# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 507 | 0 | 0.9878 | Tellurite resistance and reduction by obligately aerobic photosynthetic bacteria. Seven species of obligately aerobic photosynthetic bacteria of the genera Erythromicrobium, Erythrobacter, and Roseococcus demonstrated high-level resistance to tellurite and accumulation of metallic tellurium crystals. High-level resistance without tellurite reduction was observed for Roseococcus thiosulfatophilus and Erythromicrobium ezovicum grown with certain organic carbon sources, implying that tellurite reduction is not essential to confer tellurite resistance. | 1996 | 16535446 |
| 556 | 1 | 0.9877 | An ArsR/SmtB family member regulates arsenic resistance genes unusually arranged in Thermus thermophilus HB27. Arsenic resistance is commonly clustered in ars operons in bacteria; main ars operon components encode an arsenate reductase, a membrane extrusion protein, and an As-sensitive transcription factor. In the As-resistant thermophile Thermus thermophilus HB27, genes encoding homologues of these proteins are interspersed in the chromosome. In this article, we show that two adjacent genes, TtsmtB, encoding an ArsR/SmtB transcriptional repressor and, TTC0354, encoding a Zn(2+) /Cd(2+) -dependent membrane ATPase are involved in As resistance; differently from characterized ars operons, the two genes are transcribed from dedicated promoters upstream of their respective genes, whose expression is differentially regulated at transcriptional level. Mutants defective in TtsmtB or TTC0354 are more sensitive to As than the wild type, proving their role in arsenic resistance. Recombinant dimeric TtSmtB binds in vitro to both promoters, but its binding capability decreases upon interaction with arsenate and, less efficiently, with arsenite. In vivo and in vitro experiments also demonstrate that the arsenate reductase (TtArsC) is subjected to regulation by TtSmtB. We propose a model for the regulation of As resistance in T. thermophilus in which TtSmtB is the arsenate sensor responsible for the induction of TtArsC which generates arsenite exported by TTC0354 efflux protein to detoxify cells. | 2017 | 28696001 |
| 176 | 2 | 0.9876 | The mercury resistance (mer) operon in a marine gliding flavobacterium, Tenacibaculum discolor 9A5. Genes conferring mercury resistance have been investigated in a variety of bacteria and archaea but not in bacteria of the phylum Bacteroidetes, despite their importance in many environments. We found, however, that a marine gliding Bacteroidetes species, Tenacibaculum discolor, was the predominant mercury-resistant bacterial taxon cultured from a salt marsh fertilized with mercury-contaminated sewage sludge. Here we report characterization of the mercuric reductase and the narrow-spectrum mercury resistance (mer) operon from one of these strains - T. discolor 9A5. This mer operon, which confers mercury resistance when cloned into Flavobacterium johnsoniae, encodes a novel mercury-responsive ArsR/SmtB family transcriptional regulator that appears to have evolved independently from other mercury-responsive regulators, a novel putative transport protein consisting of a fusion between the integral membrane Hg(II) transporter MerT and the periplasmic Hg(II)-binding protein MerP, an additional MerP protein, and a mercuric reductase that is phylogenetically distinct from other known mercuric reductases. | 2013 | 22816663 |
| 178 | 3 | 0.9876 | Molecular basis of bacterial resistance to organomercurial and inorganic mercuric salts. Bacteria mediate resistance to organomercurial and inorganic mercuric salts by metabolic conversion to nontoxic elemental mercury, Hg(0). The genes responsible for mercury resistance are organized in the mer operon, and such operons are often found in plasmids that also bear drug resistance determinants. We have subcloned three of these mer genes, merR, merB, and merA, and have studied their protein products via protein overproduction and purification, and structural and functional characterization. MeR is a metalloregulatory DNA-binding protein that acts as a repressor of both its own and structural gene transcription in the absence of Hg(II); in addition it acts as a positive effector of structural gene transcription when Hg(II) is present. MerB, organomercury lyase, catalyzes the protonolytic fragmentation of organomercurials to the parent hydrocarbon and Hg(II) by an apparent SE2 mechanism. MerA, mercuric ion reductase, is an FAD-containing and redox-active disulfide-containing enzyme with homology to glutathione reductase. It has evolved the unique catalytic capacity to reduce Hg(II) to Hg(0) and thereby complete the detoxification scheme. | 1988 | 3277886 |
| 404 | 4 | 0.9875 | Plasmid-borne cadmium resistance genes in Listeria monocytogenes are similar to cadA and cadC of Staphylococcus aureus and are induced by cadmium. pLm74 is the smallest known plasmid in Listeria monocytogenes. It confers resistance to the toxic divalent cation cadmium. It contains a 3.1-kb EcoRI fragment which hybridizes with the cadAC genes of plasmid pI258 of Staphylococcus aureus. When introduced into cadmium-sensitive L. monocytogenes or Bacillus subtilis strains, this fragment conferred cadmium resistance. The DNA sequence of the 3.1-kb EcoRI fragment contains two open reading frames, cadA and cadC. The deduced amino acid sequences are similar to those of the cad operon of plasmid pI258 of S. aureus, known to prevent accumulation of Cd2+ in the bacteria by an ATPase efflux mechanism. The cadmium resistance determinant of L. monocytogenes does not confer zinc resistance, in contrast to the cadAC determinant of S. aureus, suggesting that the two resistance mechanisms are slightly different. Slot blot DNA-RNA hybridization analysis showed cadmium-inducible synthesis of L. monocytogenes cadAC RNA. | 1994 | 8188605 |
| 123 | 5 | 0.9874 | Genes for all metals--a bacterial view of the periodic table. The 1996 Thom Award Lecture. Bacterial chromosomes have genes for transport proteins for inorganic nutrient cations and oxyanions, such as NH4+, K+, Mg2+, Co2+, Fe3+, Mn2+, Zn2+ and other trace cations, and PO4(3-), SO4(2-) and less abundant oxyanions. Together these account for perhaps a few hundred genes in many bacteria. Bacterial plasmids encode resistance systems for toxic metal and metalloid ions including Ag+, AsO2-, AsO4(3-), Cd2+, Co2+, CrO4(2-), Cu2+, Hg2+, Ni2+, Pb2+, TeO3(2-), Tl+ and Zn2+. Most resistance systems function by energy-dependent efflux of toxic ions. A few involve enzymatic (mostly redox) transformations. Some of the efflux resistance systems are ATPases and others are chemiosmotic ion/proton exchangers. The Cd(2+)-resistance cation pump of Gram-positive bacteria is membrane P-type ATPase, which has been labeled with 32P from [gamma-32P]ATP and drives ATP-dependent Cd2+ (and Zn2+) transport by membrane vesicles. The genes defective in the human hereditary diseases of copper metabolism, Menkes syndrome and Wilson's disease, encode P-type ATPases that are similar to bacterial cadmium ATPases. The arsenic resistance system transports arsenite [As(III)], alternatively with the ArsB polypeptide functioning as a chemiosmotic efflux transporter or with two polypeptides, ArsB and ArsA, functioning as an ATPase. The third protein of the arsenic resistance system is an enzyme that reduces intracellular arsenate [As(V)] to arsenite [As(III)], the substrate of the efflux system. In Gram-negative cells, a three polypeptide complex functions as a chemiosmotic cation/protein exchanger to efflux Cd2+, Zn2+ and Co2+. This pump consists of an inner membrane (CzcA), an outer membrane (CzcC) and a membrane-spanning (CzcB) protein that function together. | 1998 | 9523453 |
| 185 | 6 | 0.9874 | The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli. The chromosomal arsenic resistance genes of the acidophilic, chemolithoautotrophic, biomining bacterium Thiobacillus ferrooxidans were cloned and sequenced. Homologues of four arsenic resistance genes, arsB, arsC, arsH, and a putative arsR gene, were identified. The T. ferrooxidans arsB (arsenite export) and arsC (arsenate reductase) gene products were functional when they were cloned in an Escherichia coli ars deletion mutant and conferred increased resistance to arsenite, arsenate, and antimony. Therefore, despite the fact that the ars genes originated from an obligately acidophilic bacterium, they were functional in E. coli. Although T. ferrooxidans is gram negative, its ArsC was more closely related to the ArsC molecules of gram-positive bacteria. Furthermore, a functional trxA (thioredoxin) gene was required for ArsC-mediated arsenate resistance in E. coli; this finding confirmed the gram-positive ArsC-like status of this resistance and indicated that the division of ArsC molecules based on Gram staining results is artificial. Although arsH was expressed in an E. coli-derived in vitro transcription-translation system, ArsH was not required for and did not enhance arsenic resistance in E. coli. The T. ferrooxidans ars genes were arranged in an unusual manner, and the putative arsR and arsC genes and the arsBH genes were translated in opposite directions. This divergent orientation was conserved in the four T. ferrooxidans strains investigated. | 2000 | 10788346 |
| 194 | 7 | 0.9874 | Possible Role of CHAD Proteins in Copper Resistance. Conserved Histidine Alpha-helical Domain (CHAD) proteins attached to the surface of polyphosphate (PolyP) have been studied in some bacteria and one archaeon. However, the activity of CHAD proteins is unknown beyond their interaction with PolyP granules. By using bioinformatic analysis, we report that several species of the biomining acidophilic bacteria contain orthologs of CHAD proteins with high sequence identity. Furthermore, the gene coding for the CHAD protein is in the same genetic context of the enzyme polyphosphate kinase (PPK), which is in charge of PolyP synthesis. Particularly, the group of ppk and CHAD genes is highly conserved. Metallosphaera sedula and other acidophilic archaea used in biomining also contain CHAD proteins. These archaea show high levels of identity in genes coding for a cluster having the same organization. Amongst these genes are chad and ppx. In general, both biomining bacteria and archaea contain high PolyP levels and are highly resistant to heavy metals. Therefore, the presence of this conserved genetic organization suggests a high relevance for their metabolism. It has been formerly reported that a crystallized CHAD protein contains a copper-binding site. Based on this previous knowledge, in the present report, it was determined that all analyzed CHAD proteins are very conserved at their structural level. In addition, it was found that the lack of YgiF, an Escherichia coli CHAD-containing protein, decreases copper resistance in this bacterium. This phenotype was not only complemented by transforming E. coli with YgiF but also by expressing CHAD from Acidithiobacillus ferrooxidans in it. Interestingly, the strains in which the possible copper-binding sites were mutated were also more metal sensitive. Based on these results, we propose that CHAD proteins are involved in copper resistance in microorganisms. These findings are very interesting and may eventually improve biomining operations in the future. | 2024 | 38399813 |
| 181 | 8 | 0.9873 | Cytoplasmic CopZ-Like Protein and Periplasmic Rusticyanin and AcoP Proteins as Possible Copper Resistance Determinants in Acidithiobacillus ferrooxidans ATCC 23270. Acidophilic organisms, such as Acidithiobacillus ferrooxidans, possess high-level resistance to copper and other metals. A. ferrooxidans contains canonical copper resistance determinants present in other bacteria, such as CopA ATPases and RND efflux pumps, but these components do not entirely explain its high metal tolerance. The aim of this study was to find other possible copper resistance determinants in this bacterium. Transcriptional expression of A. ferrooxidans genes coding for a cytoplasmic CopZ-like copper-binding chaperone and the periplasmic copper-binding proteins rusticyanin and AcoP, which form part of an iron-oxidizing supercomplex, was found to increase when the microorganism was grown in the presence of copper. All of these proteins conferred more resistance to copper when expressed heterologously in a copper-sensitive Escherichia coli strain. This effect was absent when site-directed-mutation mutants of these proteins with altered copper-binding sites were used in this metal sensitivity assay. These results strongly suggest that the three copper-binding proteins analyzed here are copper resistance determinants in this extremophile and contribute to the high-level metal resistance of this industrially important biomining bacterium. | 2016 | 26637599 |
| 129 | 9 | 0.9873 | Evidence for vital role of endo-β-N-acetylglucosaminidase in the resistance of Arthrobacter protophormiae RKJ100 towards elevated concentrations of o-nitrobenzoate. Arthrobacter protophormiae RKJ100 was previously characterized for its ability to tolerate extremely high concentrations of o-nitrobenzoate (ONB), a toxic xenobiotic environmental pollutant. The physiological responses of strain RKJ100 to ≥30 mM ONB indicated towards a resistance mechanism manifested via alteration of cell morphology and cell wall structure. In this study, we aim to characterize gene(s) involved in the resistance of strain RKJ100 towards extreme concentrations (i.e. 150 mM) of ONB. Transposon mutagenesis was carried out to generate a mutant library of strain RKJ100, which was then screened for ONB-sensitive mutants. A sensitive mutant was defined and selected as one that could not tolerate ≥30 mM ONB. Molecular and biochemical characterization of this mutant showed that the disruption of endo-β-N-acetylglucosaminidase (ENGase) gene caused the sensitivity. ENGase is an important enzyme for oligosaccharide processing and cell wall recycling in bacteria, fungi, plants and animals. Previous reports have already indicated several possible roles of this enzyme in cellular homeostasis. Results presented here provide the first evidence for its involvement in bacterial resistance towards extreme concentrations of a toxic xenobiotic compound and also suggest that strain RKJ100 employs ENGase as an important component in osmotic shock response for resisting extreme concentrations of ONB. | 2014 | 24562786 |
| 184 | 10 | 0.9872 | Plasmid chromate resistance and chromate reduction. Compounds of hexavalent chromium (chromates and dichromates) are highly toxic. Plasmid genetic determinants for chromate resistance have been described in several bacterial genera, most notably in Pseudomonas. Resistance to chromate is associated with decreased chromate transport by the resistant cells. The genes for a hydrophobic polypeptide, ChrA, were identified in chromate resistance plasmids of Pseudomonas aeruginosa and Alcaligenes eutrophus. ChrA is postulated to be responsible for the outward membrane translocation of chromate anions. Widespread bacterial reduction of hexavalent chromate to the less toxic trivalent chromic ions is also known. Chromate reduction determinants have not, however, been found on bacterial plasmids or transposons. In different bacteria, chromate reduction is either an aerobic or an anaerobic process (but not both) and is carried out either by soluble proteins or by cell membranes. Chromate reduction may also be a mechanism of resistance to chromate, but this has not been unequivocally shown. | 1992 | 1741461 |
| 124 | 11 | 0.9872 | A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. Essentially all bacteria have genes for toxic metal ion resistances and these include those for Ag+, AsO2-, AsO4(3-), Cd2+ Co2+, CrO4(2-), Cu2+, Hg2+, Ni2+, Pb2+, TeO3(2-), Tl+ and Zn2+. The largest group of resistance systems functions by energy-dependent efflux of toxic ions. Fewer involve enzymatic transformations (oxidation, reduction, methylation, and demethylation) or metal-binding proteins (for example, metallothionein SmtA, chaperone CopZ and periplasmic silver binding protein SilE). Some of the efflux resistance systems are ATPases and others are chemiosmotic ion/proton exchangers. For example, Cd2+-efflux pumps of bacteria are either inner membrane P-type ATPases or three polypeptide RND chemiosmotic complexes consisting of an inner membrane pump, a periplasmic-bridging protein and an outer membrane channel. In addition to the best studied three-polypeptide chemiosmotic system, Czc (Cd2+, Zn2+, and Co2), others are known that efflux Ag+, Cu+, Ni2+, and Zn2+. Resistance to inorganic mercury, Hg2+ (and to organomercurials, such as CH3Hg+ and phenylmercury) involve a series of metal-binding and membrane transport proteins as well as the enzymes mercuric reductase and organomercurial lyase, which overall convert more toxic to less toxic forms. Arsenic resistance and metabolizing systems occur in three patterns, the widely-found ars operon that is present in most bacterial genomes and many plasmids, the more recently recognized arr genes for the periplasmic arsenate reductase that functions in anaerobic respiration as a terminal electron acceptor, and the aso genes for the periplasmic arsenite oxidase that functions as an initial electron donor in aerobic resistance to arsenite. | 2005 | 16133099 |
| 363 | 12 | 0.9871 | Constitutive arsenite oxidase expression detected in arsenic-hypertolerant Pseudomonas xanthomarina S11. Pseudomonas xanthomarina S11 is an arsenite-oxidizing bacterium isolated from an arsenic-contaminated former gold mine in Salsigne, France. This bacterium showed high resistance to arsenite and was able to oxidize arsenite to arsenate at concentrations up to 42.72 mM As[III]. The genome of this strain was sequenced and revealed the presence of three ars clusters. One of them is located on a plasmid and is organized as an "arsenic island" harbouring an aio operon and genes involved in phosphorous metabolism, in addition to the ars genes. Neither the aioXRS genes nor a specific sigma-54-dependent promoter located upstream of aioBA genes, both involved in regulation of arsenite oxidase expression in other arsenite-oxidizing bacteria, could be identified in the genome. This observation is in accordance with the fact that no difference was observed in expression of arsenite oxidase in P. xanthomarina S11, whether or not the strain was grown in the presence of As[III]. | 2015 | 25753102 |
| 126 | 13 | 0.9871 | Single-gene knockout of a novel regulatory element confers ethionine resistance and elevates methionine production in Corynebacterium glutamicum. Despite the availability of genome data and recent advances in methionine regulation in Corynebacterium glutamicum, sulfur metabolism and its underlying molecular mechanisms are still poorly characterized in this organism. Here, we describe the identification of an ORF coding for a putative regulatory protein that controls the expression of genes involved in sulfur reduction dependent on extracellular methionine levels. C. glutamicum was randomly mutagenized by transposon mutagenesis and 7,000 mutants were screened for rapid growth on agar plates containing the methionine antimetabolite D,L-ethionine. In all obtained mutants, the site of insertion was located in the ORF NCgl2640 of unknown function that has several homologues in other bacteria. All mutants exhibited similar ethionine resistance and this phenotype could be transferred to another strain by the defined deletion of the NCgl2640 gene. Moreover, inactivation of NCgl2640 resulted in significantly increased methionine production. Using promoter lacZ-fusions of genes involved in sulfur metabolism, we demonstrated the relief of L-methionine repression in the NCgl2640 mutant for cysteine synthase, o-acetylhomoserine sulfhydrolase (metY) and sulfite reductase. Complementation of the mutant strain with plasmid-borne NCgl2640 restored the wild-type phenotype for metY and sulfite reductase. | 2005 | 15668756 |
| 179 | 14 | 0.9871 | The genetics and biochemistry of mercury resistance. The ability of bacteria to detoxify mercurial compounds by reduction and volatilization is conferred by mer genes, which are usually plasmid located. The narrow spectrum (Hg2+ detoxifying) Tn501 and R100 determinants have been subjected to molecular genetic and DNA sequence analysis. Biochemical studies on the flavoprotein mercuric reductase have elucidated the mechanism of reduction of Hg2+ to Hg0. The mer genes have been mapped and sequenced and their protein products studied in minicells. Based on the deduced amino acid sequences, these proteins have been assigned a role in a mechanistic scheme for mercury flux in resistant bacteria. The mer genes are inducible, with regulatory control being exerted at the transcriptional level both positively and negatively. Attention is now focusing on broad-spectrum resistance involving detoxification of organomercurials by an additional enzyme, organomercurial lyase. Lyase genes have recently been cloned and sequencing studies are in progress. | 1987 | 2827958 |
| 6355 | 15 | 0.9870 | Regulation of resistance to copper in Xanthomonas axonopodis pv. vesicatoria. Copper-resistant strains of Xanthomonas axonopodis pv. vesicatoria were previously shown to carry plasmid-borne copper resistance genes related to the cop and pco operons of Pseudomonas syringae and Escherichia coli, respectively. However, instead of the two-component (copRS and pcoRS) systems determining copper-inducible expression of the operons in P. syringae and E. coli, a novel open reading frame, copL, was found to be required for copper-inducible expression of the downstream multicopper oxidase copA in X. axonopodis. copL encodes a predicted protein product of 122 amino acids that is rich in histidine and cysteine residues, suggesting a possible direct interaction with copper. Deletions or frameshift mutations within copL, as well as an amino acid substitution generated at the putative start codon of copL, caused a loss of copper-inducible transcriptional activation of copA. A nonpolar insertion of a kanamycin resistance gene in copL resulted in copper sensitivity in the wild-type strain. However, repeated attempts to complement copL mutations in trans failed. Analysis of the genomic sequence databases shows that there are copL homologs upstream of copAB genes in X. axonopodis pv. citri, X. campestris pv. campestris, and Xylella fastidiosa. The cloned promoter area upstream of copA in X. axonopodis pv. vesicatoria did not function in Pseudomonas syringae or in E. coli, nor did the P. syringae cop promoter function in Xanthomonas. However, a transcriptional fusion of the Xanthomonas cop promoter with the Pseudomonas copABCDRS was able to confer resistance to copper in Xanthomonas, showing divergence in the mechanisms of regulation of the resistance to copper in phytopathogenic bacteria. | 2005 | 15691931 |
| 362 | 16 | 0.9870 | Complete Genome Sequences of Highly Arsenite-Resistant Bacteria Brevibacterium sp. Strain CS2 and Micrococcus luteus AS2. The complete genome sequences of two highly arsenite-resistant Actinomycetales isolates are presented. Both genomes are G+C rich and consist of a single chromosome containing homologs of known arsenite resistance genes. | 2019 | 31371538 |
| 122 | 17 | 0.9869 | Functional characterization of ORCTL2--an organic cation transporter expressed in the renal proximal tubules. Chromosome 11p15.5 harbors a gene or genes involved in Beckwith-Wiedemann syndrome that confer(s) susceptibility to Wilms' tumor, rhabdomyosarcoma, and hepatoblastoma. We have previously identified a transcript at 11p15.5 which encodes a putative membrane transport protein, designated organic cation transporter-like 2 (ORCTL2), that shares homology with tetracycline resistance proteins and bacterial multidrug resistance proteins. In this report, we have investigated the transport properties of ORCTL2 and show that this protein can confer resistance to chloroquine and quinidine when overexpressed in bacteria. Immunohistochemistry analyses performed with anti-ORCTL2 polyclonal antibodies on human renal sections indicate that ORCTL2 is localized on the apical membrane surface of the proximal tubules. These results suggest that ORCTL2 may play a role in the transport of chloroquine and quinidine related compounds in the kidney. | 1998 | 9744804 |
| 186 | 18 | 0.9869 | Plasmid-encoded resistance to arsenic and antimony. Resistance determinants to the toxic oxyanionic salts of arsenic and antimony are found on plasmids of both gram-negative and gram-positive organisms. In most cases these provide resistance to both the oxyanions of +III oxidation state, antimonite and arsenite, and the +V oxidation state, arsenate. In both gram-positive and -negative bacteria, resistance is correlated with efflux of the anions from cells. The determinant from the plasmid R773, isolated from a gram-negative organism, has been studied in detail. It encodes an oxyanion-translocating ATPase with three subunits, a catalytic subunit, the ArsA protein, a membrane subunit, the ArsB subunit, and a specificity factor, the ArsC protein. The first two form a membrane-bound complex with arsenite-stimulated ATPase activity. The determinants from gram-positive bacteria have only the arsB and arsC genes and encode an efflux system without the participation of an ArsA homologue. | 1992 | 1531541 |
| 548 | 19 | 0.9869 | Mammalian antioxidant protein complements alkylhydroperoxide reductase (ahpC) mutation in Escherichia coli. The MER5 [now called the Aop1 (antioxidant protein 1) gene] was cloned as a transiently expressed gene of murine erythroleukaemia (MEL) cell differentiation and its antisense expression inhibited differentiation of MEL cells. We found that the Aop1 gene shows significant nucleotide sequence similarity to the gene coding for the C22 subunit of Salmonella typhimurium alkylhydroperoxide reductase, which is also found in other bacteria, suggesting it functions as an antioxidant protein. Expression of the Aop1 gene product in E. coli deficient in the C22-subunit gene rescued resistance of the bacteria to alkylhydroperoxide. The human and mouse Aop1 genes are highly conserved, and they mapped to the regions syntenic between mouse and human chromosomes. Sequence comparisons with recently cloned mammalian Aop1 homologues suggest that these genes consist of a family that is responsible for regulation of cellular proliferation, differentiation and antioxidant functions. | 1995 | 7733872 |