41%) and layer (0.62%) manure. The associated bacterial community was characterized by high-throughput 16S rRNA gene sequencing. The relative abundances of thermophilic bacteria had significant positive correlations with the abundance of sul1 in compost. The composting has a significant impact on the ARG-associated gut microbes in poultry manure. Variation partitioning analysis indicated that the change of bacterial community compositions and antibiotics contributed partially to the shift in ARG profiles. The results indicate that at industry-scale production broiler manure had more antibiotics and ARGs than layer manure did, and composting decreased most ARG abundances in poultry manure except for sulfonamide resistance genes.202133219508
7997190.9993Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters. Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1-a Pseudomonas sp.) and thermophilic (Iso T10-a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457-0.829, P < 0.05) with the raw feed sludge. There was no correlation in tet(O) or tet(W) ratios in raw sludge and mesophilic digested sludge or thermophilic digested sludge (Spearman rho = 0.130-0.486, P = 0.075-0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and/or horizontal gene transfer between raw sludge bacteria and the digester microbial community.201627014196