# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6686 | 0 | 0.9971 | The Impact of Wastewater on Antimicrobial Resistance: A Scoping Review of Transmission Pathways and Contributing Factors. BACKGROUND/OBJECTIVES: Antimicrobial resistance (AMR) is a global issue driven by the overuse of antibiotics in healthcare, agriculture, and veterinary settings. Wastewater and treatment plants (WWTPs) act as reservoirs for antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). The One Health approach emphasizes the interconnectedness of human, animal, and environmental health in addressing AMR. This scoping review analyzes wastewater's role in the AMR spread, identifies influencing factors, and highlights research gaps to guide interventions. METHODS: This scoping review followed the PRISMA-ScR guidelines. A comprehensive literature search was conducted across the PubMed and Web of Science databases for articles published up to June 2024, supplemented by manual reference checks. The review focused on wastewater as a source of AMR, including hospital effluents, industrial and urban sewage, and agricultural runoff. Screening and selection were independently performed by two reviewers, with conflicts resolved by a third. RESULTS: Of 3367 studies identified, 70 met the inclusion criteria. The findings indicated that antibiotic residues, heavy metals, and microbial interactions in wastewater are key drivers of AMR development. Although WWTPs aim to reduce contaminants, they often create conditions conducive to horizontal gene transfer, amplifying resistance. Promising interventions, such as advanced treatment methods and regulatory measures, exist but require further research and implementation. CONCLUSIONS: Wastewater plays a pivotal role in AMR dissemination. Targeted interventions in wastewater management are essential to mitigate AMR risks. Future studies should prioritize understanding AMR dynamics in wastewater ecosystems and evaluating scalable mitigation strategies to support global health efforts. | 2025 | 40001375 |
| 2586 | 1 | 0.9966 | A Scoping Review Unveiling Antimicrobial Resistance Patterns in the Environment of Dairy Farms Across Asia. Antimicrobial resistance (AMR) poses a significant "One Health" challenge in the farming industry attributed to antimicrobial misuse and overuse, affecting the health of humans, animals, and the environment. Recognizing the crucial role of the environment in facilitating the transmission of AMR is imperative for addressing this global health issue. Despite its urgency, there remains a notable gap in understanding resistance levels in the environment. This scoping review aims to consolidate and summarize available evidence of AMR prevalence and resistance genes in dairy farm settings. This study was conducted following the PRISMA Extension checklist to retrieve relevant studies conducted in Asian countries between 2013 and 2023. An electronic literature search involving PubMed, ScienceDirect, Embase, and Scopus resulted in a total of 1126 unique articles that were identified. After a full-text eligibility assessment, 39 studies were included in this review. The findings indicate that AMR studies in dairy farm environments have primarily focused on selective bacteria, especially Escherichia coli and other bacteria such as Staphylococcus aureus, Klebsiella spp., and Salmonella spp. Antimicrobial resistance patterns were reported across 24 studies involving 78 antimicrobials, which predominantly consisted of gentamicin (70.8%), ampicillin (58.3%), and tetracycline (58.3%). This review emphasizes the current state of AMR in the environmental aspects of dairy farms across Asia, highlighting significant gaps in regional coverage and bacterial species studied. It highlights the need for broader surveillance, integration with antimicrobial stewardship, and cross-sector collaboration to address AMR through a One Health approach. | 2025 | 40426503 |
| 6688 | 2 | 0.9966 | Antibiotic resistant bacteria: A bibliometric review of literature. Antibiotic-resistant bacteria (ARB) are a serious threat to the health of people and the ecological environment. With this problem becoming more and more serious, more countries made research on the ARB, and the research number has been sharply increased particularly over the past decade. Therefore, it is quite necessary to globally retrace relevant researches on the ARB published from 2010 to 2020. This will help researchers to understand the current research situation, research trends and research hotspots in this field. This paper uses bibliometrics to examine publications in the field of ARB from 2010 to 2020 that were retrieved from the Web of Science (WOS). Our study performed a statistical analysis of the countries, institutions, journals, authors, research areas, author keywords, Essential Science Indicators (ESI) highly cited papers, and ESI hotspots papers to provide an overview of the ARB field as well as research trends, research hotspots, and future research directions in the field. The results showed that the number of related studies is increasing year by year; the USA is most published in the field of ARB; China is the most active in this field in the recent years; the Chinese Acad Sci published the most articles; Sci. Total Environ. published the greatest number of articles; CM Manaia has the most contributions; Environmental Sciences and Ecology is the most popular research area; and "antibiotic resistance," "antibiotics," and "antibiotic resistance genes" were the most frequently occurring author keywords. A citation analysis showed that aquatic environment-related antibiotic resistance is a key research area in this field, while antimicrobial nanomaterial-related research is a recent popular topic. | 2022 | 36466520 |
| 2525 | 3 | 0.9965 | Review of antimicrobial resistance surveillance programmes in livestock and meat in EU with focus on humans. OBJECTIVES: In this review, we describe surveillance programmes reporting antimicrobial resistance (AMR) and resistance genes in bacterial isolates from livestock and meat and compare them with those relevant for human health. METHODS: Publications on AMR in European countries were assessed. PubMed was reviewed and AMR monitoring programmes were identified from reports retrieved by Internet searches and by contacting national authorities in EU/European Economic Area (EEA) member states. RESULTS: Three types of systems were identified: EU programmes, industry-funded supranational programmes and national surveillance systems. The mandatory EU-financed programme has led to some harmonization in national monitoring and provides relevant information on AMR and extended-spectrum β-lactamase/AmpC- and carbapenemase-producing bacteria. At the national level, AMR surveillance systems in livestock apply heterogeneous sampling, testing and reporting modalities, resulting in results that cannot be compared. Most reports are not publicly available or are written in a local language. The industry-funded monitoring systems undertaken by the Centre Européen d'Etudes pour la Santé Animale (CEESA) examines AMR in bacteria in food-producing animals. CONCLUSIONS: Characterization of AMR genes in livestock is applied heterogeneously among countries. Most antibiotics of human interest are included in animal surveillance, although results are difficult to compare as a result of lack of representativeness of animal samples. We suggest that EU/EEA countries provide better uniform AMR monitoring and reporting in livestock and link them better to surveillance systems in humans. Reducing the delay between data collection and publication is also important to allow prompt identification of new resistance patterns. | 2018 | 28970159 |
| 2590 | 4 | 0.9965 | Combining stool and stories: exploring antimicrobial resistance among a longitudinal cohort of international health students. BACKGROUND: Antimicrobial resistance (AMR) is a global public health concern that requires transdisciplinary and bio-social approaches. Despite the continuous calls for a transdisciplinary understanding of this problem, there is still a lack of such studies. While microbiology generates knowledge about the biomedical nature of bacteria, social science explores various social practices related to the acquisition and spread of these bacteria. However, the two fields remain disconnected in both methodological and conceptual levels. Focusing on the acquisition of multidrug resistance genes, encoding extended-spectrum betalactamases (CTX-M) and carbapenemases (NDM-1) among a travelling population of health students, this article proposes a methodology of 'stool and stories' that combines methods of microbiology and sociology, thus proposing a way forward to a collaborative understanding of AMR. METHODS: A longitudinal study with 64 health students travelling to India was conducted in 2017. The study included multiple-choice questionnaires (n = 64); a collection of faecal swabs before travel (T0, n = 45), in the first week in India (T1, n = 44), the second week in India (T2, n = 41); and semi-structured interviews (n = 11). Stool samples were analysed by a targeted metagenomic approach. Data from semi-structured interviews were analysed using the method of thematic analysis. RESULTS: The incidence of ESBL- and carbapenemase resistance genes significantly increased during travel indicating it as a potential risk; for CTX-M from 11% before travel to 78% during travel and for NDM-1 from 2% before travel to 11% during travel. The data from semi-structured interviews showed that participants considered AMR mainly in relation to individual antibiotic use or its presence in a clinical environment but not to travelling. CONCLUSION: The microbiological analysis confirmed previous research showing that international human mobility is a risk factor for AMR acquisition. However, sociological methods demonstrated that travellers understand AMR primarily as a clinical problem and do not connect it to travelling. These findings indicate an important gap in understanding AMR as a bio-social problem raising a question about the potential effectiveness of biologically driven AMR stewardship programs among travellers. Further development of the 'stool and stories' approach is important for a transdisciplinary basis of AMR stewardship. | 2021 | 34579656 |
| 6687 | 5 | 0.9965 | Antibiotic Resistance in Aquaculture: Challenges, Trends Analysis, and Alternative Approaches. Antibiotic resistance in aquaculture has emerged as a global crisis, representing a serious threat to the health of aquatic animals, environment, and human. The extensive use of antibiotics in aquaculture has led to rapid development of resistant bacterial strains, resulting in environmental contamination and the dissemination of resistant genes. Understanding of the research trends, key contributors, and thematic evolution of this field is essential for guiding future studies and policy interventions. The study aimed to conduct a bibliometric analysis of research on antibiotic resistance development in aquaculture, identifying key areas of research, leading contributors, emerging challenges, and alternative solutions. Data were extracted from the Web of Science (WoS) database covering the period from 2000 to 2025. A systematic search strategy was employed, utilizing terms including "antibiotic resistance" AND "bacteria," AND "aquaculture". Relevant publications were extracted from the WoS using these keywords. R-tool was then used to analyze the obtained metadata including keywords, citation patterns, and co-authored country. The analysis revealed a remarkable increase in publications over the past 25 years, with key contributions from China, India, and the USA. The most significant articles focused on the presence of multidrug resistant bacteria in the aquatic environments and, antibiotic-resistant genes, and horizontal gene transfer. Probiotics are the alternative solution to overcome the antibiotic resistance and enhance aquaculture sustainability. Future research should focus on the interdisciplinary collaboration, novel antimicrobial alternatives, and global monitoring approaches. | 2025 | 40558188 |
| 2585 | 6 | 0.9964 | A scoping review of the prevalence of antimicrobial-resistant pathogens and signatures in ready-to-eat street foods in Africa: implications for public health. BACKGROUND AND OBJECTIVE: Despite its critical role in individual and societal health, food hygiene remains underexplored. Antibiotic-resistant pathogenic bacteria in ready-to-eat (RTE) food threaten public health. This scoping review collected data on the epidemiological prevalence of RTE food-contaminated pathogens resistant to antimicrobial drugs and resistance genes in Africa. METHOD: Using electronic databases, such as PubMed, Scopus, and Web of Science (WoS), handpicked from references, pre-reviewed published articles were retrieved and analyzed according to the PRISMA-ScR guidelines. RESULTS: The findings indicate 40 previewed published articles qualified for meta-synthesis in the scoping review with a population/case ratio of 11,653/5,338 (45.80%). The most frequently reported RTE foods were meat or beef/beef-soup, chicken or poultry products, salads, vegetable salads, and sandwiches, which harboured pathogens such as E. coli, Salmonella, and Staphylococcus. Antibiotic susceptibility tests revealed the use of 48 antibiotics to manage infections, following CLSI (Clinical and Laboratory Standards Institute) protocols. Moreover, 10 authors reported 54 resistance genes associated with pathogenic resistant bacteria. In addition, only 15 studies received funding or financial support. CONCLUSION: These findings from several researchers indicate that RTE street foods in African and resource-limited nations harbour enteric pathogens and are a significant concern to the public health system and reservoir of the spread of antibiotic resistance. This underscores the necessity of implementing effective control strategies to address challenges and limit the spread of resistant bacteria in RTE foods. The antimicrobial resistance surveillance system in the region is a significant concern. Notably, Africa needs to strengthen the national and international regulatory bodies and a health surveillance system on antimicrobial resistance, particularly among developing nations. | 2025 | 40270817 |
| 6582 | 7 | 0.9964 | Effective Treatment Strategies for the Removal of Antibiotic-Resistant Bacteria, Antibiotic-Resistance Genes, and Antibiotic Residues in the Effluent From Wastewater Treatment Plants Receiving Municipal, Hospital, and Domestic Wastewater: Protocol for a Systematic Review. BACKGROUND: The widespread and unrestricted use of antibiotics has led to the emergence and spread of antibiotic-resistant bacteria (ARB), antibiotic-resistance genes (ARGs), and antibiotic residues in the environment. Conventional wastewater treatment plants (WWTPs) are not designed for effective and adequate removal of ARB, ARGs, and antibiotic residues, and therefore, they play an important role in the dissemination of antimicrobial resistance (AMR) in the natural environment. OBJECTIVE: We will conduct a systematic review to determine the most effective treatment strategies for the removal of ARB, ARGs, and antibiotic residues from the treated effluent disposed into the environment from WWTPs that receive municipal, hospital, and domestic discharge. METHODS: We will search the MEDLINE, EMBASE, Web of Science, World Health Organization Global Index Medicus, and ProQuest Environmental Science Collection databases for full-text peer-reviewed journal articles published between January 2001 and December 2020. We will select only articles published in the English language. We will include studies that measured (1) the presence, concentration, and removal rate of ARB/ARGs going from WWTP influent to effluent, (2) the presence, concentration, and types of antibiotics in the effluent, and (3) the possible selection of ARB in the effluent after undergoing treatment processes in WWTPs. At least two independent reviewers will extract data and perform risk of bias assessment. An acceptable or narrative synthesis method will be followed to synthesize the data and present descriptive characteristics of the included studies in a tabular form. The study has been approved by the Ethics Review Board at the International Centre for Diarrhoeal Disease Research, Bangladesh (protocol number: PR-20113). RESULTS: This protocol outlines our proposed methodology for conducting a systematic review. Our results will provide an update to the existing literature by searching additional databases. CONCLUSIONS: Findings from our systematic review will inform the planning of proper treatment methods that can effectively reduce the levels of ARB, ARGs, and residual antibiotics in effluent, thus lowering the risk of the environmental spread of AMR and its further transmission to humans and animals. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/33365. | 2021 | 34842550 |
| 2527 | 8 | 0.9964 | A Systematic Review and Comprehensive Analysis of mcr Gene Prevalence in Bacterial Isolates in Arab Countries. BACKGROUND: The resurgence of colistin has become critical in combating multidrug-resistant Gram-negative bacteria. However, the emergence of mobilized colistin resistance (mcr) genes presents a crucial global challenge, particularly in the Arab world, which includes regions with unique conditions and ongoing conflicts in some parts. METHODS: To address this issue, a systematic review was conducted using multiple databases, including Cochrane, PubMed, Scopus, Web of Science, and Arab World Research Source. RESULTS: A total of 153 studies were included, revealing substantial heterogeneity in the prevalence of mcr genes across 15 Arab countries, with notable findings indicating that Egypt and Lebanon reported the highest number of cases. The analysis indicated that the most prevalent sequence types were ST10, ST101, and ST1011, all of which are Escherichia coli strains linked to significant levels of colistin resistance and multiple antimicrobial resistance profiles. CONCLUSIONS: By analyzing the diverse findings from different Arab countries, this review lays a critical foundation for future research and highlights the necessity for enhanced surveillance and targeted interventions to address the looming threat of colistin resistance in the region. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42024584379. | 2024 | 39452224 |
| 6600 | 9 | 0.9963 | Metagenomic approaches for the quantification of antibiotic resistance genes in swine wastewater treatment system: a systematic review. This systematic review aims to identify the metagenomic methodological approaches employed for the detection of antimicrobial resistance genes (ARGs) in swine wastewater treatment systems. The search terms used were metagenome AND bacteria AND ("antimicrobial resistance gene" OR resistome OR ARG) AND wastewater AND (swine OR pig), and the search was conducted across the following electronic databases: PubMed, Scopus, ScienceDirect, Web of Science, Embase, and Cochrane Library. The search was limited to studies published between 2020 and 2024. Of the 220 studies retrieved, eight met the eligibility criteria for full-text analysis. The number of publications in this research area has increased in recent years, with China contributing the highest number of studies. ARGs are typically identified using bioinformatics pipelines that include steps such as quality trimming, assembly, metagenome-assembled genome (MAG) reconstruction, open reading frame (ORF) prediction, and ARG annotation. However, comparing ARGs quantification across studies remains challenging due to methodological differences and variability in quantification approaches. Therefore, this systematic review highlights the need for methodological standardization to facilitate comparison and enhance our understanding of antimicrobial resistance in swine wastewater treatment systems through metagenomic approaches. | 2025 | 40788461 |
| 6603 | 10 | 0.9963 | Antimicrobial resistance in southeast Asian water environments: A systematic review of current evidence and future research directions. Antimicrobial resistance has been a serious and complex issue for over a decade. Although research on antimicrobial resistance (AMR) has mainly focused on clinical and animal samples as essential for treatment, the AMR situation in aquatic environments may vary and have complicated patterns according to geographical area. Therefore, this study aimed to examine recent literature on the current situation and identify gaps in the AMR research on freshwater, seawater, and wastewater in Southeast Asia. The PubMed, Scopus, and ScienceDirect databases were searched for relevant publications published from January 2013 to June 2023 that focused on antimicrobial resistance bacteria (ARB) and antimicrobial resistance genes (ARGs) among water sources. Based on the inclusion criteria, the final screening included 41 studies, with acceptable agreement assessed using Cohen's inter-examiner kappa equal to 0.866. This review found that 23 out of 41 included studies investigated ARGs and ARB reservoirs in freshwater rather than in seawater and wastewater, and it frequently found that Escherichia coli was a predominant indicator in AMR detection conducted by both phenotypic and genotypic methods. Different ARGs, such as bla(TEM), sul1, and tetA genes, were found to be at a high prevalence in wastewater, freshwater, and seawater. Existing evidence highlights the importance of wastewater management and constant water monitoring in preventing AMR dissemination and strengthening effective mitigation strategies. This review may be beneficial for updating current evidence and providing a framework for spreading ARB and ARGs, particularly region-specific water sources. Future AMR research should include samples from various water systems, such as drinking water or seawater, to generate contextually appropriate results. Robust evidence regarding standard detection methods is required for prospective-era work to raise practical policies and alerts for developing microbial source tracking and identifying sources of contamination-specific indicators in aquatic environment markers. | 2023 | 37394072 |
| 6691 | 11 | 0.9963 | The antimicrobial resistance monitoring and research (ARMoR) program: the US Department of Defense response to escalating antimicrobial resistance. Responding to escalating antimicrobial resistance (AMR), the US Department of Defense implemented an enterprise-wide collaboration, the Antimicrobial Resistance Monitoring and Research Program, to aid in infection prevention and control. It consists of a network of epidemiologists, bioinformaticists, microbiology researchers, policy makers, hospital-based infection preventionists, and healthcare providers who collaborate to collect relevant AMR data, conduct centralized molecular characterization, and use AMR characterization feedback to implement appropriate infection prevention and control measures and influence policy. A particularly concerning type of AMR, carbapenem-resistant Enterobacteriaceae, significantly declined after the program was launched. Similarly, there have been no further reports or outbreaks of another concerning type of AMR, colistin resistance in Acinetobacter, in the Department of Defense since the program was initiated. However, bacteria containing AMR-encoding genes are increasing. To update program stakeholders and other healthcare systems facing such challenges, we describe the processes and impact of the program. | 2014 | 24795331 |
| 6690 | 12 | 0.9963 | Antimicrobial resistance situation in animal health of Bangladesh. Antimicrobial resistance (AMR) is a crucial multifactorial and complex global problem and Bangladesh poses a regional and global threat with a high degree of antibiotic resistance. Although the routine application of antimicrobials in the livestock industry has largely contributed to the health and productivity, it correspondingly plays a significant role in the evolution of different pathogenic bacterial strains having multidrug resistance (MDR) properties. Bangladesh is implementing the National Action Plan (NAP) for containing AMR in human, animal, and environment sectors through "One Health" approach where the Department of Livestock Services (DLS) is the mandated body to implement NAP strategies in the animal health sector of the country. This review presents a "snapshot" of the predisposing factors, and current situations of AMR along with the weakness and strength of DLS to contain the problem in animal farming practices in Bangladesh. In the present review, resistance monitoring data and risk assessment identified several direct and/or indirect predisposing factors to be potentially associated with AMR development in the animal health sector of Bangladesh. The predisposing factors are inadequate veterinary healthcare, monitoring and regulatory services, intervention of excessive informal animal health service providers, and farmers' knowledge gap on drugs, and AMR which have resulted in the misuse and overuse of antibiotics, ultimate in the evolution of antibiotic-resistant bacteria and genes in all types of animal farming settings of Bangladesh. MDR bacteria with extreme resistance against antibiotics recommended to use in both animals and humans have been reported and been being a potential public health hazard in Bangladesh. Execution of extensive AMR surveillance in veterinary practices and awareness-building programs for stakeholders along with the strengthening of the capacity of DLS are recommended for effective containment of AMR emergence and dissemination in the animal health sector of Bangladesh. | 2020 | 33487990 |
| 6608 | 13 | 0.9963 | Trends in antimicrobial resistance in Malaysia. INTRODUCTION: Antibiotic resistance is a burgeoning problem worldwide. The trend of bacterial resistance has increased over the past decade in which more common bacteria are becoming resistant to almost all the antibiotics currently in use, posing a threat to humans and even livestock. METHODS: The databases used to search for the relevant articles for this review include PubMed, Science Direct, and Scopus. The following keywords were used in the search: Antimicrobial resistance, Malaysian action plan, antibioticresistant bacteria, and Malaysian National Surveillance on Antimicrobial Resistance (NSAR). The relevant articles published in English were considered. RESULTS: The antibiotic-resistant bacteria highlighted in this review showed an increase in resistance patterns to the majority of the antibiotics tested. The Malaysian government has come up with an action plan to create public awareness and to educate them regarding the health implications of antibiotic resistance. CONCLUSION: Antimicrobial resistance in Malaysia continues to escalate and is attributed to the overuse and misuse of antibiotics in various fields. As this crisis impacts the health of both humans and animals, therefore a joined continuous effort from all sectors is warranted to reduce the spread and minimize its development. | 2021 | 34508377 |
| 6661 | 14 | 0.9963 | Country Income Is Only One of the Tiles: The Global Journey of Antimicrobial Resistance among Humans, Animals, and Environment. Antimicrobial resistance (AMR) is one of the most complex global health challenges today: decades of overuse and misuse in human medicine, animal health, agriculture, and dispersion into the environment have produced the dire consequence of infections to become progressively untreatable. Infection control and prevention (IPC) procedures, the reduction of overuse, and the misuse of antimicrobials in human and veterinary medicine are the cornerstones required to prevent the spreading of resistant bacteria. Purified drinking water and strongly improved sanitation even in remote areas would prevent the pollution from inadequate treatment of industrial, residential, and farm waste, as all these situations are expanding the resistome in the environment. The One Health concept addresses the interconnected relationships between human, animal, and environmental health as a whole: several countries and international agencies have now included a One Health Approach within their action plans to address AMR. Improved antimicrobial usage, coupled with regulation and policy, as well as integrated surveillance, infection control and prevention, along with antimicrobial stewardship, sanitation, and animal husbandry should all be integrated parts of any new action plan targeted to tackle AMR on the Earth. Since AMR is found in bacteria from humans, animals, and in the environment, we briefly summarize herein the current concepts of One Health as a global challenge to enable the continued use of antibiotics. | 2020 | 32752276 |
| 6602 | 15 | 0.9962 | Environmental Risk Factors Contributing to the Spread of Antibiotic Resistance in West Africa. Antibiotic resistance is a well-documented global health challenge that disproportionately impacts low- and middle-income countries. In 2019, the number of deaths attributed to and associated with antibiotic resistance in Western Sub-Saharan Africa was approximately 27 and 115 per 100,000, respectively, higher than in other regions worldwide. Extensive research has consistently confirmed the persistent presence and spread of antibiotic resistance in hospitals, among livestock, within food supply chains, and across various environmental contexts. This review documents the environmental risk factors contributing to the spread of antibiotic resistance in West Africa. We collected studies from multiple West African countries using the Web of Science and PubMed databases. We screened them for factors associated with antibiotic-resistant bacteria and resistance genes between 2018 and 2024. Our findings indicate that antibiotic resistance remains a significant concern in West Africa, with environmental pollution and waste management identified as major factors in the proliferation of antibiotic-resistant bacteria and resistance genes between 2018 and 2024. Additional contributing factors include poor hygiene, the use of antibiotics in agriculture, aquaculture, and animal farming, and the transmission of antibiotic resistance within hospital settings. Unfortunately, the lack of comprehensive genetic characterization of antibiotic-resistant bacteria and resistance genes hinders a thorough understanding of this critical issue in the region. Since antibiotic resistance transcends national borders and can spread within and between countries, it is essential to understand the environmental risk factors driving its dissemination in West African countries. Such understanding will be instrumental in developing and recommending effective strategies nationally and internationally to combat antibiotic resistance. | 2025 | 40284787 |
| 2526 | 16 | 0.9962 | Antimicrobial resistance in bacteria isolated from peridomestic Rattus species: A scoping literature review. Rattus spp. may acquire and disseminate antimicrobial resistant bacteria or antimicrobial resistance (AMR) genes. We conducted a scoping review to synthesize available research findings on AMR in Rattus spp. and to describe the size and scope of available literature on AMR epidemiology in Rattus spp. The review was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analysis extension for Scoping Reviews (PRISMA-ScR). The search focused on scientific peer-reviewed publications focusing on AMR in peridomestic Rattus spp. The review was limited to publications in English available in PubMed, Web of Science and Scopus between 2000 and 2021. The results were summarized descriptively. Thirty-four studies conducted in twenty-one countries were included in this scoping review. Twelve bacterial species with AMR were identified with Escherichia coli and Staphylococcus aureus being the two most commonly reported. The resistant bacteria were isolated from species of peridomestic Rattus spp. in which R. norvegicus and R. rattus were the two most commonly studied. Rats were also found to carry multi-drug resistant (MDR) bacteria including extended-spectrum beta (β)-lactamase (ESBL), methicillin-resistant Staphylococcus aureus (MRSA), colistin-resistant Enterobacteriaceae (CoRE), and vancomycin-resistant Enterococci (VRE). This scoping review suggests that peridomestic Rattus spp. can carry multiple antimicrobial resistant bacteria, indicating their potential to serve as reservoirs and spreaders of AMR thus posing a threat to human and animal health. | 2023 | 37363213 |
| 6506 | 17 | 0.9962 | Mitigating antimicrobial resistance through effective hospital wastewater management in low- and middle-income countries. Hospital wastewater (HWW) is a significant environmental and public health threat, containing high levels of pollutants such as antibiotic-resistant bacteria (ARB), antibiotic-resistant genes (ARGs), antibiotics, disinfectants, and heavy metals. This threat is of particular concern in low- and middle-income countries (LMICs), where untreated effluents are often used for irrigating vegetables crops, leading to direct and indirect human exposure. Despite being a potential hotspot for the spread of antimicrobial resistance (AMR), existing HWW treatment systems in LMICs primarily target conventional pollutants and lack effective standards for monitoring the removal of ARB and ARGs. Consequently, untreated or inadequately treated HWW continues to disseminate ARB and ARGs, exacerbating the risk of AMR proliferation. Addressing this requires targeted interventions, including cost-effective treatment solutions, robust AMR monitoring protocols, and policy-driven strategies tailored to LMICs. This perspective calls for a paradigm shift in HWW management in LMIC, emphasizing the broader implementation of onsite treatment systems, which are currently rare. Key recommendations include developing affordable and contextually adaptable technologies for eliminating ARB and ARGs and enforcing local regulations for AMR monitoring and control in wastewater. Addressing these challenges is essential for protecting public health, preventing the environmental spread of resistance, and contributing to a global effort to preserve the efficacy of antibiotics. Recommendations include integrating scalable onsite technologies, leveraging local knowledge, and implementing comprehensive AMR-focused regulatory frameworks. | 2024 | 39944563 |
| 2535 | 18 | 0.9962 | Mobile Colistin Resistance (mcr) Genes in Cats and Dogs and Their Zoonotic Transmission Risks. Background: Pets, especially cats and dogs, represent a great potential for zoonotic transmission, leading to major health problems. The purpose of this systematic review was to present the latest developments concerning colistin resistance through mcr genes in pets. The current study also highlights the health risks of the transmission of colistin resistance between pets and humans. Methods: We conducted a systematic review on mcr-positive bacteria in pets and studies reporting their zoonotic transmission to humans. Bibliographic research queries were performed on the following databases: Google Scholar, PubMed, Scopus, Microsoft Academic, and Web of Science. Articles of interest were selected using the PRISMA guideline principles. Results: The analyzed articles from the investigated databases described the presence of mcr gene variants in pets including mcr-1, mcr-2, mcr-3, mcr-4, mcr-5, mcr-8, mcr-9, and mcr-10. Among these articles, four studies reported potential zoonotic transmission of mcr genes between pets and humans. The epidemiological analysis revealed that dogs and cats can be colonized by mcr genes that are beginning to spread in different countries worldwide. Overall, reported articles on this subject highlight the high risk of zoonotic transmission of colistin resistance genes between pets and their owners. Conclusions: This review demonstrated the spread of mcr genes in pets and their transmission to humans, indicating the need for further measures to control this significant threat to public health. Therefore, we suggest here some strategies against this threat such as avoiding zoonotic transmission. | 2022 | 35745552 |
| 6689 | 19 | 0.9962 | Wastewater-Based Epidemiology as a Complementary Tool for Antimicrobial Resistance Surveillance: Overcoming Barriers to Integration. This commentary highlights the potential of wastewater-based epidemiology (WBE) as a complementary tool for antimicrobial resistance (AMR) surveillance. WBE can support the early detection of resistance trends at the population level, including in underserved communities. However, several challenges remain, including technical variability, complexities in data interpretation, and regulatory gaps. An additional limitation is the uncertainty surrounding the origin of resistant bacteria and their genes in wastewater, which may derive not only from human sources but also from industrial, agricultural, or infrastructural contributors. Therefore, effective integration of WBE into public health systems will require standardized methods, sustained investment, and cross-sector collaboration. This could be achieved through joint monitoring initiatives that combine hospital wastewater data with agricultural and municipal surveillance to inform antibiotic stewardship policies. Overcoming these barriers could position WBE as an innovative tool for AMR monitoring, enhancing early warning systems and supporting more responsive, equitable, and preventive public health strategies. | 2025 | 40522150 |