# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8572 | 0 | 0.9959 | Enantioselective effects of chiral antibiotics on antibiotic resistance gene dissemination and risk in activated sludge. Misuse of antibiotics drives the spread of antibiotic resistance genes (ARGs). Although reducing residual antibiotic concentrations can help curb ARG proliferation, the biodegradation and transformation of antibiotic stereoisomers may exacerbate resistance development. However, the impact of antibiotic enantiomers on ARG proliferation remains poorly understood. This study employed metagenomic analysis to investigate the enantiomer-specific selection and resistance risks of chiral antibiotic ofloxacin (OFL) and its (S)-enantiomer, levofloxacin (LEV), in activated sludge. Results showed that LEV primarily promoted the enrichment of ARGs related to aminoglycoside and mupirocin resistance by selecting for pathogenic bacteria carrying virulence factors under high toxicity stress. OFL-driven ARG proliferation involved more diverse mechanisms, including increased gene mobility, co-selection with heavy metals, broader host range, and elevated pathogenicity. The antibiotic resistome risk index (ARRI) further demonstrated a higher environmental risk under OFL treatment than LEV. These findings offer critical insights into the enantioselective resistance risks posed by chiral antibiotics. | 2025 | 40456327 |
| 7927 | 1 | 0.9957 | Different microplastics distinctively enriched the antibiotic resistance genes in anaerobic sludge digestion through shifting specific hosts and promoting horizontal gene flow. Both microplastics (MPs) and antibiotic resistance genes (ARGs) are intensively detected in waste activated sludge (WAS). However, the distinctive impacts of different MPs on ARGs emergence, dissemination, and its potential mechanisms remain unclear. In this study, long-term semi-continuous digesters were performed to examine the profiles of ARGs and antibiotic-resistant bacteria (ARB) in response to two different typical MPs (polyethylene (PE) and polyvinyl chloride (PVC)) in anaerobic sludge digestion. Metagenomic results show that PE- and PVC-MPs increase ARGs abundance by 14.8% and 23.6% in digester, respectively. ARB are also enriched by PE- and PVC-MPs, Acinetobacter sp. and Salmonella sp. are the dominant ARB. Further exploration reveals that PVC-MPs stimulates the acquisition of ARGs by human pathogen bacteria (HPB) and functional microorganisms (FMs), but PE-MPs doesn't. Network analysis shows that more ARGs tend to co-occur with HBP and FMs after MPs exposure, and more importantly, new bacteria are observed to acquire ARGs possibly via horizontal gene flow (HGF) in MPs-stressed digester. The genes involved in the HGF process, including reactive oxygen species (ROS) production, cell membrane permeability, extracellular polymeric substances (EPS) secretion, and ATP synthesis, are also enhanced by MPs, thereby attributing to the promoted ARGs dissemination. These findings offer advanced insights into the distinctive contribution of MPs to fate, host, dissemination of ARGs in anaerobic sludge digestion. | 2023 | 36423550 |
| 8573 | 2 | 0.9956 | Nitrogen-transforming bacteria as key hosts and disseminators of antibiotic resistance genes in constructed wetlands: Metagenomic and metatranscriptomic evidence. Given global concerns over antibiotic resistance genes (ARGs), constructed wetlands (CWs) have emerged as a cost-effective strategy to remove nitrogen (N) and mitigate ARG-related ecological risks. The occurrence and dissemination of ARGs are mainly driven by microorganisms. Although nitrogen transformation is a key process in CWs, the relationship between nitrogen-transforming bacteria (NTB) and ARG dynamics remains unclear. In this study, metagenomic and metatranscriptomic analyses were employed to comprehensively examine the associations between N transformation and the abundance, hosts, and ecological risks of ARGs in full-scale CWs. NTB, particularly dissimilatory nitrate reducers and bacteria involved in N organic degradation and synthesis, were identified as the primary hosts of ARGs. Furthermore, CWs substantially reduced ARG-related ecological risks, achieving decreases of 79.5 % in ARG expression, 94.9 % in mobile genetic elements, and 88.0 % in antibiotic-resistant pathogens, and identified NTB as key contributors to these risks. Both the decline in NTB abundance and adaptive fitness costs were identified as key mechanisms driving ARG reduction and mitigating ecological risk. This study highlights the critical role of N transformation in shaping ARG dynamics from a microbial perspective, providing a theoretical foundation for engineering practice in the co-control of ARGs and nitrogen removal in CWs. | 2025 | 41138407 |
| 8549 | 3 | 0.9956 | Current perspectives on microalgae and extracellular polymers for reducing antibiotic resistance genes in livestock wastewater. Antibiotic resistance genes (ARGs) in livestock wastewater resulting from excessive antibiotics used in animal farming pose significant environmental and public health risks. Conventional treatment methods are often costly, inefficient, and may inadvertently promote ARG transmission. Microalgae, with their long genetic distance from bacteria and strong ability to utilize wastewater nutrients, offer a sustainable solution for ARG mitigation. This review studied the abundance and characterization of ARGs in livestock wastewater, highlighted microalgal-based removal mechanisms of ARGs, including phagocytosis, competition, and absorption by extracellular polymeric substances (EPS), and explored factors influencing their efficacy. Notably, the microalgae-EPS system reduced ARGs by 0.62-3.00 log, demonstrating significant potential in wastewater treatment. Key challenges, such as optimizing algal species, understanding EPS-ARG interactions, targeted reduction of host bacteria, and scaling technologies, were discussed. This work provides critical insights for advancing microalgal-based strategies for ARG removal, promoting environmentally friendly and efficient wastewater management. | 2025 | 40324729 |
| 6938 | 4 | 0.9956 | Assessment of the Effects of Biodegradable and Nonbiodegradable Microplastics Combined with Pesticides on the Soil Microbiota. Microplastics (MPs) and pesticides pose significant threats to the health of soil ecosystems. This study investigated the individual and combined effects of biodegradable polylactic acid (PLA) and nonbiodegradable polyethylene terephthalate (PET) microplastics alongside glyphosate and imidacloprid pesticides on soil microbial communities and antibiotic resistance genes (ARGs) via microcosm experiments. Compared with the control, PLA significantly increased microbial alpha diversity and enhanced microbial functions related to environmental information processing and metabolism. However, PLA also selectively enriched populations of beneficial and potentially pathogenic bacteria, whereas PET had comparatively weaker effects. Crucially, PLA exposure resulted in substantially higher total abundance and ecological risk levels of soil ARGs than did PET. Coexposure with pesticides further amplified these effects, with PLA demonstrating notable synergistic interactions with both glyphosate and imidacloprid. These findings challenge the conventional assumption that biodegradable MPs such as PLA are environmentally safer than nonbiodegradable MPs, thus highlighting their potential to induce more complex and potentially severe ecological risks under co-contamination scenarios with pesticides. | 2025 | 41175058 |
| 8552 | 5 | 0.9955 | Sustainable material platforms for multi-log removal of antibiotic-resistant bacteria and genes from wastewater: A review. Antibiotic-resistant bacteria (ARB) and the associated resistance genes (ARGs) are now recognized as emerging contaminants that can disseminate via wastewater streams, posing significant risks to both human and ecosystem health. Conventional physicochemical treatment approaches (e.g., chlorination, ozonation, advanced oxidation processes) typically suppress these contaminants but may also result in the formation of hazardous by-products. This critical review comprehensibly evaluates bio-based and other sustainable materials designed for the removal of ARB and ARGs from aqueous environments. The materials are systematically categorized into (i) biopolymers and their composites (chitosan, alginate, cellulose), (ii) carbon-rich adsorbents and (photo-)catalysts (biochar, activated carbon, graphene), (iii) metal- and semiconductor-based nanomaterials, and (iv) nature-based treatment solutions (constructed wetlands, soil-aquifer treatment, clay sorbents). Observed log-reduction value range from 2 to 7 for ARB with platforms such as zinc oxide/activated-carbon alginate beads, Fe/N-doped biochars, and graphene-supramolecular-porphyrin hybrids demonstrating high multifunctional efficacy. Mechanistic studies reveal that removal involves synergistic adsorption, photodynamic or Fenton-like oxidation, cell-membrane disruption, and inhibition of horizontal gene transfer. This review emphasizes the advancing potential of sustainable material solutions for mitigating antibiotic resistance and highlights the urgent need to develop scalable, environmentally sustainable treatment methods for protecting water resources and public health. | 2025 | 40763861 |
| 7926 | 6 | 0.9955 | Microplastics Exacerbated Conjugative Transfer of Antibiotic Resistance Genes during Ultraviolet Disinfection: Highlighting Difference between Conventional and Biodegradable Ones. Microplastics (MPs) have been confirmed as a hotspot for antibiotic resistance genes (ARGs) in wastewater. However, the impact of MPs on the transfer of ARGs in wastewater treatment remains unclear. This study investigated the roles and mechanisms of conventional (polystyrene, PS) and biodegradable (polylactic acid, PLA) MPs in the conjugative transfer of ARGs during ultraviolet disinfection. The results showed that MPs significantly facilitated the conjugative transfer of ARGs compared with individual ultraviolet disinfection, and PSMPs exhibited higher facilitation than PLAMPs. The facilitation effects were attributed to light shielding and the production of reactive oxygen species (ROS) and nanoplastics from ultraviolet irradiation of MPs. The light shielding of MPs protected the bacteria and ARGs from ultraviolet inactivation. More importantly, ROS and nanoplastics generated from irradiated MPs induced intracellular oxidative stress on bacteria and further increased the cell membrane permeability and intercellular contact, ultimately enhancing the ARG exchange. The greater fragmentation of PSMPs than PLAMPs resulted in a higher intracellular oxidative stress and a stronger enhancement. This study highlights the concerns of conventional and biodegradable MPs associated with the transfer of ARGs during wastewater treatment, which provides new insights into the combined risks of MPs and ARGs in the environment. | 2025 | 39723446 |
| 8587 | 7 | 0.9955 | Disinfectant polyhexamethylene guanidine triggered simultaneous efflux pump antibiotic- and metal-resistance genes propagation during sludge anaerobic digestion. The environmental transmission of antibiotic resistance genes (ARGs) and metal resistance genes (MRGs) exerted devastating threats to global public health, and their interactions with other emerging contaminants (ECs) have raised increasing concern. This study investigated that the abundances of ARGs and MRGs with the predominant type of efflux pump were simultaneously increased (8.4-59.1%) by disinfectant polyhexamethylene guanidine (PHMG) during waste activated sludge (WAS) anaerobic digestion. The aggregation of the same microorganisms (i.e., Hymenobacter and Comamonas) and different host bacteria (i.e., Azoarcus and Thauera) were occurred upon exposure to PHMG, thereby increasing the co-selection and propagation of MRGs and ARGs by vertical gene transfer. Moreover, PHMG enhanced the process of horizontal gene transfer (HGT), facilitating their co-transmission by the same mobile genetic elements (20.2-223.7%). Additionally, PHMG up-regulated the expression of critical genes (i.e., glnB, trpG and gspM) associated with the HGT of ARGs and MRGs (i.e., two-component regulatory system and quorum sensing) and exocytosis system (i.e., bacterial secretion system). Structural equation model analysis further verified that the key driver for the simultaneous enrichment of ARGs and MRGs under PHMG stress was microbial community structure. The study gives new insights into the aggravated environmental risks and mechanisms of ECs in sludge digestion system, providing guidance for subsequent regulation and control of ECs. | 2024 | 38936038 |
| 8557 | 8 | 0.9955 | Efficient inactivation of antibiotic resistant bacteria by iron-modified biochar and persulfate system: Potential for controlling antimicrobial resistance spread and mechanism insights. Antimicrobial resistance (AMR) is a critical global health threat, further intensified by the widespread dissemination of plasmid-encoded antibiotic resistance genes (ARGs), which poses a significant challenge to the "One Health" concept. Persulfate-based advanced oxidation processes (PS-AOPs) have emerged as effective disinfection methods, capable of degrading antibiotics, inactivating bacteria, and eliminating ARGs, whereas their efficacy towards blocking ARGs horizontal transfer remains elusive. This work constructed a series of Fe-modified soybean straw biochar (FeSSB) as persulfate (PS) activators through Fe-modification and temperature regulation. Among the tested systems, FeSSB800/PS achieved complete inactivation of antibiotic resistant bacteria (ARB) with a 7.04-log reduction within 60 min, outperforming others. FeSSB800, featuring the highest exposed-Fe(II) sites, most CO groups, and lowest charge transfer resistance, obtaining optimal PS activation and reactive species generation, which caused irreversible damage to ARB cells and significantly inhibited the transformation and conjugation efficiency of plasmid RP4. The inhibition mechanism is driven by the aggressive action of free radicals, which injure cell envelopes, induce oxidative stress, disrupt ATP synthesis, and alter intercellular adhesion. These findings underscore the potential of PS-AOPs as a promising strategy to mitigate AMR by simultaneously inactivating ARB and impeding ARGs dissemination. | 2025 | 40203758 |
| 8583 | 9 | 0.9954 | Microplastics Enhance the Prevalence of Antibiotic Resistance Genes in Anaerobic Sludge Digestion by Enriching Antibiotic-Resistant Bacteria in Surface Biofilm and Facilitating the Vertical and Horizontal Gene Transfer. Antibiotic resistance genes (ARGs) and microplastics (MPs) are recognized as emerging contaminants and threats to global human health. Despite both of them being significantly detected in their "hotspots", i.e., waste activated sludge (WAS), rare studies on how MPs affect ARGs and antibiotic-resistant bacteria (ARB) in anaerobic sludge digestion are available. Herein, the fate of ARGs and ARB after exposure to MPs of three dosages (10, 30, and 80 particles/g-TS), three polymer types (LDPE, PET, and PS), and three branching extents (LDPE, LLDPE, and HDPE) in anaerobic sludge digestion was investigated. Metagenomic results indicated that all variants of MPs resulted in an increase of the relative abundance of ARGs in the digester compared to the control. The abundance of ARGs demonstrated a dosage-dependent relationship within the range from 10 to 80 particles/g-TS, resulting in an increase from 4.5 to 27.9% compared to the control. Branching structure and polymer type influence ARG level in the sludge digester as well. Mechanism studies revealed that LDPE selectively enriched potential ARB and ARGs in the surface biofilm, possibly creating a favorable environment for ARB proliferation and ARG exchange. Furthermore, vertical transfer of ARGs was facilitated by LDPE through increasing bacterial cell proliferation accompanied by the enhancement of relevant functional genes. The elevated abundance of mobile genetic elements (MGEs) and ARGs-carrying plasmids also demonstrated that MGE-mediated horizontal transfer was promoted by LDPE at 80 particles/g-TS. This effect was compounded by increased oxidative stress, cell membrane permeability, and cell cohesion, collectively facilitating horizontal ARG transfer. Consequently, both vertical and horizontal transfer of ARGs could be concurrently promoted by LDPE an in anaerobic sludge digester. | 2023 | 37733635 |
| 8584 | 10 | 0.9954 | Microplastics enhance the prevalence of antibiotic resistance genes in mariculture sediments by enriching host bacteria and promoting horizontal gene transfer. Microplastics (MPs) and antibiotic resistance genes (ARGs) pose significant challenges to the One Health framework due to their intricate and multifaceted ecological and environmental impacts. However, the understanding of how MP properties influence ARG prevalence in mariculture sediments remains limited. Herein, the polystyrene (PS) and polyvinyl chloride (PVC) MPs with different sizes (20-120 μm and 0.5-2.0 mm) were selected to evaluate their impacts and underlying mechanisms driving ARGs dissemination. The results showed that PS and PVC MPs increased the relative abundance of ARGs by 1.41-2.50-fold and 2.01-2.84-fold, respectively, compared with control, particularly high-risk genes. The polymer type effect was identified as more influential than the size effect in driving the sediment resistome evolution. PVC shifted the microbial community assembly from stochastic to deterministic processes, thus enriching ARG host pathogens. Furthermore, the highly hydrophobic PS not only recruited the host bacteria colonization but also facilitated ARG exchange within the plastisphere. The exogenous additives released by PVC (e.g., heavy metals, bisphenol A, and tridecyl ester) and the particles synergistically promoted ARG conjugative transfer by inducing oxidative stress and enhancing cell membrane permeability. These findings revealed how MPs characteristics facilitated the spread of ARGs in marine benthic ecosystems, underscoring the importance of mitigating MPs pollution to maintain mariculture ecosystem health, prevent zoonotic diseases, and balance global mariculture with ecological health. | 2025 | 40052062 |
| 8111 | 11 | 0.9954 | Effect of alkaline-thermal pretreatment on biodegradable plastics degradation and dissemination of antibiotic resistance genes in co-compost system. Biodegradable plastics (BDPs) are an eco-friendly alternative to traditional plastics in organic waste, but their microbial degradation and impact on antibiotic resistance genes (ARGs) transmission during co-composting remain poorly understood. This study examines how alkaline-thermal pretreatment enhances BDPs degradation and influences the fate of ARGs and mobile genetic elements (MGEs) in co-composting. Pretreatment with 0.1 mol/L NaOH at 100℃ for 40 minutes increased the surface roughness and hydrophilicity of BDPs while reducing their molecular weight and thermal stability. Incorporating pretreated BDPs film (8 g/kg-TS) into the compost reduced the molecular weight of the BDPs by 59.70 % during the maturation stage, facilitating compost heating and prolonging the thermophilic stage. However, incomplete degradation of BDPs releases numerous smaller-sized microplastics, which can act as carriers for microorganisms, facilitating the dissemination of ARGs across environments and posing significant ecological and public health risks. Metagenomic analysis revealed that pretreatment enriched plastic-degrading bacteria, such as Thermobifida fusca, on BDPs surfaces and accelerated microbial plastic degradation during the thermophilic stage, but also increased ARGs abundance. Although pretreatment significantly reduced MGEs abundance (tnpA, IS19), the risk of ARGs dissemination remained. Three plastic-degrading bacteria (Pigmentiphaga sp002188465, Bacillus clausii, and Bacillus altitudinis) were identified as ARGs hosts, underscoring the need to address the risk of horizontal gene transfer of ARGs associated with pretreatment in organic waste management. | 2025 | 39970645 |
| 7855 | 12 | 0.9954 | Combat against antibiotic resistance genes during photo-treatment of magnetic Zr-MOFs@Layered double hydroxide heterojunction: Conjugative transfer risk mitigating and bacterial inactivation. The dissemination of antimicrobial resistance (AMR) in wastewater treatment poses a severe threat to the global ecological environment. This study explored the effectiveness of photocatalysis in inactivating antibiotic resistant bacteria (ARB) and quantitatively clarified the inhibiting rate of the transfer of antibiotics resistance genes (ARGs). Herein, the magnetic heterojunction as UiO-66-NH(2)@CuFe LDH-Fe(3)O(4) (UN-66@LDH-Fe) effectively facilitated the electron-hole separation and accelerated the photogenerated charge transfer, thereby guaranteeing the stable practical application in aeration tanks. Notably, the internal electric field of heterogeneous photocatalyst resulted in significant increase of ARGs inactivation, achieving 5.63 log of ARB, 3.66 log of tetA and 3.57 log of Ampr genes were photodegraded under optimal reaction conditions within 6 h. Based on the complex microbial and molecular mechanism of multiple-ARB communities inactivation in photo-treatment, the photogenerated reactive oxygen species (ROSs, ·OH and ·O(2)(-)) effectively destroyed bacterial membrane protein, thereby the intracellular ROSs and redox cycles further induced oxidative stress, attributing to the abundance reduction of ARGs and their host bacteria. Moreover, long-term (7 days) continuous operation preliminarily verified the practical potential in reducing AMR spread and developing wastewater treatment efficacy. Overall, this study presented an advantageous synergistic strategy for mitigating the AMR-associated environmental risk in wastewater treatment. | 2025 | 40188541 |
| 8555 | 13 | 0.9954 | Combating Antibiotic Resistance in Persulfate-Based Advanced Oxidation Processes: Activation Methods and Energy Consumption. Antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs) have become increasing concerning issues, threatening human health. Persulfate-based advanced oxidation processes (PS-AOPs), due to their remarkable potential in combating antibiotic resistance, have garnered significant attention in the field of disinfection in recent years. In this review, we systematically evaluated the efficacy and underlying mechanism of PS integration with various activation methods for the elimination of ARB/ARGs. These approaches encompass physical methods, catalyst activation, and hybrid techniques with photocatalysis, ozonation, and electrochemistry. Additionally, we employed Chick's model and electrical energy per log order (EE/O) to assess the performance and energy efficiency, respectively. This review aims at providing a guide for future investigation on PS-AOPs for antibiotic resistance control. | 2025 | 39864723 |
| 6397 | 14 | 0.9953 | Microplastics and antibiotic resistance genes as rising threats: Their interaction represents an urgent environmental concern. Microplastics (MPs) have been reported to be emerging contaminant of different environmental niches like air, soil, and water. When exposed to these environments, MPs interact with already existing antibiotics to create combined pollution that can harm organisms. MPs have garnered significant attention in academic circles due to their ability to adsorb antibiotics. This review article explores different dimensions of MPs, antibiotic resistance genes (ARGs), and the interplay between MPs, antibiotics, and antibiotic-resistant bacteria (ARB), emphasizing their interconnection with soil and water pollution. It also summarizes the mechanisms behind the interaction between antibiotics and MPs, detailing various physical and chemical interactions. Additionally, it outlines the pathways through which MPs and ARGs complexes spread, offering insights for future research and solutions to tackle compound pollution. The article concludes by providing targeted strategies to mitigate the environmental and public health risks posed by MP-associated ARG transmission, highlighting the need for integrated pollution control, advanced monitoring techniques, and stricter regulatory policies. | 2025 | 40756460 |
| 8554 | 15 | 0.9953 | Nanomaterial-Enhanced Hybrid Disinfection: A Solution to Combat Multidrug-Resistant Bacteria and Antibiotic Resistance Genes in Wastewater. This review explores the potential of nanomaterial-enhanced hybrid disinfection methods as effective strategies for addressing the growing challenge of multidrug-resistant (MDR) bacteria and antibiotic resistance genes (ARGs) in wastewater treatment. By integrating hybrid nanocomposites and nanomaterials, natural biocides such as terpenes, and ultrasonication, this approach significantly enhances disinfection efficiency compared to conventional methods. The review highlights the mechanisms through which hybrid nanocomposites and nanomaterials generate reactive oxygen species (ROS) under blue LED irradiation, effectively disrupting MDR bacteria while improving the efficacy of natural biocides through synergistic interactions. Additionally, the review examines critical operational parameters-such as light intensity, catalyst dosage, and ultrasonication power-that optimize treatment outcomes and ensure the reusability of hybrid nanocomposites and other nanomaterials without significant loss of photocatalytic activity. Furthermore, this hybrid method shows promise in degrading ARGs, thereby addressing both microbial and genetic pollution. Overall, this review underscores the need for innovative wastewater treatment solutions that are efficient, sustainable, and scalable, contributing to the global fight against antimicrobial resistance. | 2024 | 39591087 |
| 8558 | 16 | 0.9953 | Mitigating the vertical migration and leaching risks of antibiotic resistance genes through insect fertilizer application. The leaching and vertical migration risks of antibiotic resistance genes (ARGs) from fertilized soil to groundwater poses a significant threat to ecological and public safety. Insect fertilizer, particularly black soldier fly organic fertilizer (BOF), renowned for its minimal antibiotic resistance, emerge as a promising alternative for sustainable agricultural fertilization. This study employs soil-column leaching experiments to evaluate the impact of BOF on the leaching behavior of ARGs. Our results reveal that BOF significantly reduces the leaching risks of ARGs by 22.1 %-49.3 % compared to control organic fertilizer (COF). Moreover, BOF promotes the leaching of beneficial Bacillus and, according to random forest analysis, is the most important factor in predicting ARG profiles (3.02 % increase in the MSE). Further network analysis and mantel tests suggest that enhanced nitrogen metabolism in BOF leachates could foster Bacillus biofilm formation, thereby countering antibiotic-resistant bacteria (ARB) and mitigating antibiotic resistance. In addition, linear regression analysis revealed that Bacillus biofilm-associated genes pgaD (biofilm PGA synthesis protein), slrR (biofilm formation regulator), and kpsC (capsular polysaccharide export protein) were identified as pivotal in the elimination of ARGs, which can serve as effective indicators for assessing antibiotic resistance in groundwater. Collectively, this study demonstrates that BOF as an environmentally friendly fertilizer could markedly reduce the vertical migration risks of ARGs and proposes Bacillus biofilm formation related genes as reliable indicators for monitoring antibiotic resistance in groundwater. | 2025 | 40086570 |
| 7928 | 17 | 0.9953 | Insight into the responses of antibiotic resistance genes in microplastic biofilms to zinc oxide nanoparticles and zinc ions pressures in landfill leachate. Microplastic (MP) biofilms are hotspots of antibiotic resistance genes (ARGs) in landfill environment. MP biofilms in landfill leachate coexist with heavy metals and metallic nanoparticles (NPs) that considered to be the selective agents of ARGs. However, the effects of these selective pressures on ARGs in MP biofilms and their differences in MP-surrounding leachate have not been well understood. Herein, the changes of ARG abundances in MP biofilms and corresponding leachate under zinc oxide (ZnO) NPs and zinc ion (Zn(2+)) pressures were comparatively analyzed. The presence of ZnO NPs and Zn(2+) promoted the enrichment of ARGs in MP biofilms, and the enrichment was more pronounced in ZnO NPs groups. ZnO NPs and especially Zn(2+) mainly decreased the abundances of ARGs in leachate. The increase of integron abundances and reactive oxygen species production in MP biofilms implied the enhanced potential for horizontal transfer of ARGs under ZnO NPs and Zn(2+) pressures. Meanwhile, the co-occurrence pattern between ARGs and bacterial genera in MP biofilms with more diverse potential ARG hosts was more complex than in leachate, and the enrichment of ARG-hosting bacteria in MP biofilms under ZnO NPs and Zn(2+) pressures supported the enrichment of ARGs. | 2023 | 37480611 |
| 8591 | 18 | 0.9953 | Nanoscale zero-valent iron alleviate antibiotic resistance risk during managed aquifer recharge (MAR) by regulating denitrifying bacterial network. The frequent occurrence of antibiotics in reclaimed water is concerning, in the case of managed aquifer recharge (MAR), it inevitably hinders further water purification and accelerates the evolutionary resistance in indigenous bacteria. In this study, we constructed two column reactors and nanoscale zero-valent iron (nZVI) amendment was applied for its effects on water quality variation, microbial community succession, and antibiotic resistance genes (ARGs) dissemination, deciphered the underlying mechanism of resistance risk reduction. Results showed that nZVI was oxidized to iron oxides in the sediment column, and total effluent iron concentration was within permissible limits. nZVI enhanced NO(3)(-)-N removal by 15.5% through enriching denitrifying bacteria and genes, whereas made no effects on oxacillin (OXA) removal. In addition, nZVI exhibited a pivotal impact on ARGs and plasmids decreasing. Network analysis elucidated that the diversity and richness of ARG host declined with nZVI amendment. Denitrifying bacteria play a key role in suppressing horizontal gene transfer (HGT). The underlying mechanisms of inhibited HGT included the downregulated SOS response, the inhibited Type-Ⅳ secretion system and the weakened driving force. This study afforded vital insights into ARG spread control, providing a reference for future applications of nZVI in MAR. | 2024 | 38134694 |
| 8580 | 19 | 0.9953 | Mitigation of microplastic-associated emerging pollutants by chlorination using field-collected microplastic: Antimicrobial-resistant genes and pathogens. The ubiquity of microplastics (MPs) in aquatic environments has raised significant concerns regarding their roles as vectors for antibiotic-resistance genes (ARGs) and antibiotic-resistant pathogens (ARPs). This study investigated the mitigation of ARGs and ARPs associated with field-collected MPs through chlorination using free available chlorine (FAC) at varying concentrations. FAC effectively reduced the absolute abundance of ARGs on MPs by up to 99.69 %, although the relative abundance of certain ARGs persisted or increased after treatments. Results revealed that the three-dimensional structure of biofilms on MPs significantly influenced FAC efficacy, with interior biofilm bacteria demonstrating greater resistance than outer biofilm. Additionally, FAC induced fragmentation of MPs, particularly increasing the proportion of particles smaller than 100 μm. Notably, ARGs such as sul1 and ermB showed substantial reductions in absolute abundance, whereas ermC and sul2 exhibited less reduction, highlighting the complexity of disinfection in MP-associated biofilms. These findings underscore the need for optimizing disinfection strategies to mitigate ARG dissemination and address environmental risks posed by MPs in wastewater effluents. | 2025 | 40436100 |