# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6158 | 0 | 0.9558 | Nitric oxide stress resistance in Porphyromonas gingivalis is mediated by a putative hydroxylamine reductase. Porphyromonas gingivalis, the causative agent of adult periodontitis, must maintain nitric oxide (NO) homeostasis and surmount nitric oxide stress from host immune responses or other oral bacteria to survive in the periodontal pocket. To determine the involvement of a putative hydroxylamine reductase (PG0893) and a putative nitrite reductase-related protein (PG2213) in P. gingivalis W83 NO stress resistance, genes encoding those proteins were inactivated by allelic exchange mutagenesis. The isogenic mutants P. gingivalis FLL455 (PG0893ermF) and FLL456 (PG2213ermF) were black pigmented and showed growth rates and gingipain and hemolytic activities similar to those of the wild-type strain. P. gingivalis FLL455 was more sensitive to NO than the wild type. Complementation of P. gingivalis FLL455 with the wild-type gene restored the level of NO sensitivity to a level similar to that of the parent strain. P. gingivalis FLL455 and FLL456 showed sensitivity to oxidative stress similar to that of the wild-type strain. DNA microarray analysis showed that PG0893 and PG2213 were upregulated 1.4- and 2-fold, respectively, in cells exposed to NO. In addition, 178 genes were upregulated and 201 genes downregulated more than 2-fold. The majority of these modulated genes were hypothetical or of unknown function. PG1181, predicted to encode a transcriptional regulator, was upregulated 76-fold. Transcriptome in silico analysis of the microarray data showed major metabolomic variations in key pathways. Collectively, these findings indicate that PG0893 and several other genes may play an important role in P. gingivalis NO stress resistance. | 2012 | 22247513 |
| 5233 | 1 | 0.9546 | Antibiotic resistance pattern of the allochthonous bacteria isolated from commercially available spices. Spices are often used in dried form, sometimes with significant microbial contamination including pathogenic and food spoilage bacteria. The antibiotic resistance represents an additional risk for food industry, and it is worthy of special attention as spices are important food additives. During our work, we examined the microbiological quality of 50 different spices with cultivation methods on diverse selective media. The identification of the most representative bacteria was carried out using 16S rDNA gene sequence analysis. Antibiotic resistance profiling of twelve identified Bacillus species (B. subtilis subsp. stercoris BCFK, B. licheniformis BCLS, B. siamensis SZBC, B. zhangzhouensis BCTA, B. altitudinis SALKÖ, B. velezensis CVBC, B. cereus SALÖB isolate, B. tequilensis KOPS, B. filamentosus BMBC, B. subtilis subsp. subtilis PRBC2, B. safensis BMPS, and B. mojavensis BCFK2 isolate) was performed using the standard disk-diffusion method against 32 antibiotics. The study showed that the majority resistance was obtained against penicillin G (100%), oxacillin (91.67%), amoxyclav (91.67%), rifampicin (75%), and azithromycin (75%). Our findings suggest that spices harbor multidrug-resistant bacteria. | 2021 | 34401102 |
| 5213 | 2 | 0.9541 | Draft genome sequences of Limosilactobacillus fermentum IJAL 01 335, isolated from a traditional cereal fermented dough. Limosilactobacillus fermentum IJAL 01 335 was isolated from mawè, a spontaneously fermented cereal dough from Benin. The 1.83 Mb draft genome sequence (52.37% GC) comprises 154 contigs, 1,836 coding sequences, and 23 predicted antibiotic resistance genes, providing insights into its genetic features and potential application in food fermentation. | 2025 | 41170963 |
| 810 | 3 | 0.9539 | Draft genome sequencing and functional annotation and characterization of biofilm-producing bacterium Bacillus novalis PD1 isolated from rhizospheric soil. Biofilm forming bacterium Bacillus novalis PD1 was isolated from the rhizospheric soil of a paddy field. B. novalis PD1 is a Gram-positive, facultatively anaerobic, motile, slightly curved, round-ended, and spore-forming bacteria. The isolate B. novalis PD1 shares 98.45% similarity with B. novalis KB27B. B. vireti LMG21834 and B. drentensis NBRC 102,427 are the closest phylogenetic neighbours for B. novalis PD1. The draft genome RAST annotation showed a linear chromosome with 4,569,088 bp, encoding 6139 coding sequences, 70 transfer RNA (tRNA), and 11 ribosomal RNA (rRNA) genes. The genomic annotation of biofilm forming B. novalis PD1(> 3.6@OD(595nm)) showed the presence of exopolysaccharide-forming genes (ALG, PSL, and PEL) as well as other biofilm-related genes (comER, Spo0A, codY, sinR, TasA, sipW, degS, and degU). Antibiotic inactivation gene clusters (ANT (6)-I, APH (3')-I, CatA15/A16 family), efflux pumps conferring antibiotic resistance genes (BceA, BceB, MdtABC-OMF, MdtABC-TolC, and MexCD-OprJ), and secondary metabolites linked to phenazine, terpene, and beta lactone gene clusters are part of the genome. | 2021 | 34537868 |
| 4620 | 4 | 0.9539 | Further analysis reveals new gut microbiome markers of type 2 diabetes mellitus. In recent years, metagenome-wide association studies have revealed potential relationships between intestinal microbiomes and the pathogenesis of type 2 diabetes mellitus (T2DM). However, considering the increase in volume of gene catalogues and algorithms, an updated analysis would be expected to confirm previous discoveries and provide new knowledge. We therefore constructed new profiles after mapping the recent catalogue of reference genes in the human gut microbiome to reanalyze samples from T2DM cases and controls in the Chinese population. We identified different compositions between Chinese controls and T2DM patients at the species and genus levels, especially in the case of butyrate-producing bacteria, Haemophilus, and Lactobacillus. An effective metagenomic linkage group random forest model was built to differentiate controls from T2DM cases in different cohorts. Functional markers from the Kyoto Encyclopedia of Genes and Genomes database were identified using new annotations. We also report 16 virulence factor markers and 22 antibiotic resistance markers associated with T2DM. | 2017 | 27943013 |
| 5383 | 5 | 0.9539 | Draft genome sequence of Acinetobacter haemolyticus strain MUWRP1017 isolated from the pus of a female inpatient at Bwera General Hospital in Uganda. The bacterium Acinetobacter haemolyticus, with a genome size of 3.4 Mb, was isolated from a pus swab of a wound on the left lower limb above the ankle joint of a female patient. This strain carries the antimicrobial resistance genes cephalosporinase blaADC-25, oxallinase blaOXA-264, floR, and sul2 and other resistance and virulence genes. | 2024 | 39162454 |
| 6124 | 6 | 0.9539 | Comparative analysis of spleen transcriptome detects differences in evolutionary adaptation of immune defense functions in bighead carp and silver carp. The evolutionary divergence of the immune defense functions in bighead carp (A. nobilis) and silver carp (H. molitrix) is still not understood at the molecular level. Here, we obtained 48,821,754 and 55,054,480 clean reads from spleen tissue libraries prepared for bighead carp and silver carp using Illumina paired-end sequencing technology, respectively, and identified 4976 orthologous genes from the transcriptome data sets by comparative analysis. Adaptive evolutionary analysis showed that 212 orthologous genes and 255 Gene Ontology (GO) terms were subjected to positive selection(Ka/Ks values > 1) only in bighead carp, and 195 orthologous genes and 309 GO terms only in silver carp. Among immune defense functions with significant evolutionary divergence, the positively selected biological processes in bighead carp mainly included B cell-mediated immunity, chemokine-mediated signaling pathway, and immunoglobulin mediated immune response, whereas those in silver carp mainly included the antigen processing and presentation, defense response to fungus, and detection of bacteria. Moreover, we found 2974 genes expressed only in spleen of bighead carp and 3494 genes expressed only in spleen of silver carp, where these genes were mostly enriched in the same biological processes or pathways. These results provide a better understanding of the differences in resistance to some diseases by bighead carp and silver carp, and also facilitate the identification of candidate genes related to disease resistance. | 2019 | 30287346 |
| 5210 | 7 | 0.9538 | Whole genome sequence data of Lactiplantibacillus plantarum IMI 507027. Here we report the draft genome sequence of the Lactiplantibacillus plantarum IMI 507027 strain. The genome consists of 37 contigs with a total size of 3,235,614 bp and a GC% of 44.51. After sequence trimming, 31 contigs were annotated, revealing 3,126 genes, of which 3,030 were coding sequences. The Average Nucleotide Identity (ANI) gave a value of 99.9926% between IMI 507027 and L. plantarum JDM1, identifying the strain as L. plantarum. No genes of concern for safety-related traits such as antimicrobial resistance or virulence factors were found. The annotated genome and raw sequence reads were deposited at NCBI under Bioproject with the accession number PRJNA791753. | 2022 | 35310818 |
| 5889 | 8 | 0.9537 | Monitoring of Virulence Genes, Drug-Resistance in Campylobacter coli Isolated from Golden Retrievers. The investigation was performed on 75 of Golden Retriever puppies. Faecal samples were collected on the 42 day of the puppies life (con-trol). Probiotic preparation was administered on 43 day of the puppies life and 10 days after the application of the probiotic, faecal samples were collected again (on 53 day of puppies life). All isolates of Campylobacter coli isolated prior to the administration of the probiotic were found to contain the cadF gene responsible for adhesion, as well as, the flaA gene influencing motility of the examined bacteria. Significant differences (P < 0.05) were recorded only in the case of enrofloxacin. | 2016 | 30015450 |
| 2489 | 9 | 0.9536 | First Isolation and Identification of Aeromonas veronii in a Captive Giant Panda (Ailuropoda melanoleuca). The objective of this study was to understand biological characteristics of one bacteria strain named as VPG which was isolated from multiple organs of a dead captive giant panda cub. Here, we use biochemical tests, 16S rRNA and gyrB genes for bacterial identification, the disk diffusion method for antibiotic resistance phenotype, smart chip real-time PCR for the antibiotic resistance genotype, multiplex PCR for determination of virulence genes, and the acute toxicity test in mice for testing the pathogenicity of isolates. The isolate was identified as A. veronii strain based on the biochemical properties and genetic analysis. We found that the strain carried 31 antibiotic resistance genes, revealed antimicrobial resistance phenotypically to several antibiotics including penicillin, ampicillin, oxacillin, amoxicillin, imipenem, and vancomycin, and carried virulence genes including aer, act, lip, exu, ser, luxs, and tapA. The main pathological changes in giant panda were congestion, necrotic lesions and a large number of bacteria in multiple organs. In addition, the LD(50) in Kunming mice infected with strain VGP was 5.14 × 10(7) CFU/mL by intraperitoneal injection. Infection with strain VGP led to considerable histological lesions such as hemorrhage of internal organs, necrosis of lymphocytes and neurons in Kunming mice. Taken together, these results suggest that infection with strain VGP would be an important causes of death in this giant panda cub. | 2023 | 37685043 |
| 1337 | 10 | 0.9535 | Biofilm formation, antimicrobial assay, and toxin-genotypes of Clostridium perfringens type C isolates cultured from a neonatal Yangtze finless porpoise. This is a culture-dependent study with the objective of pure culturing and characterizing pathogenic bacteria from the blowhole, lung, stomach and fecal samples of a neonatal crucially endangered Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) that died 27 days after birth. Bacteria were inoculated using a swab onto blood and MacConkey agar plates and representative isolates were identified through 16S rRNA gene sequence analysis. A total of three Clostridium perfringens type C strains from the fecal samples were isolated. Toxin genes, including cpa, cpb and cpb2, were detected by PCR amplification, whereas the etx, iap and cpe genes were not detected. Biofilm formation of the three strains was then examined. Only one strain was capable of biofilm formation. In addition, isolates showed strong resistance against the antibiotics amikacin (3/3), erythromycin (1/3), gentamicin (3/3), streptomycin (3/3), and trimethoprim (3/3), while sensitivity to ampicillin (3/3), bacitracin (3/3), erythromycin (2/3), penicillin G (3/3), and tetracycline (3/3). The results suggested C. perfringens type C could have contributed to the death of this neonatal porpoise. | 2022 | 35662380 |
| 2360 | 11 | 0.9534 | Evaluating the antibiotic resistance and frequency of adhesion markers among Escherichia coli isolated from type 2 diabetes patients with urinary tract infection and its association with common polymorphism of mannose-binding lectin gene. The present paper aims to determine the frequency and antibiotic resistance patterns of pathogenic bacteria, the virulence factor profile of Escherichia coli and mannose-binding lectin (MBL) gene polymorphism in individuals with diabetes mellitus (DM) and urinary tract infection (UTI). The population under study was 130 individuals with type 2 diabetes mellitus (T2DM) and UTI. The patients' clinical characteristics and urine and blood samples (5 mL) were collected. Antibiotic resistance was determined using a disc diffusion method, and the results were interpreted according to CLSI. The presence of virulence genes was detected by multiplex PCR. To detect the MBL gene polymorphism, PCR and restriction fragment length polymorphism methods were applied. The predominant Gram-negative and Gram-positive bacteria included E. coli and Streptococcus spp.viridans group, respectively. Women were more susceptible to the incidence of UTI than men. The E. coli isolates showed a high level of resistance to amoxicillin-clavulanic acid (87.35%), and nitrofurantoin and ceftizoxime were the most effective antimicrobial agents for E. coli. Cefotaxime and ceftizoxime were the most effective antimicrobial agents for Enterobacter spp., norfloxacin and ciprofloxacin were the most effective antimicrobial agents for Staphylococcus epidermidis and Staphylococcus saprophyticus. papGII (52.87%) and papEF (1.14%) had the highest and lowest frequency among examined genes in E. coli isolates, respectively. The GG genotype had the highest frequency among patients with T2DM and UTI. Results showed that the detection of E. coli in individuals with an AA genotype, codon 54 of the MBL gene, can play an important role in the molecular diagnosis and timely treatment of bacterial infections in individuals with diabetes. | 2020 | 33364032 |
| 6159 | 12 | 0.9533 | Gene expression profiling of Cecropin B-resistant Haemophilus parasuis. Synthetically designed antimicrobial peptides (AMPs) present the potential of replacing antibiotics in the treatment of bacterial infections. However, microbial resistance to AMPs has been reported and little is known regarding the underlying mechanism of such resistance. The naturally occurring AMP cecropin B (CB) disrupts the anionic cell membranes of Gram-negative bacteria. In this study, CB resistance (CBR) was induced in Haemophilusparasuis SH0165 by exposing it to a series of CB concentrations. The CB-resistant H.parasuis strains CBR30 and CBR30-50 were obtained. The growth curves of SH0165 and CBR30 showed that CBR30 displayed lower growth rates than SH0165. The result of transmission electron microscopy showed cell membranes of the CB-resistant CBR30 and CBR30-50 were smoother than SH0165. Microarrays detected 257 upregulated and 254 downregulated genes covering 20 clusters of orthologous groups (COGs) of the CB-resistant CBR30 compared with SH0165 (>1.5-fold change, p < 0.05). Sixty genes were affected in CBR30-50 covering 18 COGs, with 28 upregulated and 32 downregulated genes. Under the COG function classification, the majority of affected genes in the CB-resistant CBR30 and CBR30-50 belong to the category of inorganic ion transport, amino acid transport, and metabolism. The microarray results were validated by real-time quantitative reverse transcription PCR. This study may provide useful guidance for understanding the molecular mechanism underlying H.parasuis resistance to CB. | 2014 | 24862339 |
| 6130 | 13 | 0.9532 | Characterization of the virulence, growth temperature and antibiotic resistance of the Campylobacter jejuni IAL 2383 strain isolated from humans. The objective of this study was to characterize the C. jejuni IAL2383 strain isolated from humans in Brazil. Transcripts for the racR, dnaJ and ciaB genes were found and flaA, plda and cadF genes were present in the genome and bacteria was sensitive to most of the important antimicrobials used to treat humans. C. jejuni IAL2383 is a good experimental model to analyze the interactions with cells. | 2014 | 24948944 |
| 5446 | 14 | 0.9532 | Antimicrobial sensitivity trends and virulence genes in Shigella spp. from the Oceania region. Shigella is a common cause of diarrhoea in Papua New Guinea (PNG) and other Oceania countries. However, little is known about the strains causing infection. Archived Shigella isolates (n = 72) were obtained from research laboratories in PNG and reference laboratories in Australia. Shigella virulence genes were detected by PCR, and antimicrobial susceptibility was determined by disk diffusion. The ipaH virulence gene was present in all 72 isolates. The prevalence of other virulence genes was variable, with ial, invE, ipaBCD, sen/ospD3 and virF present in 60% of isolates and set1A and set1B genes present in 42% of isolates. Most S. flexneri isolates contained genes encoding enterotoxin 1 and/or enterotoxin 2. Resistance to antibiotics was common, with 51/72 isolates resistant to 2-4 antimicrobials. A greater proportion of bacteria isolated since 2010 (relative to pre-2010 isolates) were resistant to commonly used antibiotics such as ampicillin, chloramphenicol, tetracycline, and trimethoprim-sulfamethoxazole; suggesting that antimicrobial resistance (AMR) in Shigella is increasing over time in the Oceania region. There is a need for improved knowledge regarding Shigella circulation in the Oceania region and further monitoring of AMR patterns. | 2018 | 29906636 |
| 4619 | 15 | 0.9532 | Whole-Genome Sequence Analysis to Assess Mutations in Efflux Pumps in Mycobacterium tuberculosis: The Influence in Drug Resistance. Efflux pumps are proteins related to the transport of molecules in bacteria, and some of them have been recently reported to be involved in drug resistance (DR) in Mycobacterium tuberculosis. In addition, the association with type 2 diabetes mellitus (T2DM) has been considered a factor favoring the development of drug resistance. Therefore, the aim of this study was to characterize, by analysis of M. tuberculosis genomes, the variants in efflux pump genes and to determine the level of association with T2DM and DR. Nearly 400 Mtb genomes from individuals with and without T2DM and with and without DR were recovered. Of the 164 efflux pump genes analyzed, 10 lack any variant, while 154 genes presented from 3 to 19 variants. The variant S217P in mmpL13a (Rv1145) was the most abundant, found in 98 (25%) isolates. A significant association was observed between 19 variants and DR, and between 20 variants and T2DM (p ≤ 0.005). Although preliminary, the results show a tendency for certain variants to appear in tuberculosis isolates from individuals with DR and T2DM, demonstrating the possible influence of the host in the evolution of tuberculosis. Further studies are necessary to confirm the participation of these variants in the efflux pump function in tuberculosis. | 2025 | 40572193 |
| 1331 | 16 | 0.9531 | Serotypes, antibiotic resistance, and virulence genes of Salmonella in children with diarrhea. BACKGROUND: Salmonella is an important foodborne pathogen that causes acute diarrhea in humans worldwide. This study analyzed the relationships of serotypes and antibiotic resistance with virulence genes of Salmonella isolated from children with salmonellosis. METHODS: Serological typing was performed using the slide-agglutination method. The Kirby-Bauer disk diffusion method was used to test antibiotic susceptibility. Twenty virulence genes were detected by PCR. RESULTS: Salmonella Typhimurium (21 isolates, 34.43%) and S Enteritidis (12 isolates, 19.67%) were the predominant species among the 61 isolates. Ampicillin resistance was most common (63.93%), and among the cephalosporins, resistance was most often found to cefotaxime, a third-generation cephalosporin (19.67%). Among the 20 virulence genes, prgH, ssrB, and pagC were detected in all Salmonella isolates. In S Typhimurium, the detection rates of hilA, sipB, marT, mgtC, sopB, pagN, nlpI, bapA, oafA, and tolC were high. In S Enteritidis, the detection rates of icmF, spvB, spvR, and pefA were high. Nitrofurantoin resistance was negatively correlated with the virulence gene bapA (P = .005) and was positively correlated with icmF, spvB, spvR, and pefA (P = .012, .008, .002, and .005, respectively), The P values between all other virulence genes and antibiotic resistance were >.05. CONCLUSION: Salmonella Typhimurium and S Enteritidis were the main serotypes in children with diarrhea in Hangzhou, China. Salmonella exhibited a high level of resistance to common antibiotics, and a high rate of bacteria carrying virulence genes was observed. However, no significant correlation was found between virulence genes and resistance to common antibiotics. | 2020 | 32797660 |
| 6129 | 17 | 0.9530 | Yersinia ruckeri Infection and Enteric Redmouth Disease among Endangered Chinese Sturgeons, China, 2022. During October 2022, enteric redmouth disease (ERM) affected Chinese sturgeons at a farm in Hubei, China, causing mass mortality. Affected fish exhibited characteristic red mouth and intestinal inflammation. Investigation led to isolation of a prominent bacterial strain, zhx1, from the internal organs and intestines of affected fish. Artificial infection experiments confirmed the role of zhx1 as the pathogen responsible for the deaths. The primary pathologic manifestations consisted of degeneration, necrosis, and inflammatory reactions, resulting in multiple organ dysfunction and death. Whole-genome sequencing of the bacteria identified zhx1 as Yersinia ruckeri, which possesses 135 drug-resistance genes and 443 virulence factor-related genes. Drug-susceptibility testing of zhx1 demonstrated high sensitivity to chloramphenicol and florfenicol but varying degrees of resistance to 18 other antimicrobial drugs. Identifying the pathogenic bacteria associated with ERM in Chinese sturgeons establishes a theoretical foundation for the effective prevention and control of this disease. | 2024 | 38781928 |
| 5441 | 18 | 0.9529 | Presence of SXT integrating conjugative element in marine bacteria isolated from the mucus of the coral Fungia echinata from Andaman Sea. In this study, we characterize 18 cultivable bacteria associated within the mucus of the coral Fungia echinata from Andaman Sea, India. 16S rRNA gene sequence analysis showed that all the 18 strains isolated in this study from the coral mucus belong to the group Gammaproteobacteria and majority of them were identified as Vibrio core group. Our objective was to investigate the presence of the SXT/R391 integrating conjugative elements (ICEs) targeting integrase int(SXT) and SXT Hotspot IV genetic elements in these isolates. SXT/ICE initially reported in Vibrio cholerae contains many antibiotic and heavy metal resistance genes and acts as an effective tool for the horizontal transfer of resistance genes in other bacterial populations. Two of our strains, AN44 and AN60, were resistant to sulfamethoxazole, trimethoprim, chloramphenicol, and streptomycin, in addition to other antibiotics such as neomycin, ampicillin, rifampicin, and tetracycline. Using PCR followed by sequencing, we detected the SXT/ICE in these strains. The SXT integrase genes of AN44 and AN60 had a 99% and 100% identity with V. cholerae serogroup O139 strain SG24. This study provides the first evidence of the presence of SXT/R391 ICEs in Marinomonas sp. strain AN44 (JCM 18476(T) ) and Vibrio fortis strain AN60 (DSM 26067(T) ) isolated from the mucus of the coral F. echinata. | 2013 | 23083057 |
| 6123 | 19 | 0.9529 | Genomic analysis of a hop-resistance Lactobacillus brevis strain responsible for food spoilage and capable of entering into the VBNC state. BACKGROUND: Lactobacillus brevis is a major contaminant of spoiled beer. And it was able to enter VBNC state and cause false negative detection, which poses a major challenge to the brewing industry. METHODS: The genomic DNA of L. brevis BM-LB13908 was extracted and purified to form a sequencing library that meets the quality requirements and was sequenced. The sequencing results were then screened and assembled to obtain the entire genome sequence of L. brevis. Predicted genes were annotated by GO database, KEGG pathway database and COG functional classification system. RESULTS: The final assembly yielded 275 scaffolds of a total length of 2 840 080 bp with a G + C content of 53.35%. There were 2357, 701, 1519 predicted genes with corresponding GO functional, COG functional, and KEGG biological pathway annotations, respectively. The genome of L. brevis BM-LB13908 contains hop resistance gene horA and multiple genes related to the formation of VBNC state. CONCLUSIONS: This report describes the draft genome sequence of L. brevis BM-LB13908, a spoilage strain isolated from finished beer sample. This study may support further study on L. brevis and other beer spoilage bacteria, and prevent and control beer spoilage caused by microorganisms. | 2020 | 32272213 |