TETY - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
307200.9683Faecal microbiota and antibiotic resistance genes in migratory waterbirds with contrasting habitat use. Migratory birds may have a vital role in the spread of antimicrobial resistance across habitats and regions, but empirical data remain scarce. We investigated differences in the gut microbiome composition and the abundance of antibiotic resistance genes (ARGs) in faeces from four migratory waterbirds wintering in South-West Spain that differ in their habitat use. The white stork Ciconia ciconia and lesser black-backed gull Larus fuscus are omnivorous and opportunistic birds that use highly anthropogenic habitats such as landfills and urban areas. The greylag goose Anser anser and common crane Grus grus are herbivores and use more natural habitats. Fresh faeces from 15 individuals of each species were analysed to assess the composition of bacterial communities using 16S rRNA amplicon-targeted sequencing, and to quantify the abundance of the Class I integron integrase gene (intI1) as well as genes encoding resistance to sulfonamides (sul1), beta-lactams (bla(TEM), bla(KPC) and bla(NDM)), tetracyclines (tetW), fluoroquinolones (qnrS), and colistin (mcr-1) using qPCR. Bacterial communities in gull faeces were the richest and most diverse. Beta diversity analysis showed segregation in faecal communities between bird species, but those from storks and gulls were the most similar, these being the species that regularly feed in landfills. Potential bacterial pathogens identified in faeces differed significantly between bird species, with higher relative abundance in gulls. Faeces from birds that feed in landfills (stork and gull) contained a significantly higher abundance of ARGs (sul1, bla(TEM), and tetW). Genes conferring resistance to last resort antibiotics such as carbapenems (bla(KPC)) and colistin (mcr-1) were only observed in faeces from gulls. These results show that these bird species are reservoirs of antimicrobial resistant bacteria and suggest that waterbirds may disseminate antibiotic resistance across environments (e.g., from landfills to ricefields or water supplies), and thus constitute a risk for their further spread to wildlife and humans.202133872913
765610.9672The host-specific resistome in environmental feces of Eurasian otters (Lutra lutra) and leopard cats (Prionailurus bengalensis) revealed by metagenomic sequencing. Investigation of feces of wildlife, which is considered as reservoirs, melting pots, vectors and secondary sources of antimicrobial resistance genes (ARGs), provides insights into the risks and ecology of ARGs in the environment. Here, we investigated microbiomes, virulence factor genes (VFGs) of bacterial pathogens, and resistomes in environmental feces of Eurasian otters (Lutra lutra) and leopard cats (Prionailurus bengalensis) using shotgun metagenome sequencing. As expected, the taxonomic compositions of bacteria were significantly different between the animals. Importantly, we found that the compositions of ARGs were also significantly different between the animals. We detected ARGs including iri, tetA(P), tetB(P), floR, sulII, strA, strB, tetW and tetY. Some of them were significantly more abundant in either of the host animals, such as strA, strB and tetY in Eurasian otters, and tetA(P), tetW and iri in leopard cats. We also found that some ARGs were selectively correlated to particular VFGs-related bacteria, such as tetA(P) and tetB(P) to Clostridium, and iri to Mycobacterium. We also found that there were positive correlations between Acinetobacter and ARGs of multiple antimicrobial classes. The host-specific resistomes and VFGs-related bacteria may be due to differences in the host's gut microbiome, diet and/or habitat, but further investigation is needed. Overall, this study provided important baseline information about the resistomes of the wildlife in Korea, which may help the conservation of these endangered species and assessment of human health risks posed by ARGs and bacterial pathogens from wildlife.202235399616
260520.9667Satellite tracking of gulls and genomic characterization of faecal bacteria reveals environmentally mediated acquisition and dispersal of antimicrobial-resistant Escherichia coli on the Kenai Peninsula, Alaska. Gulls (Larus spp.) have frequently been reported to carry Escherichia coli exhibiting antimicrobial resistance (AMR E. coli); however, the pathways governing the acquisition and dispersal of such bacteria are not well described. We equipped 17 landfill-foraging gulls with satellite transmitters and collected gull faecal samples longitudinally from four locations on the Kenai Peninsula, Alaska to assess: (a) gull attendance and transitions between sites, (b) spatiotemporal prevalence of faecally shed AMR E. coli, and (c) genomic relatedness of AMR E. coli isolates among sites. We also sampled Pacific salmon (Oncorhynchus spp.) harvested as part of personal-use dipnet fisheries at two sites to assess potential contamination with AMR E. coli. Among our study sites, marked gulls most commonly occupied the lower Kenai River (61% of site locations) followed by the Soldotna landfill (11%), lower Kasilof River (5%) and upper Kenai River (<1%). Gulls primarily moved between the Soldotna landfill and the lower Kenai River (94% of transitions among sites), which were also the two locations with the highest prevalence of AMR E. coli. There was relatively high spatial and temporal variability in AMR E. coli prevalence in gull faeces and there was no evidence of contamination on salmon harvested in personal-use fisheries. We identified E. coli sequence types and AMR genes of clinical importance, with some isolates possessing genes associated with resistance to as many as eight antibiotic classes. Our findings suggest that gulls acquire AMR E. coli at habitats with anthropogenic inputs and subsequent movements may represent pathways through which AMR is dispersed.201930980689
260330.9662Characterization of antimicrobial resistance genes in Enterobacteriaceae carried by suburban mesocarnivores and locally owned and stray dogs. The role of wildlife in the dissemination of antimicrobial-resistant bacteria and antimicrobial resistance genes (ARGs) in the environment is of increasing concern. We investigated the occurrence, richness and transmissibility potential of ARGs detected in the faeces of three mesocarnivore species: the coyote (Canis latrans), raccoon (Procyon lotor) and Virginia opossum (Didelphis virginiana), and of stray and owned dogs in suburban Chicago, IL, USA. Rectal swabs were collected from live-captured coyotes (n = 32), raccoons (n = 31) and Virginia opossums (n = 22). Fresh faecal samples were collected from locally owned (n = 13) and stray dogs (n = 18) and from the live-captured mesocarnivores, when available. Faecal samples and rectal swabs were enriched to select for Enterobacteriaceae and pooled by mesocarnivore species and dog type (owned or stray). Pooled enriched samples were then analysed for the presence of ARGs using shotgun sequencing. The three mesocarnivore and stray dog samples had twice as many unique ARGs compared to the owned dog sample, which was partly driven by a greater richness of beta-lactamase genes (genes conferring resistance to penicillins and cephalosporins). Raccoon and stray dog samples had the most ARGs in common, suggesting possible exposure to similar environmental sources of ARGs. In addition to identifying clinically relevant ARGs (e.g. bla(CMY) and qnrB), some ARGs were linked to the class 1 integrase gene, intI1, which may indicate anthropogenic origin. Findings from this pilot investigation suggest that the microbial communities of suburban mesocarnivores and stray dogs can host ARGs that can confer resistance to several antimicrobials used in human and veterinary medicine.202032034890
638640.9659Distribution of antibiotic and metal resistance genes in two glaciers of North Sikkim, India. Glacier studies as of late have ruffled many eyeballs, exploring this frigid ecology to understand the impact of climate change. Mapquesting the glaciers led to the discovery of concealed world of "psychrophiles" harboring in it. In the present study, the antibiotic resistance genes (ARGs) and heavy metal resistance genes (MRGs) were evaluated through both the culture-dependent and culture-independent methods. Samples were collected from two different glaciers, i.e., debris-covered glacier (Changme Khangpu) and debris-free glacier (Changme Khang). Functional metagenomics of both the glacier samples, provided evidence of presence of resistant genes against various antibiotic groups. Bacitracin resistant gene (bacA) was the predominant ARG in both the glaciers. MRGs in both the glacier samples were diversified as the genes detected were resistant against various heavy metals such as arsenic, tungsten, mercury, zinc, chromium, copper, cobalt, and iron. Unique MRGs identified from Changme Khangpu glacier were resistant to copper (cutA, cutE, cutC, cutF, cueR, copC, and copB) and chromium (yelf, ruvB, nfsA, chrR, and chrA) whereas, from Changme Khang glacier they showed resistance against cobalt (mgtA, dmef, corD, corC, corB, and cnrA), and iron (yefD, yefC, yefB, and yefA) heavy metals. ARGs aligned maximum identity with Gram-negative psychrotolerant bacteria. The cultured bacterial isolates showed tolerance to high concentrations of tested heavy metal solutions. Interestingly, some of the antibiotic resistant bacterial isolates also showed tolerance towards the higher concentrations of heavy metals. Thus, an introspection of the hypothesis of co-occurrence and/co-selection of ARGs and MRGs in such environments has been highlighted here.202032888596
264450.9659Prevalence of Antimicrobial-Resistant Escherichia coli in Migratory Greater White-Fronted Geese (Anser albifrons) and their Habitat in Miyajimanuma, Japan. The spread of antimicrobial-resistant bacteria (ARB) in natural environments including wild animals is a concern for public health. Birds cover large areas, and some fly across borders to migrate in large flocks. As a migratory bird, the Greater White-fronted Goose (Anser albifrons) travels to Miyajimanuma, North Japan, each spring and autumn. To investigate the ARB in migratory birds and their surroundings, we collected 110 fecal samples of A. albifrons and 18 water samples from Miyajimanuma in spring and autumn of 2019. Isolation of Escherichia coli was performed using selective agars with or without antimicrobials (cefazolin and nalidixic acid). Isolates of E. coli were recovered from 56 fecal samples (50.9%) and five water samples (27.8%) on agars without antimicrobials. No isolates were recovered on agars with antimicrobials. One E. coli isolate derived from a fecal sample exhibited resistance to β-lactams (ampicillin and cefazolin), whereas all other isolates exhibited susceptibility to all tested antimicrobials. The resistant isolate harbored blaACC, which could be transferred to other bacteria and confer resistance to β-lactams. These results suggest a low prevalence of antimicrobial resistance in wild migratory birds and their living environments; however, wild migratory birds sometimes carry ARB harboring transferrable antimicrobial resistance genes and therefore present a risk of spreading antimicrobial resistance.202134410412
764660.9658Assessment of Bacterial Community and Other Microorganism Along the Lam Takhong Watercourse, Nakhon Ratchasima, Thailand. Lam Takhong, a vital watercourse in Nakhon Ratchasima province, Thailand, supports agricultural, recreational, and urban activities. Originating in a national park, it flows through urban areas before discharging into a dam and running off via the sluice gate. While water quality monitoring is routine, microbial community data have never been reported. This study assesses the microorganism diversity and functional genes in Lam Takhong watercourse using a shotgun sequencing metagenomics approach. Water samples were collected from the upstream, midstream, and downstream sections. The midstream area exhibited the highest abundance of fecal coliform bacteria, plankton, and benthos, suggesting elevated pollution levels. Genes related to metabolism, particularly carbohydrate and amino acid pathways, were predominant. Proteobacteria was the most abundant phylum found in the water, with Limnohabitans as the dominant planktonic bacteria. Bacteria such as Staphylococcus, Mycobacterium, Escherichia, Pseudomonas, Enterococcus, Neisseria, Streptomyces, and Salmonella were detected, along with antibiotic resistance genes, raising public health concerns. These findings emphasize the need for microbial monitoring in the Lam Takhong to determine the potential water quality bioindicator and prevent potential disease spread through the water system.202540244481
843970.9658Comparative genomics analysis and virulence-related factors in novel Aliarcobacter faecis and Aliarcobacter lanthieri species identified as potential opportunistic pathogens. BACKGROUND: Emerging pathogenic bacteria are an increasing threat to public health. Two recently described species of the genus Aliarcobacter, A. faecis and A. lanthieri, isolated from human or livestock feces, are closely related to Aliarcobacter zoonotic pathogens (A. cryaerophilus, A. skirrowii, and A. butzleri). In this study, comparative genomics analysis was carried out to examine the virulence-related, including virulence, antibiotic, and toxin (VAT) factors in the reference strains of A. faecis and A. lanthieri that may enable them to become potentially opportunistic zoonotic pathogens. RESULTS: Our results showed that the genomes of the reference strains of both species have flagella genes (flaA, flaB, flgG, flhA, flhB, fliI, fliP, motA and cheY1) as motility and export apparatus, as well as genes encoding the Twin-arginine translocation (Tat) (tatA, tatB and tatC), type II (pulE and pulF) and III (fliF, fliN and ylqH) secretory pathways, allowing them to secrete proteins into the periplasm and host cells. Invasion and immune evasion genes (ciaB, iamA, mviN, pldA, irgA and fur2) are found in both species, while adherence genes (cadF and cj1349) are only found in A. lanthieri. Acid (clpB), heat (clpA and clpB), osmotic (mviN), and low-iron (irgA and fur2) stress resistance genes were observed in both species, although urease genes were not found in them. In addition, arcB, gyrA and gyrB were found in both species, mutations of which may mediate the resistance to quaternary ammonium compounds (QACs). Furthermore, 11 VAT genes including six virulence (cadF, ciaB, irgA, mviN, pldA, and tlyA), two antibiotic resistance [tet(O) and tet(W)] and three cytolethal distending toxin (cdtA, cdtB, and cdtC) genes were validated with the PCR assays. A. lanthieri tested positive for all 11 VAT genes. By contrast, A. faecis showed positive for ten genes except for cdtB because no PCR assay for this gene was available for this species. CONCLUSIONS: The identification of the virulence, antibiotic-resistance, and toxin genes in the genomes of A. faecis and A. lanthieri reference strains through comparative genomics analysis and PCR assays highlighted the potential zoonotic pathogenicity of these two species. However, it is necessary to extend this study to include more clinical and environmental strains to explore inter-species and strain-level genetic variations in virulence-related genes and assess their potential to be opportunistic pathogens for animals and humans.202235761183
311280.9657Farm-to-fork changes in poultry microbiomes and resistomes in Maputo City, Mozambique. Increasing demand for poultry has spurred poultry production in low- and middle-income countries like Mozambique. Poultry may be an important source of foodborne, antimicrobial-resistant bacteria to consumers in settings with limited water, sanitation, and hygiene infrastructure. The Chicken Exposures and Enteric Pathogens in Children Exposed through Environmental Pathways (ChEEP ChEEP) study was conducted in Maputo City, Mozambique from 2019 to 2021 to quantify enteric pathogen exposures along the supply chain for commercial and local (i.e., scavenger) chicken breeds. Here, we performed metagenomic sequencing of total DNA from banked ChEEP ChEEP samples to characterize fecal and carcass microbiomes and resistome diversity between chicken breeds and along the supply chain. Fecal samples (n = 26) were collected from commercial and local chickens at production sites and markets and carcass (n = 49) and rinse bucket samples (n = 26) from markets. We conducted taxonomic profiling and identified antimicrobial resistance genes (ARGs) from metagenomic sequence data, focusing especially on potential human pathogens and "high-risk" ARGs. We estimated alpha diversity for each sample and compared by site and breed. We estimated Bray-Curtis dissimilarity between samples and examined clustering. We found that commercial and local chickens harbored distinct fecal potential pathogens and resistomes at production and market sites. Many potentially pathogenic bacteria and ARGs present in chicken fecal samples are also present on carcasses sold to consumers. Finally, commercial chicken carcasses contain high-risk ARGs that are not necessarily introduced from chicken feces. These results indicate markets are an important site of exposure to potentially pathogenic bacteria and high-risk ARGs. IMPORTANCE: While chicken eggs and meat are a critical protein source in low-income settings, antibiotics are routinely fed to chickens with consequences for selection of antimicrobial resistance. Evaluating how poultry gut bacterial communities, including potential human pathogens and high-risk antimicrobial resistance genes, differ from farm to market could help identify where to target interventions to minimize transmission risks to human populations. In this study in Maputo City, Mozambique, we found compositional differences between commercial and local chicken breeds at production and market sites. We also found that while all potentially pathogenic bacteria and many high-risk antimicrobial resistance genes persisted from production and market through processing, some resistance genes were detected on carcass samples only after processing, suggesting human or environmental contamination is occurring within markets. Overall, our findings indicate that open-air markets may represent a critical juncture for human exposures to pathogens and antimicrobial resistance genes from poultry and poultry products.202539699181
306690.9656Staphylococci and fecal bacteria as bioaerosol components in animal housing facilities in the Zoological Garden in Chorzów. Zoos are places open for a large number of visitors, adults and children, who can admire exotic as well as indigenous animal species. The premises for animals may contain pathogenic microbes, including those exhibiting antibiotic resistance. It poses a threat to people remaining within the zoo premises, both for animal keepers who meet animals on a daily basis and visitors who infrequently have contact with animals. There are almost no studies concerning the presence on the concentration of airborne bacteria, especially staphylococci and fecal bacteria in animal shelters in the zoo. There is no data about antibiotic resistance of staphylococci in these places. The results will enable to determine the scale of the threat that indicator bacteria from the bioaerosol pose to human health within zoo premises. This study conducted in rooms for 5 animals group (giraffes, camels, elephants, kangaroos, and Colobinae (species of monkey)) in the Silesian Zoological Garden in Chorzów (Poland). The bioaerosol samples were collected using a six-stage Andersen cascade impactor to assess the concentrations and size distribution of airborne bacteria. Staphylococci were isolated from bioaerosol and tested for antibiotic resistance. In our study, the highest contamination of staphylococci and fecal bacteria was recorded in rooms for camels and elephants, and the lowest in rooms for Colobinae. At least 2/3 of bacteria in bioaerosol constituted respirable fraction that migrates into the lower respiratory tract of the people. In investigated animal rooms, the greatest bacteria contribution was recorded for bioaerosol fraction sized 1.1-3.3μm. Bacterial concentrations were particularly strong in spring and autumn, what is related to shedding fur by animals. Among the isolated staphylococci which most often occurred were Staphylococcus succinus, S. sciuri, and S. vitulinus. The highest antibiotic resistance was noted in the case of Staphylococcus epidermidis, while the lowest for S. xylosus. In addition to standard cleaning of animal rooms, periodic disinfection should be considered. Cleaning should be carried out wet, which should reduce dust, and thus the concentrations of bacteria in the air of animal enclosures.202134061267
2522100.9656Identification and specificity validation of unique and antimicrobial resistance genes to trace suspected pathogenic AMR bacteria and to monitor the development of AMR in non-AMR strains in the environment and clinical settings. The detection of developing antimicrobial resistance (AMR) has become a global issue. The detection of developing antimicrobial resistance has become a global issue. The growing number of AMR bacteria poses a new threat to public health. Therefore, a less laborious and quick confirmatory test becomes important for further investigations into developing AMR in the environment and in clinical settings. This study aims to present a comprehensive analysis and validation of unique and antimicrobial-resistant strains from the WHO priority list of antimicrobial-resistant bacteria and previously reported AMR strains such as Acinetobacter baumannii, Aeromonas spp., Anaeromonas frigoriresistens, Anaeromonas gelatinfytica, Bacillus spp., Campylobacter jejuni subsp. jejuni, Enterococcus faecalis, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumonia subsp. pneumoniae, Pseudomonas aeruginosa, Salmonella enterica subsp. enterica serovar Typhimurium, Thermanaeromonas toyohensis, and Vibrio proteolyticus. Using in-house designed gene-specific primers, 18 different antibiotic resistance genes (algJ, alpB, AQU-1, CEPH-A3, ciaB, CMY-1-MOX-7, CMY-1-MOX-9, CMY-1/MOX, cphA2, cphA5, cphA7, ebpA, ECP_4655, fliC, OXA-51, RfbU, ThiU2, and tolB) from 46 strains were selected and validated. Hence, this study provides insight into the identification of strain-specific, unique antimicrobial resistance genes. Targeted amplification and verification using selected unique marker genes have been reported. Thus, the present detection and validation use a robust method for the entire experiment. Results also highlight the presence of another set of 18 antibiotic-resistant and unique genes (Aqu1, cphA2, cphA3, cphA5, cphA7, cmy1/mox7, cmy1/mox9, asaI, ascV, asoB, oxa-12, acr-2, pepA, uo65, pliI, dr0274, tapY2, and cpeT). Of these sets of genes, 15 were found to be suitable for the detection of pathogenic strains belonging to the genera Aeromonas, Pseudomonas, Helicobacter, Campylobacter, Enterococcus, Klebsiella, Acinetobacter, Salmonella, Haemophilus, and Bacillus. Thus, we have detected and verified sets of unique and antimicrobial resistance genes in bacteria on the WHO Priority List and from published reports on AMR bacteria. This study offers advantages for confirming antimicrobial resistance in all suspected AMR bacteria and monitoring the development of AMR in non-AMR bacteria, in the environment, and in clinical settings.202338058762
2781110.9656COMPARING ANTIBIOTIC RESISTANCE IN FREE-RANGING VS. CAPTIVE AFRICAN WILD HERBIVORES. Antimicrobial resistance (AMR) is a critical challenge of the 21st century for public and animal health. The role of host biodiversity and the environment in the evolution and transmission of resistant bacteria between populations and species, and specifically at the wildlife-livestock-human interface, needs to be further investigated. We evaluated the AMR of commensal Escherichia coli in three mammalian herbivore species-impala (Aepyceros melampus), greater kudu (Tragelaphus strepsiceros), and plains zebra (Equus quagga)-targeting populations living under two conditions: captivity (French zoos) and free ranging (natural and private parks in Zimbabwe). From 137 fecal samples from these three host species, 328 E. coli isolates were isolated. We measured the AMR of each isolate against eight antibiotics, and we assessed the presence of AMR genes and mobile genetic element class 1 integrons (int1). Isolates obtained from captive hosts had a higher probability of being resistant than those obtained from free-ranging hosts (odds ratio, 293.8; confidence interval, 10-94,000). This statistically higher proportion of AMR bacteria in zoos than in natural parks was especially observed for bacteria resistant to amoxicillin. The percentage of int1 detection was higher when isolates were obtained from captive hosts, particularly captive impalas. Ninety percent of bacterial isolates with genes involved in antibiotic resistance also had the int1 gene. The sul1, sul2, blaTEM, and stra genes were found in 14, 19, 0, and 31%, respectively, of E. coli with respective antibiotic resistance. Finally, plains zebra carried AMR significantly more often than the other species.202337074787
5245120.9655Antimicrobial Resistance in U.S. Retail Ground Beef with and without Label Claims Regarding Antibiotic Use. ABSTRACT: Antibiotics used during food animal production account for approximately 77% of U.S. antimicrobial consumption by mass. Ground beef products labeled as raised without antibiotics (RWA) are perceived to harbor lower levels of antimicrobial-resistant bacteria than conventional (CONV) products with no label claims regarding antimicrobial use. Retail ground beef samples were obtained from six U.S. cities. Samples with an RWA or U.S. Department of Agriculture Organic claim (n = 299) were assigned to the RWA production system. Samples lacking these claims (n = 300) were assigned to the CONV production system. Each sample was cultured for the detection of five antimicrobial-resistant bacteria. Genomic DNA was isolated from each sample, and a quantitative PCR assay was used to determine the abundance of 10 antimicrobial resistance (AMR) genes. Prevalence of tetracycline-resistant Escherichia coli (CONV, 46.3%; RWA, 34.4%; P < 0.01) and erythromycin-resistant Enterococcus (CONV, 48.0%; RWA, 37.5%; P = 0.01) was higher in CONV ground beef. Salmonella was detected in 1.2% of samples. The AMR gene blaCTX-M (CONV, 4.1 log-normalized abundance; RWA, 3.8 log-normalized abundance; P < 0.01) was more abundant in CONV ground beef. The AMR genes mecA (CONV, 4.4 log-normalized abundance; RWA, 4.9 log-normalized abundance; P = 0.05), tet(A) (CONV, 3.9 log-normalized abundance; RWA, 4.5 log-normalized abundance; P < 0.01), tet(B) (CONV, 3.9 log-normalized abundance; RWA, 4.5 log-normalized abundance; P < 0.01), and tet(M) (CONV, 5.4 log-normalized abundance; RWA, 5.8 log-normalized abundance; P < 0.01) were more abundant in RWA ground beef. Although these results suggest that antimicrobial use during U.S. cattle production does not increase human exposure to antimicrobial-resistant bacteria via ground beef, quantitative microbiological risk assessments are required for authoritative determination of the human health impacts of the use of antimicrobial agents during beef production.202133302298
1798130.9654Impacts of Domestication and Veterinary Treatment on Mobile Genetic Elements and Resistance Genes in Equine Fecal Bacteria. Antimicrobial resistance in bacteria is a threat to both human and animal health. We aimed to understand the impact of domestication and antimicrobial treatment on the types and numbers of resistant bacteria, antibiotic resistance genes (ARGs), and class 1 integrons (C1I) in the equine gut microbiome. Antibiotic-resistant fecal bacteria were isolated from wild horses, healthy farm horses, and horses undergoing veterinary treatment, and isolates (9,083 colonies) were screened by PCR for C1I; these were found at frequencies of 9.8% (vet horses), 0.31% (farm horses), and 0.05% (wild horses). A collection of 71 unique C1I(+) isolates (17 Actinobacteria and 54 Proteobacteria) was subjected to resistance profiling and genome sequencing. Farm horses yielded mostly C1I(+) Actinobacteria (Rhodococcus, Micrococcus, Microbacterium, Arthrobacter, Glutamicibacter, Kocuria), while vet horses primarily yielded C1I(+) Proteobacteria (Escherichia, Klebsiella, Enterobacter, Pantoea, Acinetobacter, Leclercia, Ochrobactrum); the vet isolates had more extensive resistance and stronger P(C) promoters in the C1Is. All integrons in Actinobacteria were flanked by copies of IS6100, except in Micrococcus, where a novel IS5 family element (ISMcte1) was implicated in mobilization. In the Proteobacteria, C1Is were predominantly associated with IS26 and also IS1, Tn21, Tn1721, Tn512, and a putative formaldehyde-resistance transposon (Tn7489). Several large C1I-containing plasmid contigs were retrieved; two of these (plasmid types Y and F) also had extensive sets of metal resistance genes, including a novel copper-resistance transposon (Tn7519). Both veterinary treatment and domestication increase the frequency of C1Is in equine gut microflora, and each of these anthropogenic factors selects for a distinct group of integron-containing bacteria. IMPORTANCE There is increasing acknowledgment that a "one health" approach is required to tackle the growing problem of antimicrobial resistance. This requires that the issue is examined from not only the perspective of human medicine but also includes consideration of the roles of antimicrobials in veterinary medicine and agriculture and recognizes the importance of other ecological compartments in the dissemination of ARGs and mobile genetic elements such as C1I. We have shown that domestication and veterinary treatment increase the frequency of occurrence of C1Is in the equine gut microflora and that, in healthy farm horses, the C1I are unexpectedly found in Actinobacteria, while in horses receiving antimicrobial veterinary treatments, a taxonomic shift occurs, and the more typical integron-containing Proteobacteria are found. We identified several new mobile genetic elements (plasmids, insertion sequences [IS], and transposons) on genomic contigs from the integron-containing equine bacteria.202336988354
3120140.9654Bacterial communities and prevalence of antibiotic resistance genes carried within house flies (Diptera: Muscidae) associated with beef and dairy cattle farms. House flies (Musca domestica Linnaeus) are vectors of human and animal pathogens at livestock operations. Microbial communities in flies are acquired from, and correlate with, their local environment. However, variation among microbial communities carried by flies from farms in different geographical areas is not well understood. We characterized bacterial communities of female house flies collected from beef and dairy farms in Oklahoma, Kansas, and Nebraska using 16S rDNA amplicon sequencing and PCR. Bacterial community composition in house flies was affected by farm type and location. While the shared number of taxa between flies from beef or dairy farms was low, those taxa accounted >97% of the total bacterial community abundance. Bacterial species richness was 4% greater in flies collected from beef than in those collected from dairy farms and varied by farm type within states. Several potential pathogenic taxa were highly prevalent, comprising a core bacterial community in house flies from cattle farms. Prevalence of the pathogens Moraxella bovis and Moraxella bovoculi was greater in flies from beef farms relative to those collected on dairy cattle farms. House flies also carried bacteria with multiple tetracycline and florfenicol resistance genes. This study suggests that the house flies are significant reservoirs and disseminators of microbial threats to human and cattle health.202337612042
3873150.9654Long-term exposure to antibiotics has caused accumulation of resistance determinants in the gut microbiota of honeybees. Antibiotic treatment can impact nontarget microbes, enriching the pool of resistance genes available to pathogens and altering community profiles of microbes beneficial to hosts. The gut microbiota of adult honeybees, a distinctive community dominated by eight bacterial species, provides an opportunity to examine evolutionary responses to long-term treatment with a single antibiotic. For decades, American beekeepers have routinely treated colonies with oxytetracycline for control of larval pathogens. Using a functional metagenomic screen of bacteria from Maryland bees, we detected a high incidence of tetracycline/oxytetracycline resistance. This resistance is attributable to known resistance loci for which nucleotide sequences and flanking mobility genes were nearly identical to those from human pathogens and from bacteria associated with farm animals. Surveys using diagnostic PCR and sequencing revealed that gut bacteria of honeybees from diverse localities in the United States harbor eight tetracycline resistance loci, including efflux pump genes (tetB, tetC, tetD, tetH, tetL, and tetY) and ribosome protection genes (tetM and tetW), often at high frequencies. Isolates of gut bacteria from Connecticut bees display high levels of tetracycline resistance. Resistance genes were ubiquitous in American samples, though rare in colonies unexposed for 25 years. In contrast, only three resistance loci, at low frequencies, occurred in samples from countries not using antibiotics in beekeeping and samples from wild bumblebees. Thus, long-term antibiotic treatment has caused the bee gut microbiota to accumulate resistance genes, drawn from a widespread pool of highly mobile loci characterized from pathogens and agricultural sites. We found that 50 years of using antibiotics in beekeeping in the United States has resulted in extensive tetracycline resistance in the gut microbiota. These bacteria, which form a distinctive community present in healthy honeybees worldwide, may function in protecting bees from disease and in providing nutrition. In countries that do not use antibiotics in beekeeping, bee gut bacteria contained far fewer resistance genes. The tetracycline resistance that we observed in American samples reflects the capture of mobile resistance genes closely related to those known from human pathogens and agricultural sites. Thus, long-term treatment to control a specific pathogen resulted in the accumulation of a stockpile of resistance capabilities in the microbiota of a healthy gut. This stockpile can, in turn, provide a source of resistance genes for pathogens themselves. The use of novel antibiotics in beekeeping may disrupt bee health, adding to the threats faced by these pollinators.201223111871
4537160.9653Source Tracking and Global Distribution of the Tigecycline Non-Susceptible tet(X). The emergence of tet(X) genes has compromised the clinical use of the last-line antibiotic tigecycline. We identified 322 (1.21%) tet(X) positive samples from 12,829 human microbiome samples distributed in four continents (Asia, Europe, North America, and South America) using retrospective data from worldwide. These tet(X) genes were dominated by tet(X2)-like orthologs but we also identified 12 samples carrying novel tet(X) genes, designed tet(X45), tet(X46), and tet(X47), were resistant to tigecycline. The metagenomic analysis indicated these tet(X) genes distributed in anaerobes dominated by Bacteroidaceae (78.89%) of human-gut origin. Two mobile elements ISBf11 and IS4351 were most likely to promote the transmission of these tet(X2)-like orthologs between Bacteroidaceae and Riemerella anatipestifer. tet(X2)-like orthologs was also developed during transmission by mutation to high-level tigecycline resistant genes tet(X45), tet(X46), and tet(X47). Further tracing these tet(X) in single bacterial isolate from public repository indicated tet(X) genes were present as early as 1960s in R. anatipestifer that was the primary tet(X) carrier at early stage (before 2000). The tet(X2) and non-tet(X2) orthologs were primarily distributed in humans and food animals respectively, and non-tet(X2) were dominated by tet(X3) and tet(X4). Genomic comparison indicated these tet(X) genes were likely to be generated during tet(X) transmission between Flavobacteriaceae and E. coli/Acinetobacter spp., and ISCR2 played a key role in the transmission. These results suggest R. anatipestifer was the potential ancestral source of tet(X). In addition, Bacteroidaceae of human-gut origin was an important hidden reservoir and mutational incubator for the mobile tet(X) genes that enabled spread to facultative anaerobes and aerobes. IMPORTANCE The emergence of the tigecycline resistance gene tet(X) has posed a severe threat to public health. However, reports of its origin and distribution in human remain rare. Here, we explore the origin and distribution of tet(X) from large-scale metagenomic data of human-gut origin and public repository. This study revealed the emergency of tet(X) gene in 1960s, which has refreshed a previous standpoint that the earliest presence of tet(X) was in 1980s. The metagenomic analysis from data mining covered the unculturable bacteria, which has overcome the traditional bacteria isolating and purificating technologies, and the analysis indicated that the Bacteroidaceae of human-gut origin was an important hidden reservoir for tet(X) that enabled spread to facultative anaerobes and aerobes. The continuous monitoring of mobile tigecycline resistance determinants from both culturable and unculturable microorganisms is imperative for understanding and tackling the dissemination of tet(X) genes in both the health care and agricultural sectors.202134935428
7648170.9652Bacterial Associations Across House Fly Life History: Evidence for Transstadial Carriage From Managed Manure. House flies (Diptera: Muscidae; Musca domestica L.) associate with microbe-rich substrates throughout life history. Because larvae utilize bacteria as a food source, most taxa present in the larval substrate, e.g., manure, are digested or degraded. However, some species survive and are present as third-instar larvae begin pupation. During metamorphosis, many bacteria are again lost during histolysis of the larval gut and subsequent remodeling to produce the gut of the imago. It has been previously demonstrated that some bacterial species survive metamorphosis, being left behind in the puparium, present on the body surface, or in the gut of the emerged adult. We used a combined culture-molecular approach to identify viable microbes from managed manure residue and a wild population of house fly larvae, pupae, puparia, and adults to assess transstadial carriage. All larval (10/10), pupal (10/10), and puparial (10/10) cultures were positive for bacteria. Several bacterial species that were present in larvae also were present either in pupae or puparia. Four viable bacterial species were detectable in 6 of 10 imagoes reared from manure. Of note is the apparent transstadial carriage of Bacillus sonorensis, which has been associated with milk spoilage at dairies, and Alcaligenes faecalis, which can harbor numerous antibiotic resistance genes on farms. The potential of newly emerged flies to harbor and disseminate bacteria from managed manure on farms is an understudied risk that deserves further evaluation.201626798138
7131180.9652Longitudinal study of the short- and long-term effects of hospitalisation and oral trimethoprim-sulfadiazine administration on the equine faecal microbiome and resistome. BACKGROUND: Hospitalisation and antimicrobial treatment are common in horses and significantly impact the intestinal microbiota. Antimicrobial treatment might also increase levels of resistant bacteria in faeces, which could spread to other ecological compartments, such as the environment, other animals and humans. In this study, we aimed to characterise the short- and long-term effects of transportation, hospitalisation and trimethoprim-sulfadiazine (TMS) administration on the faecal microbiota and resistome of healthy equids. METHODS: In a longitudinal experimental study design, in which the ponies served as their own control, faecal samples were collected from six healthy Welsh ponies at the farm (D0-D13-1), immediately following transportation to the hospital (D13-2), during 7 days of hospitalisation without treatment (D14-D21), during 5 days of oral TMS treatment (D22-D26) and after discharge from the hospital up to 6 months later (D27-D211). After DNA extraction, 16S rRNA gene sequencing was performed on all samples. For resistome analysis, shotgun metagenomic sequencing was performed on selected samples. RESULTS: Hospitalisation without antimicrobial treatment did not significantly affect microbiota composition. Oral TMS treatment reduced alpha-diversity significantly. Kiritimatiellaeota, Fibrobacteres and Verrucomicrobia significantly decreased in relative abundance, whereas Firmicutes increased. The faecal microbiota composition gradually recovered after discontinuation of TMS treatment and discharge from the hospital and, after 2 weeks, was more similar to pre-treatment composition than to composition during TMS treatment. Six months later, however, microbiota composition still differed significantly from that at the start of the study and Spirochaetes and Verrucomicrobia were less abundant. TMS administration led to a significant (up to 32-fold) and rapid increase in the relative abundance of resistance genes sul2, tetQ, ant6-1a, and aph(3")-lb. lnuC significantly decreased directly after treatment. Resistance genes sul2 (15-fold) and tetQ (six-fold) remained significantly increased 6 months later. CONCLUSIONS: Oral treatment with TMS has a rapid and long-lasting effect on faecal microbiota composition and resistome, making the equine hindgut a reservoir and potential source of resistant bacteria posing a risk to animal and human health through transmission. These findings support the judicious use of antimicrobials to minimise long-term faecal presence, excretion and the spread of antimicrobial resistance in the environment. Video Abstract.202336850017
5279190.9652Occurrence of integrons and antibiotic resistance genes in cryoconite and ice of Svalbard, Greenland, and the Caucasus glaciers. The prevalence of integrons and antibiotic resistance genes (ARGs) is a serious threat for public health in the new millennium. Although commonly detected in sites affected by strong anthropogenic pressure, in remote areas their occurrence, dissemination, and transfer to other ecosystems is poorly recognized. Remote sites are considered as a benchmark for human-induced contamination on Earth. For years glaciers were considered pristine, now they are regarded as reservoirs of contaminants, thus studies on contamination of glaciers, which may be released to other ecosystems, are highly needed. Therefore, in this study we evaluated the occurrence and frequency of clinically relevant ARGs and resistance integrons in the genomes of culturable bacteria and class 1 integron-integrase gene copy number in the metagenome of cryoconite, ice and supraglacial gravel collected on two Arctic (South-West Greenland and Svalbard) and two High Mountain (the Caucasus) glaciers. Altogether, 36 strains with intI1 integron-integrase gene were isolated. Presence of class 1 integron-integrase gene was also recorded in metagenomic DNA from all sampling localities. The mean values of relative abundance of intI1 gene varied among samples and ranged from 0.7% in cryoconite from Adishi Glacier (the Caucasus) to 16.3% in cryoconite from Greenland. Moreover, antibiotic-resistant strains were isolated from all regions. Genes conferring resistance to β-lactams (bla(SHV), bla(TEM), bla(OXA), bla(CMY)), fluoroquinolones (qepA, qnrC), and chloramphenicol (cat, cmr) were detected in the genomes of bacterial isolates.202032059297