TAP - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
351200.9949Profiling of intracellular and extracellular antibiotic resistance genes in tap water. Antibiotic resistance genes (ARGs) have gained global attention due to their public health threat. Extracelluar ARGs (eARGs) can result in the dissemination of antibiotic resistance via free-living ARGs in natural environments, where they promote ARB transmission in drinking water distribution systems. However, eARG pollution in tap water has not been well researched. In this study, concentrations of eARGs and intracellular ARGs (iARGs) in tap water, sampled at Tianjin, China, were investigated for one year. Fourteen eARG types were found at the highest concentration of 1.3 × 10(5) gene copies (GC)/L. TetC was detected in 66.7% of samples, followed by sul1, sul2, and qnrA with the same detection frequency of 41.7%. Fifteen iARGs (including tetA, tetB, tetM, tetQ, tetX, sul1, sul2, sul3, ermB, blaTEM, and qnrA) were continuously detected in all collected tap water samples with sul1 and sul2 the most abundant. Additionally, both eARG and iARG concentrations in tap water presented a seasonal pattern with most abundant prevalence in summer. The concentration of observed intracellular sulfonamide resistance genes showed a significantly positive correlation with total nitrogen concentrations. This study suggested that eARG and iARG pollution of drinking water systems pose a potential risk to human public health.201930448547
777910.9947Metagenomic and Resistome Analysis of a Full-Scale Municipal Wastewater Treatment Plant in Singapore Containing Membrane Bioreactors. Reclaimed water provides a water supply alternative to address problems of scarcity in urbanized cities with high living densities and limited natural water resources. In this study, wastewater metagenomes from 6 stages of a wastewater treatment plant (WWTP) integrating conventional and membrane bioreactor (MBR) treatment were evaluated for diversity of antibiotic resistance genes (ARGs) and bacteria, and relative abundance of class 1 integron integrases (intl1). ARGs confering resistance to 12 classes of antibiotics (ARG types) persisted through the treatment stages, which included genes that confer resistance to aminoglycoside [aadA, aph(6)-I, aph(3')-I, aac(6')-I, aac(6')-II, ant(2″)-I], beta-lactams [class A, class C, class D beta-lactamases (bla (OXA))], chloramphenicol (acetyltransferase, exporters, floR, cmIA), fosmidomycin (rosAB), macrolide-lincosamide-streptogramin (macAB, ereA, ermFB), multidrug resistance (subunits of transporters), polymyxin (arnA), quinolone (qnrS), rifamycin (arr), sulfonamide (sul1, sul2), and tetracycline (tetM, tetG, tetE, tet36, tet39, tetR, tet43, tetQ, tetX). Although the ARG subtypes in sludge and MBR effluents reduced in diversity relative to the influent, clinically relevant beta lactamases (i.e., bla (KPC), bla (OXA)) were detected, casting light on other potential point sources of ARG dissemination within the wastewater treatment process. To gain a deeper insight into the types of bacteria that may survive the MBR removal process, genome bins were recovered from metagenomic data of MBR effluents. A total of 101 close to complete draft genomes were assembled and annotated to reveal a variety of bacteria bearing metal resistance genes and ARGs in the MBR effluent. Three bins in particular were affiliated to Mycobacterium smegmatis, Acinetobacter Iwoffii, and Flavobacterium psychrophila, and carried aquired ARGs aac(2')-Ib, bla (OXA-278), and tet36 respectively. In terms of indicator organisms, cumulative log removal values (LRV) of Escherichia coli, Enterococci, and P. aeruginosa from influent to conventional treated effluent was lower (0-2.4), compared to MBR effluent (5.3-7.4). We conclude that MBR is an effective treatment method for reducing fecal indicators and ARGs; however, incomplete removal of P. aeruginosa in MBR treated effluents (<8 MPN/100 mL) and the presence of ARGs and intl1 underscores the need to establish if further treatment should be applied prior to reuse.201930833934
778120.9947Untreated HWWs Emerged as Hotpots for ARGs. Hospital wastewaters (HWWs) are reported to be hotspots for antibiotics and antibiotic-resistant bacteria. However, limited information involves the impact of these effluents on dissemination of antibiotic-resistance genes (ARGs). In this study, therefore, seasonally collected HWWs were monitored for overall bacterial load and seven ARGs aadA, tetA, cmlA, sul1, qnrS, ermB and bla (CTX-M )by using quantitative polymerase chain reaction method. Overall bacterial 16S rRNA copy number was found to be the lowest in winter with 10(3 )copy number/mL, while the highest copy number, with 10(5 )copy number/mL, was observed in both summer and spring. All hospitals tested displayed similar seasonal ARG copy number profile of aadA > tetA > cmlA ≈ sul1 > ermB ≈ qnrS > bla (CTX-M). The results indicated that untreated HWWs were hotspots for ARGs and required attention before discharging into public sewer.202031965225
526130.9947Prevalence of antibiotic resistance genes from effluent of coastal aquaculture, South Korea. The wide use of antibiotics in aquaculture for prophylactic and therapeutic purposes can potentially lead to the prevalence of antibiotic resistance genes (ARGs). This study reports for the first time the profile of ARGs from effluents of coastal aquaculture located in South Jeolla province and Jeju Island, South Korea. Using quantitative PCR (qPCR), twenty-two ARGs encoding tetracycline resistance (tetA, tetB, tetD, tetE, tetG, tetH, tetM, tetQ, tetX, tetZ, tetBP), sulfonamide resistance (sul1, sul2), quinolone resistance (qnrD, qnrS, aac(6')-Ib-cr), β-lactams resistance (bla(TEM), bla(CTX), bla(SHV)), macrolide resistance (ermC), florfenicol resistance (floR) and multidrug resistance (oqxA) and a class 1 integrons-integrase gene (intI1) were quantified. In addition, Illumina Miseq sequencing was applied to investigate microbial community differences across fish farm effluents. Results from qPCR showed that the total number of detected ARGs ranged from 4.24 × 10(-3) to 1.46 × 10(-2) copies/16S rRNA gene. Among them, tetB and tetD were predominant, accounting for 74.8%-98.0% of the total ARGs. Furthermore, intI1 gene showed positive correlation with tetB, tetD, tetE, tetH, tetX, tetZ tetQ and sul1. Microbial community analysis revealed potential host bacteria for ARGs and intI1. Two genera, Vibrio and Marinomonas belonging to Gammaproteobacteria, showed significant correlation with tetB and tetD, the most dominant ARGs in all samples. Also, operational taxonomic units (OTUs)-based network analysis revealed that ten OTUs, classified into the phyla Proteobacteria, Cyanobacteria/Chloroplast, Bacteroidetes, Verrucomicrobia and an unclassified phylum, were potential hosts of tetracycline resistance genes (i.e., tetA, tetG, tetH, tetM, tetQ and tetZ). Further systematic monitoring of ARGs is warranted for risk assessment and management of antibacterial resistance from fish farm effluents.201829031406
525540.9946Occurrence and removal of antibiotics, antibiotic resistance genes, and bacterial communities in hospital wastewater. Hospital wastewater contains a variety of human antibiotics and pathogens, which makes the treatment of hospital wastewater essential. However, there is a lack of research on these pollutants at hospital wastewater treatment plants. In this study, the characteristics and removal of antibiotics and antibiotic resistance genes (ARGs) in the independent treatment processes of hospitals of different scales (primary hospital, H1; secondary hospital, H2; and tertiary hospital, H3) were investigated. The occurrence of antibiotics and ARGs in wastewater from three hospitals varied greatly. The first-generation cephalosporin cefradine was detected at a concentration of 2.38 μg/L in untreated wastewater from H1, while the fourth-generation cephalosporin cefepime had the highest concentration, 540.39 μg/L, at H3. Ofloxacin was detected at a frequency of 100% and had removal efficiencies of 44.2%, 51.5%, and 81.6% at H1, H2, and H3, respectively. The highest relative abundances of the β-lactam resistance gene bla(GES-1) (1.77×10(-3) copies/16S rRNA), the quinolone resistance gene qnrA (8.81×10(-6) copies/16S rRNA), and the integron intI1 (1.86×10(-4) copies/16S rRNA) were detected in the treated wastewater. The concentrations of several ARGs were increased in the treated wastewater (e.g. bla(OXA-1), bla(OXA-10), and bla(TEM-1)). Several pathogenic or opportunistic bacteria (e.g. Acinetobacter, Klebsiella, Aeromonas, and Pseudomonas) were observed at high relative abundances in the treated wastewater. These results suggested the co-occurrence of antibiotics, ARGs, and antibiotic-resistant pathogens in hospital wastewater, and these factors may spread into the receiving aquatic environment.202134089156
354350.9946Precipitation influences pathogenic bacteria and antibiotic resistance gene abundance in storm drain outfalls in coastal sub-tropical waters. Stormwater contamination can threaten the health of aquatic ecosystems and human exposed to runoff via nutrient and pathogen influxes. In this study, the concentrations of 11 bacterial pathogens and 47 antibiotic resistance genes (ARGs) were determined by using high-throughput microfluidic qPCR (MFQPCR) in several storm drain outfalls (SDOs) during dry and wet weather in Tampa Bay, Florida, USA. Data generated in this study were also compared with the levels of fecal indicator bacteria (FIB) and sewage-associated molecular markers (i.e., Bacteroides HF183 and crAssphage markers) in same SDOs collected in a recent study (Ahmed et al., 2018). Concentration of FIB, sewage-associated markers, bacterial pathogens and many ARGs in water samples were relatively high and SDOs may be potentially hotspots for microbial contamination in Tampa Bay. Mean concentrations of culturable E. coli and Enterococcus spp. were tenfold higher in wet compared to dry weather. The majority of microbiological contaminants followed this trend. E. coli eaeA, encoding the virulence factor intimin, was correlated with levels of 20 ARGs, and was more frequently detected in wet weather than dry weather samples. The bla(KPC) gene associated with carbapenem resistant Enterobacteriaceae and the beta-lactam resistant gene (bla(NPS)) were only detected in wet weather samples. Frequency of integron genes Intl2 and Intl3 detection increased by 42% in wet weather samples. Culturable E. coli and Enterococcus spp. significantly correlated with 19 of 47 (40%) ARG tested. Sewage-associated markers crAssphage and HF183 significantly correlated (p < 0.05) with the following ARGs: intl1, sul1, tet(M), ampC, mexB, and tet(W). The presence of sewage-associated marker genes along with ARGs associated with sewage suggested that aging sewage infrastructure contributed to contaminant loading in the Bay. Further research should focus on collecting spatial and temporal data on the microbiological contaminants especially viruses in SDOs.201829754026
777360.9945Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant. Antibiotics and corresponding resistance genes and resistant bacteria have been considered as emerging pollutants worldwide. Wastewater treatment plants (WWTPs) are potential reservoirs contributing to the evolution and spread of antibiotic resistance. In this study, total concentrations of tetracycline and sulfonamide antibiotics in final effluent were detected at 652.6 and 261.1ng/L, respectively, and in treated sludge, concentrations were at 1150.0 and 76.0μg/kg dry weight (dw), respectively. The quantities of antibiotic resistance genes and antibiotic resistant bacteria in final effluent were quantified in the range of 9.12×10(5)-1.05×10(6) gene abundances /100mL (genomic copies/100mL) and 1.05×10(1)-3.09×10(3)CFU/mL, respectively. In treated sludge, they were quantified at concentrations of 1.00×10(8)-1.78×10(9) gene abandances/100mL and 7.08×10(6)-1.91×10(8)CFU/100mL, respectively. Significant reductions (2-3 logs, p<0.05) of antibiotic resistance genes and antibiotic resistant bacteria were observed between raw influent and final effluent. The gene abundances of tetO and tetW normalized to that of 16S rRNA genes indicated an apparent decrease as compared to sulI genes, which remained stable along each treatment stage. Significant correlations (R(2)=0.75-0.83, p<0.05) between numbers of resistant bacteria and antibiotic concentrations were observed in raw influent and final effluent. No significance (R(2)=0.15, p>0.05) was found between tet genes (tetO and tetW) with concentration of tetracyclines identified in wastewater, while a significant correlation (R(2)=0.97, p<0.05) was observed for sulI gene and total concentration of sulfonamides. Correlations of the quantities of antibiotic resistance genes and antibiotic resistant bacteria with corresponding concentrations of antibiotics in sludge samples were found to be considerably weak (R(2)=0.003-0.07).201222369865
778070.9945Antibiotic Resistance Genes in drinking water of China: Occurrence, distribution and influencing factors. Drinking water samples were collected from 71 cities, including 28 provincial capital cities or municipalities, 20 prefecture cities and 23 counties, of 31 provincial-level administrative regions in China from July to August in 2017. Futhermore, 24 Antibiotic Resistance Genes (ARGs), 16S rRNA and 2 integrase genes were quantified by qPCR to investigate the pollution degree of ARGs. The results revealed that the 16S ranged from 10(5) - 10(8) copies/100 mL in the drinking water, and its treatment process could effectively remove bacteria. Moreover, sulfonamides-ARGs were the most prevalent ARGs in the drinking water of China, and the abundance of bla(TEM) ranked top five in all cities among the selected ARGs, indicating that the pollution condition of the genes should be aroused more attention. The data of qPCR and correlation analyses indicated that intI1 played a more crucial role than intI2 in the propagation of ARGs in the drinking water. Additionally, the pollution degree of ARGs among different city types showed no significant difference.202031683044
777280.9944Metagenomic community composition and resistome analysis in a full-scale cold climate wastewater treatment plant. BACKGROUND: Wastewater treatment plants are an essential part of maintaining the health and safety of the general public. However, they are also an anthropogenic source of antibiotic resistance genes. In this study, we characterized the resistome, the distribution of classes 1-3 integron-integrase genes (intI1, intI2, and intI3) as mobile genetic element biomarkers, and the bacterial and phage community compositions in the North End Sewage Treatment Plant in Winnipeg, Manitoba. Samples were collected from raw sewage, returned activated sludge, final effluent, and dewatered sludge. A total of 28 bacterial and viral metagenomes were sequenced over two seasons, fall and winter. Integron-integrase genes, the 16S rRNA gene, and the coliform beta-glucuronidase gene were also quantified during this time period. RESULTS: Bacterial classes observed above 1% relative abundance in all treatments were Actinobacteria (39.24% ± 0.25%), Beta-proteobacteria (23.99% ± 0.16%), Gamma-proteobacteria (11.06% ± 0.09%), and Alpha-proteobacteria (9.18 ± 0.04%). Families within the Caudovirales order: Siphoviridae (48.69% ± 0.10%), Podoviridae (23.99% ± 0.07%), and Myoviridae (19.94% ± 0.09%) were the dominant phage observed throughout the NESTP. The most abundant bacterial genera (in terms of average percent relative abundance) in influent, returned activated sludge, final effluent, and sludge, respectively, includes Mycobacterium (37.4%, 18.3%, 46.1%, and 7.7%), Acidovorax (8.9%, 10.8%, 5.4%, and 1.3%), and Polaromonas (2.5%, 3.3%, 1.4%, and 0.4%). The most abundant class of antibiotic resistance in bacterial samples was tetracycline resistance (17.86% ± 0.03%) followed by peptide antibiotics (14.24% ± 0.03%), and macrolides (10.63% ± 0.02%). Similarly, the phage samples contained a higher prevalence of macrolide (30.12% ± 0.30%), peptide antibiotic (10.78% ± 0.13%), and tetracycline (8.69% ± 0.11%) resistance. In addition, intI1 was the most abundant integron-integrase gene throughout treatment (1.14 × 10(4) gene copies/mL) followed by intI3 (4.97 × 10(3) gene copies/mL) while intI2 abundance remained low (6.4 × 10(1) gene copies/mL). CONCLUSIONS: Wastewater treatment successfully reduced the abundance of bacteria, DNA phage and antibiotic resistance genes although many antibiotic resistance genes remained in effluent and biosolids. The presence of integron-integrase genes throughout treatment and in effluent suggests that antibiotic resistance genes could be actively disseminating resistance between both environmental and pathogenic bacteria.202235033203
775890.9944Removal efficiency of antibiotic residues, antibiotic resistant bacteria, and genes across parallel secondary settling tank and membrane bioreactor treatment trains in a water reclamation plant. Antimicrobial resistance is recognized as a potent threat to human health. Wastewater treatment facilities are viewed as hotspots for the spread of antimicrobial resistance. This study provides comprehensive data on the occurrences of 3 different antibiotic resistant opportunistic pathogens (with resistance to up to 5 antibiotics), 13 antibiotic resistant genes and intI1, and 22 different antimicrobial residues in a large water reclamation plant (176 million gallons per day) that runs a conventional Modified Ludzack-Ettinger (MLE) reactor followed by a secondary settling tank (SST) and membrane bioreactor (MBR) in parallel. All the antibiotic resistant bacteria and most of the antibiotic resistance genes were present in the raw influent, ranging from 2.5 × 10(2)-3.7 × 10(6) CFU/mL and 1.2× 10(-1)-6.5 × 10(10) GCN/mL, respectively. MBR outperformed the SST system in terms of ARB removal as the ARB targets were largely undetected in MBR effluent, with log removals ranging from 2.7 to 6.8, while SST only had log removals ranging from 0.27 to 4.6. Most of the ARG concentrations were found to have significantly higher in SST effluent than MBR permeate, and MBR had significantly higher removal efficiency for most targets (p < 0.05) except for sul1, sul2, bla(OXA48), intI1 and 16S rRNA genes (p > 0.05). As for the antibiotic residues (AR), there was no significant removal from the start to the end of the treatment process, although MBR had higher removal efficiencies for azithromycin, chloramphenicol, erythromycin, erythromycin-H(2)O, lincomycin, sulfamethoxazole and triclosan, compared to the SST system. In conclusion, MBR outperformed SST in terms of ARB and ARGs removal. However low removal efficiencies of most AR targets were apparent.202438492595
7757100.9944Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: Effect of flow configuration and plant species. This study aims to investigate the removal of antibiotics and antibiotic resistance genes (ARGs) in raw domestic wastewater by various mesocosm-scale constructed wetlands (CWs) with different flow configurations or plant species including the constructed wetland with or without plant. Six mesocosm-scale CWs with three flow types (surface flow, horizontal subsurface flow and vertical subsurface flow) and two plant species (Thaliadealbata Fraser and Iris tectorum Maxim) were set up in the outdoor. 8 antibiotics including erythromycin-H2O (ETM-H2O), monensin (MON), clarithromycin (CTM), leucomycin (LCM), sulfamethoxazole (SMX), trimethoprim (TMP), sulfamethazine (SMZ) and sulfapyridine (SPD) and 12 genes including three sulfonamide resistance genes (sul1, sul2 and sul3), four tetracycline resistance genes (tetG, tetM, tetO and tetX), two macrolide resistance genes (ermB and ermC), two chloramphenicol resistance genes (cmlA and floR) and 16S rRNA (bacteria) were determined in different matrices (water, particle, substrate and plant phases) from the mesocosm-scale systems. The aqueous removal efficiencies of total antibiotics ranged from 75.8 to 98.6%, while those of total ARGs varied between 63.9 and 84.0% by the mesocosm-scale CWs. The presence of plants was beneficial to the removal of pollutants, and the subsurface flow CWs had higher pollutant removal than the surface flow CWs, especially for antibiotics. According to the mass balance analysis, the masses of all detected antibiotics during the operation period were 247,000, 4920-10,600, 0.05-0.41 and 3500-60,000μg in influent, substrate, plant and effluent of the mesocosm-scale CWs. In the CWs, biodegradation, substrate adsorption and plant uptake all played certain roles in reducing the loadings of nutrients, antibiotics and ARGs, but biodegradation was the most important process in the removal of these pollutants.201627443461
7760110.9944From the Reclaimed Water Treatment Plant to Irrigation in Intensive Agriculture Farms: Assessment of the Fate of Antibiotics, Antibiotic Resistance Bacteria and Genes, and Microbial Pathogens at Real Scale. This work aims to investigate the occurrence of 31 antibiotics (ABs), 2 bacteria (Escherichia coli and Pseudomonas spp.) and their counterpart antibiotic-resistant bacteria (carbapenem and cephalosporin families), and several antibiotic-resistant genes (ARGs) throughout a full distribution system of reclaimed water (RW) in a real-scale scenario. The RW was analyzed (i) before and after the tertiary treatment (sand filtration and chlorination), (ii) during the storage period in secondary ponds before its use in irrigation, and (iii) directly in the droppers installed in four plastic-based greenhouses over 9 months. The results obtained in RW showed a bacterial concentration below the minimum required to reach class A (<10 CFU/100 mL, Regulation EU 2020/741), a reduction of the initial AB concentration (up to 13 ABs, total 4847 ± 1413 ng/L) of 58%, and no significant reduction of ARGs (Log units/100 mL: 16S rRNA (9.99 ± 0.80) > intI1 (8.80 ± 0.95) > bla(CTX-M32) (7.53 ± 0.63) > sul1 (7.08 ± 1.05) > bla(TEM) (6.81 ± 1.05) > qnrS (5.72 ± 0.82)). The storage of RW was a hotspot only for bacteria; an increase in all concentrations was observed in both main and secondary reservoirs, demonstrating that direct RW reuse is the most beneficial option to avoid significant bacterial regrowth. In all greenhouse droppers' systems, a significantly higher concentration of all bacteria was generally detected than in secondary reservoirs, demonstrating that this is another hotspot independent of whether the RW is used directly or not. Therefore, the RW storage and distribution may negatively affect the microbial water quality, while ABs and ARGs are detected along the entire scheme of urban wastewater reclamation and reuse, reaching the greenhouse environment (including soil and plants).202540923533
3515120.9944Impact of reclaimed water irrigation on antibiotic resistance in public parks, Beijing, China. The abundance and distribution of antibiotics and antibiotic resistance genes (ARGs) in soils from six parks using reclaimed water in Beijing, China, were characterized. Three classes of commonly used antibiotics (tetracycles, quinolones, and sulfonamides) were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The highest concentrations of tetracyclines and quinolones were 145.2 μg kg(-1) and 79.2 μg kg(-1), respectively. Detected tetG, tetW, sulI, and sulII genes were quantified by quantitative PCR. ARGs exhibited various abundances for different park soils. The integrase gene (intI1) as an indicator of horizontal gene transfer potential was also detected in high abundance, and had significant positive correlation with tetG, sulI, and sulII genes, suggesting that intI1 may be involved in ARGs dissemination. Both sulII and intI1 clones had high homology with some classes of pathogenic bacteria, such as Klebsiella oxytoca, Acinetobacter baumannii, Shigella flexneri, which could trigger potential public health concern.201424071635
7774130.9944Antibiotic-resistant genes and antibiotic-resistant bacteria in the effluent of urban residential areas, hospitals, and a municipal wastewater treatment plant system. In this study, we determined the abundance of 8 antibiotics (3 tetracyclines, 4 sulfonamides, and 1 trimethoprim), 12 antibiotic-resistant genes (10 tet, 2 sul), 4 antibiotic-resistant bacteria (tetracycline, sulfamethoxazole, and combined resistance), and class 1 integron integrase gene (intI1) in the effluent of residential areas, hospitals, and municipal wastewater treatment plant (WWTP) systems. The concentrations of total/individual targets (antibiotics, genes, and bacteria) varied remarkably among different samples, but the hospital samples generally had a lower abundance than the residential area samples. The WWTP demonstrated removal efficiencies of 50.8% tetracyclines, 66.8% sulfonamides, 0.5 logs to 2.5 logs tet genes, and less than 1 log of sul and intI1 genes, as well as 0.5 log to 1 log removal for target bacteria. Except for the total tetracycline concentration and the proportion of tetracycline-resistant bacteria (R (2) = 0.330, P < 0.05), there was no significant correlation between antibiotics and the corresponding resistant bacteria (P > 0.05). In contrast, various relationships were identified between antibiotics and antibiotic resistance genes (P < 0.05). Tet (A) and tet (B) displayed noticeable relationships with both tetracycline and combined antibiotic-resistant bacteria (P < 0.01).201525323405
5257140.9943Removal of fecal indicator bacteria and antibiotic resistant genes in constructed wetlands. Wastewater discharge evidently increased bacterial diversity in the receiving waterbodies. The objective of this study was to evaluate the effectiveness of a constructed wetland in reducing fecal indicator bacteria (FIB) and antibiotic resistant genes (ARGs). We determined the prevalence and attenuation of fecal indicator bacteria including Escherichia coli and enterococci, along with ARGs, and human-associated Bacteroidales (HF183) markers by quantitative polymerase chain reaction (qPCR) method. Three types of water samples (inlet, intermediate, and outlet) from a constructed wetland were collected once a month from May to December in 2013. The overall reduction of E. coli was 50.0% based on culture method. According to the qPCR result, the overall removal rate of E. coli was only 6.7%. Enterococci were found in 62.5% of the wetland samples. HF183 genetic marker was detected in all final effluent samples with concentration ranging from 1.8 to 4.22 log(10) gene copies (GC)/100 ml. Of the ARGs tested, erythromycin resistance genes (ermF) were detected in 79.2% of the wetland samples. The class 1 integrase (intI1) was detected in all water samples with concentration ranging from 0.83 to 5.54 log(10) GC/100 ml. The overall removal rates of enterococci, HF183, intI1, and ermF were 84.0%, 66.6%, 67.2%, and 13.1%, respectively.201930758793
5256150.9943Characterization of antibiotic resistance genes and bacteria in a municipal water resource recovery facility. Municipal water resource recovery facilities (WRRFs) are important sources of antibiotic-resistant bacteria and genes (ARB and ARGs). In this study, antibiotic-resistant total heterotrophic bacteria (THB(R) ) counts (CFU/ml) cultivated from influent, effluent of activated sludge process, and outflow of disinfection unit of an urban WRRF were investigated for the presence of 16, 32, 64, and 128 μg/ml of nine antibiotics. The isolates of Pseudomonas spp., Acinetobacter spp., and Escherichia coli obtained from effluent of activated sludge process were subjected for molecular identification by detecting the 16S rRNA gene sequences. Additionally, using the polymerase chain reaction method (PCR), the isolates were investigated for the presence of bla(SHV) , bla(TEM) , bla(CTX-M) , bla(VIM) , sul1, and qnrS genes. According to the results, the abundance of THB(R) counts was not significantly reduced by the biological treatment except for cefixime and sulfamethoxazole; it also increased for some antibiotics after disinfection unit. The average removal efficiency of THB(R) resistant to ciprofloxacin, sulfamethoxazole, and ceftazidime were 7.9 ± 1.7%, 41.8 ± 2.1%, and 14.4 ± 6.2%, respectively. Also, all the tested isolates were resistant to at least four antibiotics. For all antibiotics, the resistance ratio (THB(R) /THB) significantly increased in the effluent and after chlorination unit. Among 12 resistant isolates, bla(TEM) and sul1 genes were the most frequently detected ones involved in 92% and 83% of the isolates, respectively. Both bla(TEM) and sul1 genes were found in 100% of E. coli, and 83% and 67% of Pseudomonas spp. isolates, respectively. Further efforts are necessary to limit the transmission of ARB and ARGs from WRRFs into the environment and prevent human health threats. PRACTITIONER POINTS: The ratio of resistance significantly increased after biological treatment. Up to 40% of heterotrophic bacteria in the effluent was antibiotic resistant. bla(TEM) and sul1 genes were more prevalent (92%) in all isolates of bacteria. Both bla(TEM) and sul1 genes were found in 100% of E. coli isolates. Pseudomonas spp. holds bla(TEM) and sul1 genes in 83% and 67% of isolates, respectively.202235765862
5338160.9943Characterisation of microbial communities and quantification of antibiotic resistance genes in Italian wastewater treatment plants using 16S rRNA sequencing and digital PCR. The spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in humans, animals and environment is a growing threat to public health. Wastewater treatment plants (WWTPs) are crucial in mitigating the risk of environmental contamination by effectively removing contaminants before discharge. However, the persistence of ARB and ARGs even after treatment is a challenge for the management of water system. To comprehensively assess antimicrobial resistance dynamics, we conducted a one-year monitoring study in three WWTPs in central Italy, both influents and effluents. We used seasonal sampling to analyze microbial communities by 16S rRNA, as well as to determine the prevalence and behaviour of major ARGs (sul1, tetA, bla(TEM), bla(OXA-48), bla(CTX-M-1 group), bla(KPC)) and the class 1 Integron (int1). Predominant genera included in order: Arcobacter, Acinetobacter, Flavobacterium, Pseudarcobacter, Bacteroides, Aeromonas, Trichococcus, Cloacibacterium, Pseudomonas and Streptococcus. A higher diversity of bacterial communities was observed in the effluents compared to the influents. Within these communities, we also identified bacteria that may be associated with antibiotic resistance and pose a significant threat to human health. The mean concentrations (in gene copies per liter, gc/L) of ARGs and int1 in untreated wastewater (absolute abundance) were as follows: sul1 (4.1 × 10(9)), tetA (5.2 × 10(8)), bla(TEM) (1.1 × 10(8)), bla(OXA-48) (2.1 × 10(7)), bla(CTX-M-1 group) (1.1 × 10(7)), bla(KPC) (9.4 × 10(5)), and int1 (5.5 × 10(9)). The mean values in treated effluents showed reductions ranging from one to three log. However, after normalizing to the 16S rRNA gene (relative abundance), it was observed that in 37.5 % (42/112) of measurements, the relative abundance of ARGs increased in effluents compared to influents. Furthermore, correlations were identified between ARGs and bacterial genera including priority pathogens. This study improves our understanding of the dynamics of ARGs and provides insights to develop more effective strategies to reduce their spread, protecting public health and preserving the future efficacy of antibiotics.202438750766
7778170.9943Distribution of antibiotic resistance in the effluents of ten municipal wastewater treatment plants in China and the effect of treatment processes. Municipal wastewater treatment plant (WWTP) effluents represent an important contamination source of antibiotic resistance, threatening the ecological safety of receiving environments. In this study, the release of antibiotic resistance to sulfonamides and tetracyclines in the effluents of ten WWTPs in China was investigated. Results indicate that the concentrations of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) ranged from 1.1 × 10(1) to 8.9 × 10(3) CFU mL(-1) and 3.6 × 10(1) (tetW) to 5.4 × 10(6) (tetX) copies mL(-1), respectively. There were insignificant correlations of the concentrations of ARB and ARGs with those of corresponding antibiotics. Strong correlations were observed between the total concentrations of tetracycline resistance genes and sulfonamide resistance genes, and both of which were significantly correlated with intI1 concentrations. Statistical analysis of the effluent ARG concentrations in different WWTPs revealed an important role of disinfection in eliminating antibiotic resistance. The release rates of ARB and ARGs through the effluents of ten WWTPs ranged from 5.9 × 10(12) to 4.8 × 10(15) CFU d(-1) and 6.4 × 10(12) (tetW) to 1.7 × 10(18) (sul1) copies d(-1), respectively. This study helps the effective assessment and scientific management of ecological risks induced by antibiotic resistance discharged from WWTPs.201728088530
5258180.9943Occurrence of seventeen veterinary antibiotics and resistant bacterias in manure-fertilized vegetable farm soil in four provinces of China. This study focused on the occurrence of seventeen veterinary antibiotics and six resistant bacterias in soils from the vegetable farms fertilized with animal manure in China. Seventeen veterinary antibiotics, including sulfonamides, quinolones, tetracyclines, macrolides and amphenicols, were detected by high performance liquid chromatography/tandem mass spectrometer in all the 53 soil samples collected in four provinces during August 2016. The concentrations of target antibiotics in the soil samples ranged from not detectable to 415.00 μg/kg dry weight with the mean residual levels of the five classes followed order: tetracyclines (82.75 μg/kg) > quinolones (12.78 μg/kg) > macrolides (12.24 μg/kg) > sulfonamides (2.61 μg/kg) > amphenicols (0.06 μg/kg). Moreover, the highest antibiotic levels were found mainly in soil from organic vegetable farms. Risk assessment by using the methods of risk quotient, suggested that oxytetracycline, chlortetracycline, enrofloxacin and ciprofloxacin could pose severe ecological risk in sampled soils. Resistant strains were isolated in 30 samples, with Escherichia coli and Klebsiella pneumonia found the dominant bacterial hosts with resistance genes. Antibiotic resistance genes, including tetA, tetB, qnrS, oqxA, sul1, sul2, ermA and floR, were detected in the strains resistant to: tetracyclines, quinolones, sulfonamides, macrolides and amphenicols resistance, respectively. Overall, there was a correlation between the results of antibiotic risk assessment with the detection of resistance genes from isolated strains in the soils.201930317094
7770190.9943Mitigation of antibiotic resistance in a pilot-scale system treating wastewater from high-speed railway trains. Wastewater from high-speed railway trains represents a mobile reservoir of microorganisms with antibiotic resistance. It harbors abundant and diverse antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). This study investigated the removal of ARB and ARGs in a pilot-scale reactor, which consisted of an anaerobic/anoxic/oxic process, anaerobic/anoxic/aerobic process, and ozone-based disinfection to treat 1 m(3)/day wastewater from an electric multiple unit high-speed train. Further, the high prevalence of two mobile genetic elements (intI1 and Tn916/615) and five ARGs (tetA, tetG, qnrA, qnrS, bla(NDM-1), and ermF) was investigated using quantitative PCR. Significant positive correlations between ARGs (tetA, bla(NDM-1), and qnrA) and intI1 were identified (R(2) of 0.94, 0.85, and 0.70, respectively, P < 0.01). Biological treatment could significantly reduce Tn916/1545 (2.57 logs reduction) and Enterococci (2.56 logs reduction of colony forming unit (CFU)/mL), but the qnrS abundance increased (1.19 logs increase). Ozonation disinfection could further significantly decrease ARGs and Enterococci in wastewater, with a reduction of 1.67-2.49 logs and 3.16 logs CFU/mL, respectively. Moreover, food-related bacteria families which may contain opportunistic or parasitic pathogens (e.g., Moraxellaceae, Carnobacteriaceae, and Ruminococcaceae) were detected frequently. Enterococci filtered in this study shows multi-antibiotic resistance. Our study highlights the significance to mitigate antibiotic resistance from wastewater generated from high-speed railway trains, as a mobile source.202031864053