SYMPTOMS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
872800.9925Identification of the defense-related gene VdWRKY53 from the wild grapevine Vitis davidii using RNA sequencing and ectopic expression analysis in Arabidopsis. BACKGROUND: Grapevine is an important fruit crop grown worldwide, and its cultivars are mostly derived from the European species Vitis vinifera, which has genes for high fruit quality and adaptation to a wide variety of climatic conditions. Disease resistance varies substantially across grapevine species; however, the molecular mechanisms underlying such variation remain uncharacterized. RESULTS: The anatomical structure and disease symptoms of grapevine leaves were analyzed for two grapevine species, and the critical period of resistance of grapevine to pathogenic bacteria was determined to be 12 h post inoculation (hpi). Differentially expressed genes (DEGs) were identified from transcriptome analysis of leaf samples obtained at 12 and 36 hpi, and the transcripts in four pathways (cell wall genes, LRR receptor-like genes, WRKY genes, and pathogenesis-related (PR) genes) were classified into four co-expression groups by using weighted correlation network analysis (WGCNA). The gene VdWRKY53, showing the highest transcript level, was introduced into Arabidopsis plants by using a vector containing the CaMV35S promoter. These procedures allowed identifying the key genes contributing to differences in disease resistance between a strongly resistant accession of a wild grapevine species Vitis davidii (VID) and a susceptible cultivar of V. vinifera, 'Manicure Finger' (VIV). Vitis davidii, but not VIV, showed a typical hypersensitive response after infection with a fungal pathogen (Coniella diplodiella) causing white rot disease. Further, 20 defense-related genes were identified, and their differential expression between the two grapevine species was confirmed using quantitative real-time PCR analysis. VdWRKY53, showing the highest transcript level, was selected for functional analysis and therefore over-expressed in Arabidopsis under the control of the CaMV35S promoter. The transgenic plants showed enhanced resistance to C. diplodiella and to two other pathogens, Pseudomonas syringae pv. tomato DC3000 and Golovinomyces cichoracearum. CONCLUSION: The consistency of the results in VID and transgenic Arabidopsis indicated that VdWRKY53 might be involved in the activation of defense-related genes that enhance the resistance of these plants to pathogens. Thus, the over-expression of VdWRKY53 in transgenic grapevines might improve their resistance to pathogens.201931057347
847510.9924Antibacterial Activity of Endophytic Bacteria Against Sugar Beet Root Rot Agent by Volatile Organic Compound Production and Induction of Systemic Resistance. The volatile organic compounds (VOCs) produced by endophytic bacteria have a significant role in the control of phytopathogens. In this research, the VOCs produced by the endophytic bacteria Streptomyces sp. B86, Pantoea sp. Dez632, Pseudomonas sp. Bt851, and Stenotrophomonas sp. Sh622 isolated from healthy sugar beet (Beta vulgaris) and sea beet (Beta maritima) were evaluated for their effects on the virulence traits of Bacillus pumilus Isf19, the causal agent of harvested sugar beet root rot disease. The gas chromatographymass spectrometry (GC-MS) analysis revealed that B86, Dez632, Bt851, and Sh622 produced 15, 28, 30, and 20 VOCs, respectively, with high quality. All antagonistic endophytic bacteria produced VOCs that significantly reduced soft root symptoms and inhibited the growth of B. pumilus Isf19 at different levels. The VOCs produced by endophytic bacteria significantly reduced swarming, swimming, and twitching motility by B. pumilus Isf19, which are important to pathogenicity. Our results revealed that VOCs produced by Sh622 and Bt851 significantly reduced attachment of B. pumilus Isf19 cells to sugar beetroots, and also all endophytic bacteria tested significantly reduced chemotaxis motility of the pathogen toward root extract. The VOCs produced by Dez632 and Bt851 significantly upregulated the expression levels of defense genes related to soft rot resistance. Induction of PR1 and NBS-LRR2 genes in sugar beetroot slices suggests the involvement of SA and JA pathways, respectively, in the induction of resistance against pathogen attack. Based on our results, the antibacterial VOCs produced by endophytic bacteria investigated in this study can reduce soft rot incidence.202235722285
845020.9922Genome-wide mapping of NBS-LRR genes and their association with disease resistance in soybean. BACKGROUND: R genes are a key component of genetic interactions between plants and biotrophic bacteria and are known to regulate resistance against bacterial invasion. The most common R proteins contain a nucleotide-binding site and a leucine-rich repeat (NBS-LRR) domain. Some NBS-LRR genes in the soybean genome have also been reported to function in disease resistance. In this study, the number of NBS-LRR genes was found to correlate with the number of disease resistance quantitative trait loci (QTL) that flank these genes in each chromosome. NBS-LRR genes co-localized with disease resistance QTL. The study also addressed the functional redundancy of disease resistance on recently duplicated regions that harbor NBS-LRR genes and NBS-LRR gene expression in the bacterial leaf pustule (BLP)-induced soybean transcriptome. RESULTS: A total of 319 genes were determined to be putative NBS-LRR genes in the soybean genome. The number of NBS-LRR genes on each chromosome was highly correlated with the number of disease resistance QTL in the 2-Mb flanking regions of NBS-LRR genes. In addition, the recently duplicated regions contained duplicated NBS-LRR genes and duplicated disease resistance QTL, and possessed either an uneven or even number of NBS-LRR genes on each side. The significant difference in NBS-LRR gene expression between a resistant near-isogenic line (NIL) and a susceptible NIL after inoculation of Xanthomonas axonopodis pv. glycines supports the conjecture that NBS-LRR genes have disease resistance functions in the soybean genome. CONCLUSIONS: The number of NBS-LRR genes and disease resistance QTL in the 2-Mb flanking regions of each chromosome was significantly correlated, and several recently duplicated regions that contain NBS-LRR genes harbored disease resistance QTL for both sides. In addition, NBS-LRR gene expression was significantly different between the BLP-resistant NIL and the BLP-susceptible NIL in response to bacterial infection. From these observations, NBS-LRR genes are suggested to contribute to disease resistance in soybean. Moreover, we propose models for how NBS-LRR genes were duplicated, and apply Ks values for each NBS-LRR gene cluster.201222877146
875830.9921Genome-wide association mapping for resistance to bacterial blight and bacterial leaf streak in rice. Using genome-wide SNP association mapping, a total of 77 and 7 loci were identified for rice bacterial blight and bacterial leaf streak resistance, respectively, which may facilitate rice resistance improvement. Bacterial blight (BB) and bacterial leaf streak (BLS) caused by Gram-negative bacteria Xanthomonas oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc), respectively, are two economically important diseases negatively affecting rice production. To mine new sources of resistance, a set of rice germplasm collection consisting of 895 re-sequenced accessions from the 3000 Rice Genomes Project (3 K RGP) were screened for BB and BLS resistance under field conditions. Higher levels of BB resistance were observed in aus/boro subgroup, whereas the japonica, temperate japonica and tropical japonica subgroups possessed comparatively high levels of resistance to BLS. A genome-wide association study (GWAS) mined 77 genomic loci significantly associated with BB and 7 with BLS resistance. The phenotypic variance (R(2)) explained by these loci ranged from 0.4 to 30.2%. Among the loci, 7 for BB resistance were co-localized with known BB resistance genes and one for BLS resistance overlapped with a previously reported BLS resistance QTL. A search for the candidates in other novel loci revealed several defense-related genes that may be involved in resistance to BB and BLS. High levels of phenotypic resistance to BB or BLS could be attributed to the accumulation of the resistance (R) alleles at the associated loci, indicating their potential value in rice resistance breeding via gene pyramiding. The GWAS analysis validated the known genes underlying BB and BLS resistance and identified novel loci that could enrich the current resistance gene pool. The resources with strong resistance and significant SNPs identified in this study are potentially useful in breeding for BB and BLS resistance.202133830376
7540.9919Identification and expression profiling of tomato genes differentially regulated during a resistance response to Xanthomonas campestris pv. vesicatoria. The gram-negative bacterium Xanthomonas campestris pv. vesicatoria is the causal agent of spot disease in tomato and pepper. Plants of the tomato line Hawaii 7981 are resistant to race T3 of X. campestris pv. vesicatoria expressing the type III effector protein AvrXv3 and develop a typical hypersensitive response upon bacterial challenge. A combination of suppression subtractive hybridization and microarray analysis identified a large set of cDNAs that are induced or repressed during the resistance response of Hawaii 7981 plants to X. campestris pv. vesicatoria T3 bacteria. Sequence analysis of the isolated cDNAs revealed that they correspond to 426 nonredundant genes, which were designated as XRE (Xanthomonas-regulated) genes and were classified into more than 20 functional classes. The largest functional groups contain genes involved in defense, stress responses, protein synthesis, signaling, and photosynthesis. Analysis of XRE expression kinetics during the tomato resistance response to X. campestris pv. vesicatoria T3 revealed six clusters of genes with coordinate expression. In addition, by using isogenic X. campestris pv. vesicatoria T2 strains differing only by the avrXv3 avirulence gene, we found that 77% of the identified XRE genes were directly modulated by expression of the AvrXv3 effector protein. Interestingly, 64% of the XRE genes were also induced in tomato during an incompatible interaction with an avirulent strain of Pseudomonas syringae pv. tomato. The identification and expression analysis of X. campestris pv. vesicatoria T3-modulated genes, which may be involved in the control or in the execution of plant defense responses, set the stage for the dissection of signaling and cellular responses activated in tomato plants during the onset of spot disease resistance.200415553246
5150.9919A pair of allelic WRKY genes play opposite roles in rice-bacteria interactions. Although allelic diversity of genes has been reported to play important roles in different physiological processes, information on allelic diversity of defense-responsive genes in host-pathogen interactions is limited. Here, we report that a pair of allelic genes, OsWRKY45-1 and OsWRKY45-2, which encode proteins with a 10-amino acid difference, play opposite roles in rice (Oryza sativa) resistance against bacterial pathogens. Bacterial blight caused by Xanthomonas oryzae pv oryzae (Xoo), bacterial streak caused by Xanthomonas oryzae pv oryzicola (Xoc), and fungal blast caused by Magnaporthe grisea are devastating diseases of rice worldwide. OsWRKY45-1-overexpressing plants showed increased susceptibility and OsWRKY45-1-knockout plants showed enhanced resistance to Xoo and Xoc. In contrast, OsWRKY45-2-overexpressing plants showed enhanced resistance and OsWRKY45-2-suppressing plants showed increased susceptibility to Xoo and Xoc. Interestingly, both OsWRKY45-1- and OsWRKY45-2-overexpressing plants showed enhanced resistance to M. grisea. OsWRKY45-1-regulated Xoo resistance was accompanied by increased accumulation of salicylic acid and jasmonic acid and induced expression of a subset of defense-responsive genes, while OsWRKY45-2-regulated Xoo resistance was accompanied by increased accumulation of jasmonic acid but not salicylic acid and induced expression of another subset of defense-responsive genes. These results suggest that both OsWRKY45-1 and OsWRKY45-2 are positive regulators in rice resistance against M. grisea, but the former is a negative regulator and the latter is a positive regulator in rice resistance against Xoo and Xoc. The opposite roles of the two allelic genes in rice-Xoo interaction appear to be due to their mediation of different defense signaling pathways.200919700558
873260.9918RNA-Seq identification of candidate defense genes targeted by endophytic Bacillus cereus-mediated induced systemic resistance against Meloidogyne incognita in tomato. BACKGROUND: The endophytic bacteria Bacillus cereus BCM2 has shown great potential as a defense against the parasitic nematode Meloidogyne incognita. Here, we studied endophytic bacteria-mediated plant defense against M. incognita and searched for defense-related candidate genes using RNA-Seq. RESULTS: The induced systemic resistance of BCM2 against M. incognita was tested using the split-root method. Pre-inoculated BCM2 on the inducer side was associated with a dramatic reduction in galls and egg masses on the responder side, but inoculated BCM2 alone did not produce the same effect. In order to investigate which plant defense-related genes are specifically activated by BCM2, four RNA samples from tomato roots were sequenced, and four high-quality total clean bases were obtained, ranging from 6.64 to 6.75 Gb, with an average of 21 558 total genes. The 34 candidate defense-related genes were identified by pair-wise comparison among libraries, representing the targets for BCM2 priming resistance against M. incognita. Functional characterization revealed that the plant-pathogen interaction pathway (ID: ko04626) was significantly enriched for BCM2-mediated M. incognita resistance. CONCLUSION: This study demonstrates that B. cereus BCM2 maintains a harmonious host-microbe relationship with tomato, but appeared to prime the plant, resulting in more vigorous defense response toward the infection nematode. © 2018 Society of Chemical Industry.201829737595
7470.9918Non-host Resistance Induced by the Xanthomonas Effector XopQ Is Widespread within the Genus Nicotiana and Functionally Depends on EDS1. Most Gram-negative plant pathogenic bacteria translocate effector proteins (T3Es) directly into plant cells via a conserved type III secretion system, which is essential for pathogenicity in susceptible plants. In resistant plants, recognition of some T3Es is mediated by corresponding resistance (R) genes or R proteins and induces effector triggered immunity (ETI) that often results in programmed cell death reactions. The identification of R genes and understanding their evolution/distribution bears great potential for the generation of resistant crop plants. We focus on T3Es from Xanthomonas campestris pv. vesicatoria (Xcv), the causal agent of bacterial spot disease on pepper and tomato plants. Here, 86 Solanaceae lines mainly of the genus Nicotiana were screened for phenotypical reactions after Agrobacterium tumefaciens-mediated transient expression of 21 different Xcv effectors to (i) identify new plant lines for T3E characterization, (ii) analyze conservation/evolution of putative R genes and (iii) identify promising plant lines as repertoire for R gene isolation. The effectors provoked different reactions on closely related plant lines indicative of a high variability and evolution rate of potential R genes. In some cases, putative R genes were conserved within a plant species but not within superordinate phylogenetical units. Interestingly, the effector XopQ was recognized by several Nicotiana spp. lines, and Xcv infection assays revealed that XopQ is a host range determinant in many Nicotiana species. Non-host resistance against Xcv and XopQ recognition in N. benthamiana required EDS1, strongly suggesting the presence of a TIR domain-containing XopQ-specific R protein in these plant lines. XopQ is a conserved effector among most xanthomonads, pointing out the XopQ-recognizing R(xopQ) as candidate for targeted crop improvement.201627965697
875980.9917Genetic and transcriptomic dissection of host defense to Goss's bacterial wilt and leaf blight of maize. Goss's wilt, caused by the Gram-positive actinobacterium Clavibacter nebraskensis, is an important bacterial disease of maize. The molecular and genetic mechanisms of resistance to the bacterium, or, in general, Gram-positive bacteria causing plant diseases, remain poorly understood. Here, we examined the genetic basis of Goss's wilt through differential gene expression, standard genome-wide association mapping (GWAS), extreme phenotype (XP) GWAS using highly resistant (R) and highly susceptible (S) lines, and quantitative trait locus (QTL) mapping using 3 bi-parental populations, identifying 11 disease association loci. Three loci were validated using near-isogenic lines or recombinant inbred lines. Our analysis indicates that Goss's wilt resistance is highly complex and major resistance genes are not commonly present. RNA sequencing of samples separately pooled from R and S lines with or without bacterial inoculation was performed, enabling identification of common and differential gene responses in R and S lines. Based on expression, in both R and S lines, the photosynthesis pathway was silenced upon infection, while stress-responsive pathways and phytohormone pathways, namely, abscisic acid, auxin, ethylene, jasmonate, and gibberellin, were markedly activated. In addition, 65 genes showed differential responses (up- or down-regulated) to infection in R and S lines. Combining genetic mapping and transcriptional data, individual candidate genes conferring Goss's wilt resistance were identified. Collectively, aspects of the genetic architecture of Goss's wilt resistance were revealed, providing foundational data for mechanistic studies.202337652038
6690.9917Isolation of new Arabidopsis mutants with enhanced disease susceptibility to Pseudomonas syringae by direct screening. To identify plant defense components that are important in restricting the growth of virulent pathogens, we screened for Arabidopsis mutants in the accession Columbia (carrying the transgene BGL2-GUS) that display enhanced disease susceptibility to the virulent bacterial pathogen Pseudomonas syringae pv. maculicola (Psm) ES4326. Among six (out of a total of 11 isolated) enhanced disease susceptibility (eds) mutants that were studied in detail, we identified one allele of the previously described npr1/nim1/sai1 mutation, which is affected in mounting a systemic acquired resistance response, one allele of the previously identified EDS5 gene, and four EDS genes that have not been previously described. The six eds mutants studied in detail (npr1-4, eds5-2, eds10-1, eds11-1, eds12-1, and eds13-1) displayed different patterns of enhanced susceptibility to a variety of phytopathogenic bacteria and to the obligate biotrophic fungal pathogen Erysiphe orontii, suggesting that particular EDS genes have pathogen-specific roles in conferring resistance. All six eds mutants retained the ability to mount a hypersensitive response and to restrict the growth of the avirulent strain Psm ES4326/avrRpt2. With the exception of npr1-4, the mutants were able to initiate a systemic acquired resistance (SAR) response, although enhanced growth of Psm ES4326 was still detectable in leaves of SAR-induced plants. The data presented here indicate that eds genes define a variety of components involved in limiting pathogen growth, that many additional EDS genes remain to be discovered, and that direct screens for mutants with altered susceptibility to pathogens are helpful in the dissection of complex pathogen response pathways in plants.19989611172
8454100.9917Identification of genes differentially expressed during interaction of resistant and susceptible apple cultivars (Malus x domestica) with Erwinia amylovora. BACKGROUND: The necrogenic enterobacterium, Erwinia amylovora is the causal agent of the fire blight (FB) disease in many Rosaceae species, including apple and pear. During the infection process, the bacteria induce an oxidative stress response with kinetics similar to those induced in an incompatible bacteria-plant interaction. No resistance mechanism to E. amylovora in host plants has yet been characterized, recent work has identified some molecular events which occur in resistant and/or susceptible host interaction with E. amylovora: In order to understand the mechanisms that characterize responses to FB, differentially expressed genes were identified by cDNA-AFLP analysis in resistant and susceptible apple genotypes after inoculation with E. amylovora. RESULTS: cDNA were isolated from M.26 (susceptible) and G.41 (resistant) apple tissues collected 2 h and 48 h after challenge with a virulent E. amylovora strain or mock (buffer) inoculated. To identify differentially expressed transcripts, electrophoretic banding patterns were obtained from cDNAs. In the AFLP experiments, M.26 and G.41 showed different patterns of expression, including genes specifically induced, not induced, or repressed by E. amylovora. In total, 190 ESTs differentially expressed between M.26 and G.41 were identified using 42 pairs of AFLP primers. cDNA-AFLP analysis of global EST expression in a resistant and a susceptible apple genotype identified different major classes of genes. EST sequencing data showed that genes linked to resistance, encoding proteins involved in recognition, signaling, defense and apoptosis, were modulated by E. amylovora in its host plant. The expression time course of some of these ESTs selected via a bioinformatic analysis has been characterized. CONCLUSION: These data are being used to develop hypotheses of resistance or susceptibility mechanisms in Malus to E. amylovora and provide an initial categorization of genes possibly involved in recognition events, early signaling responses the subsequent development of resistance or susceptibility. These data also provided potential candidates for improving apple resistance to fire blight either by marker-assisted selection or genetic engineering.201020047654
8786110.9916Pattern triggered immunity (PTI) in tobacco: isolation of activated genes suggests role of the phenylpropanoid pathway in inhibition of bacterial pathogens. BACKGROUND: Pattern Triggered Immunity (PTI) or Basal Resistance (BR) is a potent, symptomless form of plant resistance. Upon inoculation of a plant with non-pathogens or pathogenicity-mutant bacteria, the induced PTI will prevent bacterial proliferation. Developed PTI is also able to protect the plant from disease or HR (Hypersensitive Response) after a challenging infection with pathogenic bacteria. Our aim was to reveal those PTI-related genes of tobacco (Nicotiana tabacum) that could possibly play a role in the protection of the plant from disease. METHODOLOGY/PRINCIPAL FINDINGS: Leaves were infiltrated with Pseudomonas syringae pv. syringae hrcC- mutant bacteria to induce PTI, and samples were taken 6 and 48 hours later. Subtraction Suppressive Hybridization (SSH) resulted in 156 PTI-activated genes. A cDNA microarray was generated from the SSH clone library. Analysis of hybridization data showed that in the early (6 hpi) phase of PTI, among others, genes of peroxidases, signalling elements, heat shock proteins and secondary metabolites were upregulated, while at the late phase (48 hpi) the group of proteolysis genes was newly activated. Microarray data were verified by real time RT-PCR analysis. Almost all members of the phenyl-propanoid pathway (PPP) possibly leading to lignin biosynthesis were activated. Specific inhibition of cinnamic-acid-4-hydroxylase (C4H), rate limiting enzyme of the PPP, decreased the strength of PTI--as shown by the HR-inhibition and electrolyte leakage tests. Quantification of cinnamate and p-coumarate by thin-layer chromatography (TLC)-densitometry supported specific changes in the levels of these metabolites upon elicitation of PTI. CONCLUSIONS/SIGNIFICANCE: We believe to provide first report on PTI-related changes in the levels of these PPP metabolites. Results implicated an actual role of the upregulation of the phenylpropanoid pathway in the inhibition of bacterial pathogenic activity during PTI.201425101956
8445120.9916A genome-wide association study in catfish reveals the presence of functional hubs of related genes within QTLs for columnaris disease resistance. BACKGROUND: Columnaris causes severe mortalities among many different wild and cultured freshwater fish species, but understanding of host resistance is lacking. Catfish, the primary aquaculture species in the United States, serves as a great model for the analysis of host resistance against columnaris disease. Channel catfish in general is highly resistant to the disease while blue catfish is highly susceptible. F2 generation of hybrids can be produced where phenotypes and genotypes are segregating, providing a useful system for QTL analysis. To identify genes associated with columnaris resistance, we performed a genome-wide association study (GWAS) using the catfish 250 K SNP array with 340 backcross progenies derived from crossing female channel catfish (Ictalurus punctatus) with male F1 hybrid catfish (female channel catfish I. punctatus × male blue catfish I. furcatus). RESULTS: A genomic region on linkage group 7 was found to be significantly associated with columnaris resistance. Within this region, five have known functions in immunity, including pik3r3b, cyld-like, adcyap1r1, adcyap1r1-like, and mast2. In addition, 3 additional suggestively associated QTL regions were identified on linkage groups 7, 12, and 14. The resistant genotypes on the QTLs of linkage groups 7 and 12 were found to be homozygous with both alleles being derived from channel catfish. The paralogs of the candidate genes in the suggestively associated QTL of linkage group 12 were found on the QTLs of linkage group 7. Many candidate genes on the four associated regions are involved in PI3K pathway that is known to be required by many bacteria for efficient entry into the host. CONCLUSION: The GWAS revealed four QTLs associated with columnaris resistance in catfish. Strikingly, the candidate genes may be arranged as functional hubs; the candidate genes within the associated QTLs on linkage groups 7 and 12 are not only co-localized, but also functionally related, with many of them being involved in the PI3K signal transduction pathway, suggesting its importance for columnaris resistance.201525888203
84130.9915Two pathways act in an additive rather than obligatorily synergistic fashion to induce systemic acquired resistance and PR gene expression. BACKGROUND: Local infection with necrotizing pathogens induces whole plant immunity to secondary challenge. Pathogenesis-related genes are induced in parallel with this systemic acquired resistance response and thought to be co-regulated. The hypothesis of co-regulation has been challenged by induction of Arabidopsis PR-1 but not systemic acquired resistance in npr1 mutant plants responding to Pseudomonas syringae carrying the avirulence gene avrRpt2. However, experiments with ndr1 mutant plants have revealed major differences between avirulence genes. The ndr1-1 mutation prevents hypersensitive cell death, systemic acquired resistance and PR-1 induction elicited by bacteria carrying avrRpt2. This mutation does not prevent these responses to bacteria carrying avrB. RESULTS: Systemic acquired resistance, PR-1 induction and PR-5 induction were assessed in comparisons of npr1-2 and ndr1-1 mutant plants, double mutant plants, and wild-type plants. Systemic acquired resistance was displayed by all four plant lines in response to Pseudomonas syringae bacteria carrying avrB. PR-1 induction was partially impaired by either single mutation in response to either bacterial strain, but only fully impaired in the double mutant in response to avrRpt2. PR-5 induction was not fully impaired in any of the mutants in response to either avirulence gene. CONCLUSION: Two pathways act additively, rather than in an obligatorily synergistic fashion, to induce systemic acquired resistance, PR-1 and PR-5. One of these pathways is NPR1-independent and depends on signals associated with hypersensitive cell death. The other pathway is dependent on salicylic acid accumulation and acts through NPR1. At least two other pathways also contribute additively to PR-5 induction.200212381270
8783140.9915Characterization and potential of plant growth promoting rhizobacteria isolated from native Andean crops. Bacteria isolated from soil and rhizosphere samples collected in Peru from Andean crops were tested in vitro and in vivo to determine their potential as plant growth promoters and their ability to induce systemic resistance to Alternaria alternata in tomato plants. The isolates were identified by sequencing their 16S ribosomal RNA gene. Test for phosphate solubilization, and indolacetic acid were also carried out, together with in vitro antagonism assays in dual cultures towards the plant pathogens Fusarium solani, A. alternata and Curvularia lunata. The three most promising isolates (Pa15, Ps155, Ps168) belonged to the genus Pseudomonas. Further assays were carried out with tomato plants to assess their plant protection effect towards A. alternata and as growth promoters. Inoculation of tomato seeds with all isolates significantly enhanced seed germination, plantlets emergence and plant development. Bacterial inoculation also reduce damage level caused by A. alternata. The expression levels of three tomato genes involved in the jasmonate (AOS), ethylene responsive (ERF-2) and pathogenesis related (PR-P2) pathways were determined in plants challenged with A. alternata, alone or with each bacterial isolate, respectively. Results showed that at 24 h after infection, in absence of the pathogen, the expression level of the tested genes was very low. The presence of A. alternata alone and in combination with bacteria increased the transcripts of all genes. Data showed a potential of best performing isolate Ps168 to sustain tomato plants nutrition and activate defense-related genes for protection by pathogenic fungi.201729079927
8449150.9915Identification and Distribution of NBS-Encoding Resistance Genes of Dactylis glomerata L. and Its Expression Under Abiotic and Biotic Stress. Orchardgrass (Dactylis glomerata L.) is drought resistant and tolerant to barren landscapes, making it one of the most important forages for animal husbandry, as well as ecological restoration of rocky landscapes that are undergoing desertification. However, orchardgrass is susceptible to rust, which can significantly reduce its yield and quality. Therefore, understanding the genes that underlie resistance against rust in orchardgrass is critical. The evolution, cloning of plant disease resistance genes, and the analysis of pathogenic bacteria induced expression patterns are important contents in the study of interaction between microorganisms and plants. Genes with nucleotide binding site (NBS) structure are disease-resistant genes ubiquitous in plants and play an important role in plant attacks against various pathogens. Using sequence analysis and re-annotation, we identified 413 NBS resistance genes in orchardgrass. Similar to previous studies, NBS resistance genes containing TIR (toll/interleukin-1 receptor) domain were not found in orchardgrass. The NBS resistance genes can be divided into four types: NBS (up to 264 homologous genes, accounting for 64% of the total number of NBS genes in orchardgrass), NBS-LRR, CC-NBS, and CC-NBS-LRR (minimum of 26 homologous genes, only 6% of the total number of NBS genes in orchardgrass). These 413 NBS resistance genes were unevenly distributed across seven chromosomes where chromosome 5 had up to 99 NBS resistance genes. There were 224 (54%) NBS resistance genes expressed in different tissues (roots, stems, leaves, flowers, and spikes), and we did not detect expression for 45 genes (11%). The remaining 145 (35%) were expressed in some tissues. And we found that 11 NBS resistance genes were differentially expressed under waterlogging stress, 5 NBS resistance genes were differentially expressed under waterlogging and drought stress, and 1 NBS resistance was is differentially expressed under waterlogging and heat stress. Most importantly, we found that 65 NBS resistance genes were significantly expressed in different control groups. On the 7th day of inoculation, 23 NBS resistance genes were differentially expressed in high resistance materials alone, of which 7 NBS resistance genes regulate the "plant-pathogen interaction" pathway by encoding RPM1. At the same time, 2 NBS resistance genes that were differentially expressed in the high resistance material after inoculation were also differentially expressed in abiotic stress. In summary, the NBS resistance gene plays a crucial role in the resistance of orchardgrass to rust.202032506157
96160.9915Genome-wide Identification, Classification, and Expression Analysis of the Receptor-Like Protein Family in Tomato. Receptor-like proteins (RLPs) are involved in plant development and disease resistance. Only some of the RLPs in tomato (Solanum lycopersicum L.) have been functionally characterized though 176 genes encoding RLPs, which have been identified in the tomato genome. To further understand the role of RLPs in tomato, we performed genome-guided classification and transcriptome analysis of these genes. Phylogenic comparisons revealed that the tomato RLP members could be divided into eight subgroups and that the genes evolved independently compared to similar genes in Arabidopsis. Based on location and physical clustering analyses, we conclude that tomato RLPs likely expanded primarily through tandem duplication events. According to tissue specific RNA-seq data, 71 RLPs were expressed in at least one of the following tissues: root, leaf, bud, flower, or fruit. Several genes had expression patterns that were tissue specific. In addition, tomato RLP expression profiles after infection with different pathogens showed distinguish gene regulations according to disease induction and resistance response as well as infection by bacteria and virus. Notably, Some RLPs were highly and/or unique expressed in susceptible tomato to pathogen, suggesting that the RLP could be involved in disease response, possibly as a host-susceptibility factor. Our study could provide an important clues for further investigations into the function of tomato RLPs involved in developmental and response to pathogens.201830369853
8760170.9914Massive production of butanediol during plant infection by phytopathogenic bacteria of the genera Dickeya and Pectobacterium. Plant pathogenic bacteria of the genera Dickeya and Pectobacterium are broad-host-range necrotrophs which cause soft-rot diseases in important crops. A metabolomic analysis, based on (13)C-NMR spectroscopy, was used to characterize the plant-bacteria interaction. Metabolic profiles revealed a decline in plant sugars and amino acids during infection and the concomitant appearance of a compound identified as 2,3-butanediol. Butanediol is the major metabolite found in macerated tissues of various host plants. It is accumulated during the symptomatic phase of the disease. Different species of Dickeya or Pectobacterium secrete high levels of butanediol during plant infection. Butanediol has been described as a signalling molecule involved in plant/bacterium interactions and, notably, able to induce plant systemic resistance. The bud genes, involved in butanediol production, are conserved in the phytopathogenic enterobacteria of the genera Dickeya, Pectobacterium, Erwinia, Pantoea and Brenneria. Inactivation of the bud genes of Dickeya dadantii revealed that the virulence of budA, budB and budR mutants was clearly reduced. The genes budA, budB and budC are highly expressed during plant infection. These data highlight the importance of butanediol metabolism in limiting acidification of the plant tissue during the development of the soft-rot disease caused by pectinolytic enterobacteria.201122032684
8775180.9914Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. N-acyl-L-homoserine lactone (AHL) signal molecules are utilized by Gram-negative bacteria to monitor their population density (quorum sensing) and to regulate gene expression in a density-dependent manner. We show that Serratia liquefaciens MG1 and Pseudomonas putida IsoF colonize tomato roots, produce AHL in the rhizosphere and increase systemic resistance of tomato plants against the fungal leaf pathogen, Alternaria alternata. The AHL-negative mutant S. liquefaciens MG44 was less effective in reducing symptoms and A. alternata growth as compared to the wild type. Salicylic acid (SA) levels were increased in leaves when AHL-producing bacteria colonized the rhizosphere. No effects were observed when isogenic AHL-negative mutant derivatives were used in these experiments. Furthermore, macroarray and Northern blot analysis revealed that AHL molecules systemically induce SA- and ethylene-dependent defence genes (i.e. PR1a, 26 kDa acidic and 30 kDa basic chitinase). Together, these data support the view that AHL molecules play a role in the biocontrol activity of rhizobacteria through the induction of systemic resistance to pathogens.200617087474
8453190.9914In silico analysis of gene content in tomato genomic regions mapped to the Ty-2 resistance gene. Tomato yellow leaf curl virus is one of the main diseases affecting tomato production worldwide. Previous studies have shown that Ty-2 is an important resistance gene located between molecular markers C2_At2g28250 (82.3 cM) and T0302 (89.0 cM), and exhibits strong resistance to tomato yellow leaf curl virus in Asia. In this study, Ty-2 candidate genes were subjected to bioinformatic analysis for the sequenced tomato genome. We identified 69 genes between molecular markers C2_At2g28250 and T0302, 22 of which were disease-related resistant genes, including nucleotide binding site-leucine-rich repeat disease resistance genes, protease genes (protein kinase, kinase receptor, and protein isomerase), cytochromes, and transcription factors. Expressed sequence tag analysis revealed that 77.3% (17/22) of candidate disease-resistance genes were expressed, involving 143 expressed sequence tags. Based on full-length cDNA sequence analysis, 7 candidate genes were found, 4 of which were involved in tomato responses to pathogens. Microarray expression analysis also showed that most candidate genes were involved in the tomato responses to multiple pathogens, including fungi, viruses, and bacteria. RNA-seq expression analysis revealed that all candidate genes participated in tomato growth and development.201526214476