# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6007 | 0 | 0.8414 | Human tear fluid modulates the Pseudomonas aeruginosa transcriptome to alter antibiotic susceptibility. PURPOSE: Previously, we showed that tear fluid protects corneal epithelial cells against Pseudomonas aeruginosa without suppressing bacterial viability. Here, we studied how tear fluid affects bacterial gene expression. METHODS: RNA-sequencing was used to study the P. aeruginosa transcriptome after tear fluid exposure (5 h, 37 (o)C). Outcomes were further investigated by biochemical and physiological perturbations to tear fluid and tear-like fluid (TLF) and assessment of bacterial viability following tear/TLF pretreatment and antibiotic exposure. RESULTS: Tear fluid deregulated ~180 P. aeruginosa genes ≥8 fold versus PBS including downregulating lasI, rhlI, qscR (quorum sensing/virulence), oprH, phoP, phoQ (antimicrobial resistance) and arnBCADTEF (polymyxin B resistance). Upregulated genes included algF (biofilm formation) and hemO (iron acquisition). qPCR confirmed tear down-regulation of oprH, phoP and phoQ. Tear fluid pre-treatment increased P. aeruginosa resistance to meropenem ~5-fold (4 μg/ml), but enhanced polymyxin B susceptibility ~180-fold (1 μg/ml), the latter activity reduced by dilution in PBS. Media containing a subset of tear components (TLF) also sensitized bacteria to polymyxin B, but only ~22.5-fold, correlating with TLF/tear fluid Ca(2+) and Mg(2+) concentrations. Accordingly, phoQ mutants were not sensitized by TLF or tear fluid. Superior activity of tear fluid versus TLF against wild-type P. aeruginosa was heat resistant but proteinase K sensitive. CONCLUSION: P. aeruginosa responds to human tear fluid by upregulating genes associated with bacterial survival and adaptation. Meanwhile, tear fluid down-regulates multiple virulence-associated genes. Tears also utilize divalent cations and heat resistant/proteinase K sensitive component(s) to enhance P. aeruginosa sensitivity to polymyxin B. | 2021 | 34332149 |
| 103 | 1 | 0.8048 | IL-1 receptor regulates S100A8/A9-dependent keratinocyte resistance to bacterial invasion. Previously, we reported that epithelial cells respond to exogenous interleukin (IL)-1α by increasing expression of several genes involved in the host response to microbes, including the antimicrobial protein complex calprotectin (S100A8/A9). Given that S100A8/A9 protects epithelial cells against invading bacteria, we studied whether IL-1α augments S100A8/A9-dependent resistance to bacterial invasion of oral keratinocytes. When inoculated with Listeria monocytogenes, human buccal epithelial (TR146) cells expressed and released IL-1α. Subsequently, IL-1α-containing media from Listeria-infected cells increased S100A8/A9 gene expression in naïve TR146 cells an IL-1 receptor (IL-1R)-dependent manner. Incubation with exogenous IL-1α decreased Listeria invasion into TR146 cells, whereas invasion increased with IL-1R antagonist. Conversely, when S100A8/A9 genes were knocked down using short hairpin RNA (shRNA), TR146 cells responded to exogenous IL-1α with increased intracellular bacteria. These data strongly suggest that infected epithelial cells release IL-1α to signal neighboring keratinocytes in a paracrine manner, promoting S100A8/A9-dependent resistance to invasive L. monocytogenes. | 2012 | 22031183 |
| 10 | 2 | 0.8005 | YODA Kinase Controls a Novel Immune Pathway of Tomato Conferring Enhanced Disease Resistance to the Bacterium Pseudomonas syringae. Mitogen-activated protein kinases (MAPK) play pivotal roles in transducing developmental cues and environmental signals into cellular responses through pathways initiated by MAPK kinase kinases (MAP3K). AtYODA is a MAP3K of Arabidopsis thaliana that controls stomatal development and non-canonical immune responses. Arabidopsis plants overexpressing a constitutively active YODA protein (AtCA-YDA) show broad-spectrum disease resistance and constitutive expression of defensive genes. We tested YDA function in crops immunity by heterologously overexpressing AtCA-YDA in Solanum lycopersicum. We found that these tomato AtCA-YDA plants do not show developmental phenotypes and fitness alterations, except a reduction in stomatal index, as reported in Arabidopsis AtCA-YDA plants. Notably, AtCA-YDA tomato plants show enhanced resistance to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 and constitutive upregulation of defense-associated genes, corroborating the functionality of YDA in tomato immunity. This function was further supported by generating CRISPR/Cas9-edited tomato mutants impaired in the closest orthologs of AtYDA [Solyc08g081210 (SlYDA1) and Solyc03g025360 (SlYDA2)]. Slyda1 and Slyda2 mutants are highly susceptible to P. syringae pv. tomato DC3000 in comparison to wild-type plants but only Slyda2 shows altered stomatal index. These results indicate that tomato orthologs have specialized functions and support that YDA also regulates immune responses in tomato and may be a trait for breeding disease resistance. | 2020 | 33154763 |
| 8717 | 3 | 0.7982 | Protective Effect of Pediococcus pentosaceus Li05 on Constipation via TGR5/TPH1/5-HT Activation. Pediococcus pentosaceus Li05, a strain of lactic acid bacteria isolated from the faeces of healthy volunteers, exhibited potential protective effects against various diseases. This study performed third-generation sequencing and detailed characterisation of its genome. The Li05 chromosome harboured conserved genes associated with acid resistance (atp), bile salt resistance (bsh), oxidative stress resistance (hsl, dltA, and et al.), and adhesion (nrd, gap, and et al.), whereas the plasmid did not contain antibiotic resistance or virulence genes. Following intervention with Li05 in loperamide-induced constipated mice, constipation symptoms improved. Meanwhile, alterations in gut microbiota, increased BSH activity in faeces, and modifications to the faecal bile acid profile were observed. Additionally, expression levels of TGR5 and TPH1 in the colon of the mice increased, leading to elevated 5-HT levels. When the TGR5 gene was knocked out or the TPH1 inhibitor LX1606 was administered to suppress 5-HT synthesis in constipated mice, the beneficial effects of Li05 on gastrointestinal motility and mucus secretion were reversed. Culturing intestinal organoids demonstrated that increased bile acids such as DCA, Iso-LCA, and EALCA could enhance 5-HT levels through the TGR5/TPH1 axis. Therefore, we concluded that Li05 regulated bile acid metabolism, subsequently increasing 5-HT levels through the TGR5/TPH1 axis, thus alleviating constipation. | 2025 | 41159760 |
| 542 | 4 | 0.7955 | Role of Yops and adhesins in resistance of Yersinia enterocolitica to phagocytosis. Yersinia enterocolitica is a pathogen endowed with two adhesins, Inv and YadA, and with the Ysc type III secretion system, which allows extracellular adherent bacteria to inject Yop effectors into the cytosol of animal target cells. We tested the influence of all of these virulence determinants on opsonic and nonopsonic phagocytosis by PU5-1.8 and J774 mouse macrophages, as well as by human polymorphonuclear leukocytes (PMNs). The adhesins contributed to phagocytosis in the absence of opsonins but not in the presence of opsonins. In agreement with previous results, YadA counteracted opsonization. In every instance, the Ysc-Yop system conferred a significant level of resistance to phagocytosis. Nonopsonized single-mutant bacteria lacking either YopE, -H, -T, or -O were phagocytosed significantly more by J774 cells and by PMNs. Opsonized bacteria were phagocytosed more than nonopsonized bacteria, and mutant bacteria lacking either YopH, -T, or -O were phagocytosed significantly more by J774 cells and by PMNs than were wild-type (WT) bacteria. Opsonized mutants lacking only YopE were phagocytosed significantly more than were WT bacteria by PMNs but not by J774 cells. Thus, YopH, -T, and -O were involved in all of the phagocytic processes studied here but YopE did not play a clear role in guarding against opsonic phagocytosis by J774. Mutants lacking YopP and YopM were, in every instance, as resistant as WT bacteria. Overexpression of YopE, -H, -T, or -O alone did not confer resistance to phagocytosis, although it affected the cytoskeleton. These results show that YopH, YopT, YopO, and, in some instances, YopE act synergistically to increase the resistance of Y. enterocolitica to phagocytosis by macrophages and PMNs. | 2002 | 12117925 |
| 6003 | 5 | 0.7953 | Contact Lens Wear Alters Transcriptional Responses to Pseudomonas aeruginosa in Both the Corneal Epithelium and the Bacteria. PURPOSE: Healthy corneas resist colonization by virtually all microbes yet contact lens wear can predispose the cornea to sight-threatening infection with Pseudomonas aeruginosa. Here, we explored how lens wear changes corneal epithelium transcriptional responses to P. aeruginosa and its impact on bacterial gene expression. METHODS: Male and female C57BL/6J mice were fitted with a contact lens on one eye for 24 h. After lens removal, corneas were immediately challenged for 4 h with P. aeruginosa. A separate group of naïve mice were similarly challenged with bacteria. Bacteria-challenged eyes were compared to uninoculated naive controls as was lens wear alone. Total RNA-sequencing determined corneal epithelium and bacterial gene expression. RESULTS: Prior lens wear profoundly altered the corneal response to P. aeruginosa, including: upregulated pattern-recognition receptors (tlr3, nod1), downregulated lectin pathway of complement activation (masp1), amplified upregulation of tcf7, gpr55, ifi205, wfdc2 (immune defense) and further suppression of efemp1 (corneal stromal integrity). Without lens wear, P. aeruginosa upregulated mitochondrial and ubiquinone metabolism genes. Lens wear alone upregulated axl, grn, tcf7, gpr55 (immune defense) and downregulated Ca2(+)-dependent genes necab1, snx31 and npr3. P. aeruginosa exposure to prior lens wearing vs. naïve corneas upregulated bacterial genes of virulence (popD), its regulation (rsmY, PA1226) and antimicrobial resistance (arnB, oprR). CONCLUSION: Prior lens wear impacts corneal epithelium gene expression altering its responses to P. aeruginosa and how P. aeruginosa responds to it favoring virulence, survival and adaptation. Impacted genes and associated networks provide avenues for research to better understand infection pathogenesis. | 2024 | 39677621 |
| 6004 | 6 | 0.7953 | Contact Lens Wear Alters Transcriptional Responses to Pseudomonas aeruginosa in Both the Corneal Epithelium and the Bacteria. PURPOSE: Healthy corneas resist colonization by virtually all microbes, yet contact lens wear can predispose the cornea to sight-threatening infection with Pseudomonas aeruginosa. Here, we explored how lens wear changes corneal epithelium transcriptional responses to P. aeruginosa and its impact on bacterial gene expression. METHODS: Male and female C57BL/6J mice were fitted with a contact lens on one eye for 24 hours. After lens removal, corneas were immediately challenged for 4 hours with P. aeruginosa. A separate group of naïve mice was similarly challenged with bacteria. Bacteria-challenged eyes were compared to uninoculated naïve controls, as was lens wear alone. Total RNA sequencing determined corneal epithelium and bacterial gene expression. RESULTS: Prior lens wear profoundly altered the corneal response to P. aeruginosa, including upregulated pattern recognition receptors (tlr3, nod1); downregulated lectin pathway of complement activation (masp1); amplified upregulation of tcf7, gpr55, ifi205, and wfdc2 (immune defense); and further suppression of efemp1 (corneal stromal integrity). Without lens wear, P. aeruginosa upregulated mitochondrial and ubiquinone metabolism genes. Lens wear alone upregulated axl, grn, tcf7, and gpr55 (immune defense) and downregulated Ca2+-dependent genes necab1, snx31, and npr3. P. aeruginosa exposure to prior lens wearing versus naïve corneas upregulated bacterial genes of virulence (popD), its regulation (rsmY, PA1226), and antimicrobial resistance (arnB, oprR). CONCLUSIONS: Prior lens wear impacts corneal epithelium gene expression, altering its responses to P. aeruginosa and how P. aeruginosa responds to it favoring virulence, survival, and adaptation. Impacted genes and associated networks provide avenues for research to better understand infection pathogenesis. | 2025 | 39932472 |
| 9051 | 7 | 0.7952 | Chlorogenic acid inhibits virulence and resistance gene transfer in outer membrane vesicles of carbapenem-resistant Klebsiella pneumoniae. INTRODUCTION: Carbapenem-resistant Klebsiella pneumoniae (CRKp) infection poses a significant global public health challenge, with the misuse of antibiotics further contributing to the development of resistance and triggering harmful inflammatory responses. Outer membrane vesicles (OMVs) released by CRKp under sub-lethal concentration of MEM pressure (KOMV-MEM) exhibit enhanced virulence and greater efficiency in transferring resistance genes. METHODS: We investigated the inhibitory effects of chlorogenic acid (CA) on KOMV-MEM characteristics and its protective role in KOMV-MEM infected mice. Based on LC-MS proteomic analysis of vesicles, we screened for potential targets of KOMV-MEM in promoting macrophage (MØ) pyroptosis pathways and inducing resistance gene transfer. Subsequently, computational predictions and experimental validation were performed to determine how CA regulates these mechanisms. RESULTS: This study confirmed that, under MEM pressure, the exacerbated infection levels in CRKp-inoculated mice are attributable to the high virulence of KOMV-MEM. Computational and experimental results demonstrated that CA inhibits pyroptosis by reducing MØ capture of KOMV-MEM through blocking the interaction between GroEL and LOX-1. Furthermore, CA prevents the spread of resistance genes by disrupting the conjugation and transfer processes between KOMV-MEM and recipient bacteria. Finally, in vitro and in vivo assays showed that CA inhibits KOMV-MEM resistance enzymes, thereby preventing the hydrolysis of MEM in the environment and depriving susceptible bacteria of protection. DISCUSSION: These findings provide the first confirmation that CA can inhibit both the virulence and the transmission of drug resistance in KOMV-MEM. This underscores the potential of CA treatment as a promising antimicrobial strategy against CRKp infection. | 2025 | 40230687 |
| 6009 | 8 | 0.7952 | Efflux pump inhibitor chlorpromazine effectively increases the susceptibility of Escherichia coli to antimicrobial peptide Brevinin-2CE. Aim: The response of E. coli ATCC8739 to Brevinin-2CE (B2CE) was evaluated as a strategy to prevent the development of antimicrobial peptide (AMP)-resistant bacteria. Methods: Gene expression levels were detected by transcriptome sequencing and RT-PCR. Target genes were knocked out using CRISPR-Cas9. MIC was measured to evaluate strain resistance. Results: Expression of acrZ and sugE were increased with B2CE stimulation. ATCC8739ΔacrZ and ATCC8739ΔsugE showed twofold and fourfold increased sensitivity, respectively. The survival rate of ATCC8739 was reduced in the presence of B2CE/chlorpromazine (CPZ). Combinations of other AMPs with CPZ also showed antibacterial effects. Conclusion: The results indicate that combinations of AMPs/efflux pump inhibitors (EPIs) may be a potential approach to combat resistant bacteria. | 2024 | 38683168 |
| 102 | 9 | 0.7950 | Paradoxical behaviour of pKM101; inhibition of uvr-independent crosslink repair in Escherichia coli by muc gene products. In strains of Escherichia coli deficient in excision repair (uvrA or uvrB), plasmid pKM101 muc+ but not pGW219 mucB::Tn5 enhanced resistance to angelicin monoadducts but reduced resistance to 8-methoxy-psoralen interstrand DNA crosslinks. Thermally induced recA-441 (= tif-1) bacteria showed an additional resistance to crosslinks that was blocked by pKM101. Plasmid-borne muc+ genes also conferred some additional sensitivity to gamma-radiation and it is suggested that a repair step susceptible to inhibition by muc+ gene products and possibly involving double-strand breaks may be involved after both ionizing radiation damage and psoralen crosslinks. | 1985 | 3883148 |
| 8 | 10 | 0.7948 | The hawthorn CpLRR-RLK1 gene targeted by ACLSV-derived vsiRNA positively regulate resistance to bacteria disease. Virus-derived small interfering RNAs (vsiRNAs) can target not only viruses but also plant genes. Apple chlorotic leaf spot virus (ACLSV) is an RNA virus that infects Rosaceae plants extensively, including apple, pear and hawthorn. Here, we report an ACLSV-derived vsiRNA [vsiR1360(-)] that targets and down-regulates the leucine-rich repeat receptor-like kinase 1 (LRR-RLK1) gene of hawthorn (Crataegus pinnatifida). The targeting and cleavage of the CpLRR-RLK1 gene by vsiR1360(-) were validated by RNA ligase-mediated 5' rapid amplification of cDNA ends and tobacco transient transformation assays. And the CpLRR-RLK1 protein fused to green fluorescent protein localized to the cell membrane. Conserved domain and phylogenetic tree analyses showed that CpLRR-RLK1 is closely related to the proteins of the LRRII-RLK subfamily. The biological function of CpLRR-RLK1 was explored by heterologous overexpression of CpLRR-RLK1 gene in Arabidopsis. The results of inoculation of Pst DC3000 in Arabidopsis leaves showed that the symptoms of CpLRR-RLK1 overexpression plants infected with Pst DC3000 were significantly reduced compared with the wild type. In addition, the detection of reactive oxygen species and callose deposition and the expression analysis of defense-related genes showed that the CpLRR-RLK1 gene can indeed enhance the resistance of Arabidopsis to bacteria disease. | 2020 | 33180701 |
| 47 | 11 | 0.7948 | LTP3 contributes to disease susceptibility in Arabidopsis by enhancing abscisic acid (ABA) biosynthesis. Several plant lipid transfer proteins (LTPs) act positively in plant disease resistance. Here, we show that LTP3 (At5g59320), a pathogen and abscisic acid (ABA)-induced gene, negatively regulates plant immunity in Arabidopsis. The overexpression of LTP3 (LTP3-OX) led to an enhanced susceptibility to virulent bacteria and compromised resistance to avirulent bacteria. On infection of LTP3-OX plants with Pseudomonas syringae pv. tomato, genes involved in ABA biosynthesis, NCED3 and AAO3, were highly induced, whereas salicylic acid (SA)-related genes, ICS1 and PR1, were down-regulated. Accordingly, in LTP3-OX plants, we observed increased ABA levels and decreased SA levels relative to the wild-type. We also showed that the LTP3 overexpression-mediated enhanced susceptibility was partially dependent on AAO3. Interestingly, loss of function of LTP3 (ltp3-1) did not affect ABA pathways, but resulted in PR1 gene induction and elevated SA levels, suggesting that LTP3 can negatively regulate SA in an ABA-independent manner. However, a double mutant consisting of ltp3-1 and silent LTP4 (ltp3/ltp4) showed reduced susceptibility to Pseudomonas and down-regulation of ABA biosynthesis genes, suggesting that LTP3 acts in a redundant manner with its closest homologue LTP4 by modulating the ABA pathway. Taken together, our data show that LTP3 is a novel negative regulator of plant immunity which acts through the manipulation of the ABA-SA balance. | 2016 | 26123657 |
| 5218 | 12 | 0.7943 | Expression of a Shiga-Like Toxin during Plastic Colonization by Two Multidrug-Resistant Bacteria, Aeromonas hydrophila RIT668 and Citrobacter freundii RIT669, Isolated from Endangered Turtles (Clemmys guttata). Aeromonas hydrophila RIT668 and Citrobacter freundii RIT669 were isolated from endangered spotted turtles (Clemmys guttata). Whole-genome sequencing, annotation and phylogenetic analyses of the genomes revealed that the closest relative of RIT668 is A. hydrophila ATCC 7966 and Citrobacter portucalensis A60 for RIT669. Resistome analysis showed that A. hydrophila and C. freundii harbor six and 19 different antibiotic resistance genes, respectively. Both bacteria colonize polyethylene and polypropylene, which are common plastics, found in the environment and are used to fabricate medical devices. The expression of six biofilm-related genes-biofilm peroxide resistance protein (bsmA), biofilm formation regulatory protein subunit R (bssR), biofilm formation regulatory protein subunit S (bssS), biofilm formation regulator (hmsP), toxin-antitoxin biofilm protein (tabA) and transcriptional activator of curli operon (csgD)-and two virulence factors-Vi antigen-related gene (viaB) and Shiga-like toxin (slt-II)-was investigated by RT-PCR. A. hydrophila displayed a >2-fold increase in slt-II expression in cells adhering to both polymers, C. freundii adhering on polyethylene displayed a >2-fold, and on polypropylene a >6-fold upregulation of slt-II. Thus, the two new isolates are potential pathogens owing to their drug resistance, surface colonization and upregulation of a slt-II-type diarrheal toxin on polymer surfaces. | 2020 | 32752245 |
| 504 | 13 | 0.7942 | Activation of Dithiolopyrrolone Antibiotics by Cellular Reductants. Dithiolopyrrolone (DTP) natural products are broad-spectrum antimicrobial and anticancer prodrugs. The DTP structure contains a unique bicyclic ene-disulfide that once reduced in the cell, chelates metal ions and disrupts metal homeostasis. In this work we investigate the intracellular activation of the DTPs and their resistance mechanisms in bacteria. We show that the prototypical DTP holomycin is reduced by several bacterial reductases and small-molecule thiols in vitro. To understand how bacteria develop resistance to the DTPs, we generate Staphylococcus aureus mutants that exhibit increased resistance to the hybrid DTP antibiotic thiomarinol. From these mutants we identify loss-of-function mutations in redox genes that are involved in DTP activation. This work advances the understanding of how DTPs are activated and informs development of bioreductive disulfide prodrugs. | 2025 | 39665630 |
| 520 | 14 | 0.7941 | Respiratory chain components are required for peptidoglycan recognition protein-induced thiol depletion and killing in Bacillus subtilis and Escherichia coli. Mammalian peptidoglycan recognition proteins (PGRPs or PGLYRPs) kill bacteria through induction of synergistic oxidative, thiol, and metal stress. Tn-seq screening of Bacillus subtilis transposon insertion library revealed that mutants in the shikimate pathway of chorismate synthesis had high survival following PGLYRP4 treatment. Deletion mutants for these genes had decreased amounts of menaquinone (MK), increased resistance to killing, and attenuated depletion of thiols following PGLYRP4 treatment. These effects were reversed by MK or reproduced by inhibiting MK synthesis. Deletion of cytochrome aa(3)-600 or NADH dehydrogenase (NDH) genes also increased B. subtilis resistance to PGLYRP4-induced killing and attenuated thiol depletion. PGLYRP4 treatment also inhibited B. subtilis respiration. Similarly in Escherichia coli, deletion of ubiquinone (UQ) synthesis, formate dehydrogenases (FDH), NDH-1, or cytochrome bd-I genes attenuated PGLYRP4-induced thiol depletion. PGLYRP4-induced low level of cytoplasmic membrane depolarization in B. subtilis and E. coli was likely not responsible for thiol depletion. Thus, our results show that the respiratory electron transport chain components, cytochrome aa(3)-600, MK, and NDH in B. subtilis, and cytochrome bd-I, UQ, FDH-O, and NDH-1 in E. coli, are required for both PGLYRP4-induced killing and thiol depletion and indicate conservation of the PGLYRP4-induced thiol depletion and killing mechanisms in Gram-positive and Gram-negative bacteria. | 2021 | 33420211 |
| 735 | 15 | 0.7939 | The Pseudomonas aeruginosa flagellum confers resistance to pulmonary surfactant protein-A by impacting the production of exoproteases through quorum-sensing. Surfactant protein-A (SP-A) is an important antimicrobial protein that opsonizes and permeabilizes membranes of microbial pathogens in mammalian lungs. Previously, we have shown that Pseudomonas aeruginosa flagellum-deficient mutants are preferentially cleared in the lungs of wild-type mice by SP-A-mediated membrane permeabilization, and not by opsonization. In this study, we report a flagellum-mediated mechanism of P. aeruginosa resistance to SP-A. We discovered that flagellum-deficient (ΔfliC) bacteria are unable to produce adequate amounts of exoproteases to degrade SP-A in vitro and in vivo, leading to its preferential clearance in the lungs of SP-A(+/+) mice. In addition, ΔfliC bacteria failed to degrade another important lung antimicrobial protein lysozyme. Detailed analyses showed that ΔfliC bacteria are unable to upregulate the transcription of lasI and rhlI genes, impairing the production of homoserine lactones necessary for quorum-sensing, an important virulence process that regulates the production of multiple exoproteases. Thus, reduced ability of ΔfliC bacteria to quorum-sense attenuates production of exoproteases and limits degradation of SP-A, thereby conferring susceptibility to this major pulmonary host defence protein. | 2011 | 21205009 |
| 5375 | 16 | 0.7933 | Mechanism of Eravacycline Resistance in Clinical Enterococcus faecalis Isolates From China. Opportunistic infections caused by multidrug-resistant Enterococcus faecalis strains are a significant clinical challenge. Eravacycline (Erava) is a synthetic fluorocycline structurally similar to tigecycline (Tige) that exhibits robust antimicrobial activity against Gram-positive bacteria. This study investigated the in vitro antimicrobial activity and heteroresistance risk of Eravacycline (Erava) in clinical E. faecalis isolates from China along with the mechanism of Erava resistance. A total of 276 non-duplicate E. faecalis isolates were retrospectively collected from a tertiary care hospital in China. Heteroresistance to Erava and the influence of tetracycline (Tet) resistance genes on Erava susceptibility were examined. To clarify the molecular basis for Erava resistance, E. faecalis variants exhibiting Erava-induced resistance were selected under Erava pressure. The relative transcript levels of six candidate genes linked to Erava susceptibility were determined by quantitative reverse-transcription PCR, and their role in Erava resistance and heteroresistance was evaluated by in vitro overexpression experiments. We found that Erava minimum inhibitory concentrations (MICs) against clinical E. faecalis isolates ranged from ≤0.015 to 0.25 mg/l even in strains harboring Tet resistance genes. The detection frequency of Erava heteroresistance in isolates with MICs ≤ 0.06, 0.125, and 0.25 mg/l were 0.43% (1/231), 7.5% (3/40), and 0 (0/5), respectively. No mutations were detected in the 30S ribosomal subunit gene in Erava heteroresistance-derived clones, although mutations in this subunit conferred cross resistance to Tige in Erava-induced resistant E. faecalis. Overexpressing RS00630 (encoding a bone morphogenetic protein family ATP-binding cassette transporter substrate-binding protein) in E. faecalis increased the frequency of Erava and Tige heteroresistance, whereas RS12140, RS06145, and RS06880 overexpression conferred heteroresistance to Tige only. These results indicate that Erava has potent in vitro antimicrobial activity against clinical E. faecalis isolates from China and that Erava heteroresistance can be induced by RS00630 overexpression. | 2020 | 32523563 |
| 8442 | 17 | 0.7933 | Staphylococcus epidermidis undergoes global changes in gene expression during biofilm maturation in platelet concentrates. BACKGROUND: Staphylococcus epidermidis forms surface-attached aggregates (biofilms) when grown in platelet concentrates (PCs). Comparative transcriptome analyses were undertaken to investigate differential gene expression of S. epidermidis biofilms grown in PCs. STUDY DESIGN AND METHODS: Two S. epidermidis strains isolated from human skin (AZ22 and AZ39) and one strain isolated from contaminated PCs (ST02) were grown in glucose-supplemented Trypticase Soy Broth (TSBg) and PCs. RNA was extracted and sequenced using Illumina HiSeq. Differential expression analysis was done using DESeq, and significantly differentially expressed genes (DEGs) were selected. DEGs were subjected to Kyoto encyclopedia of genes and genomes and Gene Ontology analyses. Differential gene expression was validated with quantitative reverse transcription-PCR. RESULTS: A total of 436, 442, and 384 genes were expressed in AZ22, AZ39, and ST02, respectively. DEG analysis showed that 170, 172, and 117 genes were upregulated in PCs in comparison to TSBg, whereas 120, 135, and 89 genes were downregulated (p < .05) in mature biofilms of AZ22, AZ39, and ST02, respectively. Twenty-seven DEGs were shared by all three strains. While 76 DEGs were shared by AZ22 and AZ39, only 34 and 21 DEGs were common between ST02, and AZ22 and AZ39, respectively. Significant transcriptional expression changes were observed in genes involved in platelet-bacteria interaction, biofilm formation, production of virulence factors, and resistance to antimicrobial peptides and antibiotics. CONCLUSION: Differential gene expression in S. epidermidis is triggered by the stressful PC storage environment. Upregulation of virulence and antimicrobial resistance genes could have clinical implications for transfusion patients. | 2021 | 33904608 |
| 618 | 18 | 0.7932 | A novel chemical inducer of Streptococcus quorum sensing acts by inhibiting the pheromone-degrading endopeptidase PepO. Bacteria produce chemical signals (pheromones) to coordinate behaviors across a population in a process termed quorum sensing (QS). QS systems comprising peptide pheromones and their corresponding Rgg receptors are widespread among Firmicutes and may be useful targets for manipulating microbial behaviors, like suppressing virulence. The Rgg2/3 QS circuit of the human pathogen Streptococcus pyogenes controls genes affecting resistance to host lysozyme in response to short hydrophobic pheromones (SHPs). Considering that artificial activation of a QS pathway may be as useful in the objective of manipulating bacteria as inhibiting it, we sought to identify small-molecule inducers of the Rgg2/3 QS system. We report the identification of a small molecule, P516-0475, that specifically induced expression of Rgg2/3-regulated genes in the presence of SHP pheromones at concentrations lower than typically required for QS induction. In searching for the mode of action of P516-0475, we discovered that an S. pyogenes mutant deficient in pepO, a neprilysin-like metalloendopeptidase that degrades SHP pheromones, was unresponsive to the compound. P516-0475 directly inhibited recombinant PepO in vitro as an uncompetitive inhibitor. We conclude that this compound induces QS by stabilizing SHP pheromones in culture. Our study indicates the usefulness of cell-based screens that modulate pathway activities to identify unanticipated therapeutic targets contributing to QS signaling. | 2018 | 29203527 |
| 541 | 19 | 0.7931 | A Teleost Bactericidal Permeability-Increasing Protein Kills Gram-Negative Bacteria, Modulates Innate Immune Response, and Enhances Resistance against Bacterial and Viral Infection. Bactericidal/permeability-increasing protein (BPI) is an important factor of innate immunity that in mammals is known to take part in the clearance of invading Gram-negative bacteria. In teleost, the function of BPI is unknown. In the present work, we studied the function of tongue sole (Cynoglossus semilaevis) BPI, CsBPI. We found that CsBPI was produced extracellularly by peripheral blood leukocytes (PBL). Recombinant CsBPI (rCsBPI) was able to bind to a number of Gram-negative bacteria but not Gram-positive bacteria. Binding to bacteria led to bacterial death through membrane permeabilization and structural destruction, and the bound bacteria were more readily taken up by PBL. In vivo, rCsBPI augmented the expression of a wide arrange of genes involved in antibacterial and antiviral immunity. Furthermore, rCsBPI enhanced the resistance of tongue sole against bacterial as well as viral infection. These results indicate for the first time that a teleost BPI possesses immunoregulatory effect and plays a significant role in antibacterial and antiviral defense. | 2016 | 27105425 |