SWEDEN - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
179800.9837Impacts of Domestication and Veterinary Treatment on Mobile Genetic Elements and Resistance Genes in Equine Fecal Bacteria. Antimicrobial resistance in bacteria is a threat to both human and animal health. We aimed to understand the impact of domestication and antimicrobial treatment on the types and numbers of resistant bacteria, antibiotic resistance genes (ARGs), and class 1 integrons (C1I) in the equine gut microbiome. Antibiotic-resistant fecal bacteria were isolated from wild horses, healthy farm horses, and horses undergoing veterinary treatment, and isolates (9,083 colonies) were screened by PCR for C1I; these were found at frequencies of 9.8% (vet horses), 0.31% (farm horses), and 0.05% (wild horses). A collection of 71 unique C1I(+) isolates (17 Actinobacteria and 54 Proteobacteria) was subjected to resistance profiling and genome sequencing. Farm horses yielded mostly C1I(+) Actinobacteria (Rhodococcus, Micrococcus, Microbacterium, Arthrobacter, Glutamicibacter, Kocuria), while vet horses primarily yielded C1I(+) Proteobacteria (Escherichia, Klebsiella, Enterobacter, Pantoea, Acinetobacter, Leclercia, Ochrobactrum); the vet isolates had more extensive resistance and stronger P(C) promoters in the C1Is. All integrons in Actinobacteria were flanked by copies of IS6100, except in Micrococcus, where a novel IS5 family element (ISMcte1) was implicated in mobilization. In the Proteobacteria, C1Is were predominantly associated with IS26 and also IS1, Tn21, Tn1721, Tn512, and a putative formaldehyde-resistance transposon (Tn7489). Several large C1I-containing plasmid contigs were retrieved; two of these (plasmid types Y and F) also had extensive sets of metal resistance genes, including a novel copper-resistance transposon (Tn7519). Both veterinary treatment and domestication increase the frequency of C1Is in equine gut microflora, and each of these anthropogenic factors selects for a distinct group of integron-containing bacteria. IMPORTANCE There is increasing acknowledgment that a "one health" approach is required to tackle the growing problem of antimicrobial resistance. This requires that the issue is examined from not only the perspective of human medicine but also includes consideration of the roles of antimicrobials in veterinary medicine and agriculture and recognizes the importance of other ecological compartments in the dissemination of ARGs and mobile genetic elements such as C1I. We have shown that domestication and veterinary treatment increase the frequency of occurrence of C1Is in the equine gut microflora and that, in healthy farm horses, the C1I are unexpectedly found in Actinobacteria, while in horses receiving antimicrobial veterinary treatments, a taxonomic shift occurs, and the more typical integron-containing Proteobacteria are found. We identified several new mobile genetic elements (plasmids, insertion sequences [IS], and transposons) on genomic contigs from the integron-containing equine bacteria.202336988354
511710.9833Metagenomic sequencing of mpox virus clade Ib lesions identifies possible bacterial and viral co-infections in hospitalized patients in eastern DRC. Mpox is an emerging zoonotic disease that caused two public health emergencies of international concern within two years. Less is known about the interplay of microbial organisms in mpox lesions which could result in superinfections that exacerbate outcomes or delay recovery. We utilized a unified metagenomic sequencing approach involving slow-speed centrifugation and differential lysis on 19 mpox lesion swabs of hospitalized patients in South Kivu province (eastern DRC) to characterize bacteria, antimicrobial resistance genes, mpox virus (MPXV), and viral co-infections. High-quality MPXV whole-genome sequences were obtained until a Ct value of 27. Furthermore, co-infections with other clinically relevant viruses, such as varicella zoster virus and herpes simplex virus-2, were detected and confirmed by real-time PCR. In addition, metagenomic sequence analysis of the bacterial content showed the presence of bacteria associated with skin and soft tissue infection in 10 of the 19 samples analyzed. These bacteria had a high abundance of resistance genes, with possible implications for antimicrobial treatment based on the predicted antimicrobial resistance. In conclusion, we report the presence of bacterial and viral pathogens in mpox lesions and detection of widespread resistance genes to the standard antibiotic treatment. The possibility of a co-infection, including antimicrobial resistance, should be considered when discussing treatment options, along with the determination of the case-fatality ratio.IMPORTANCEThe mpox virus clade Ib lineage emerged in the eastern Democratic Republic of the Congo owing to continuous human-to-human transmission in a vulnerable patient population. A major challenge of this ongoing outbreak is its occurrence in regions with severely limited healthcare infrastructure. As a result, less is known about co-infections in affected patients. Identifying and characterizing pathogens, including their antimicrobial resistance, is crucial for reducing infection-related complications and improving antimicrobial stewardship. In this study, we applied a unified metagenomics approach to detect and characterize bacterial and viral co-infections in mpox lesions of hospitalized mpox patients in the eastern DRC.202540445195
159020.9832Molecular characterization of highly prevalent Escherichia coli and Escherichia marmotae resistant to extended-spectrum cephalosporins in European starlings (Sturnus vulgaris) in Tunisia. European starlings are widespread migratory birds that have already been described as carrying bacteria resistant to extended-spectrum cephalosporins (ESC-R). These birds are well known in Tunisia because they spend the wintertime in this country and are hunted for human consumption. The goal of our study was to estimate the proportion of ESC-R in these birds and to characterize the collected isolates using whole-genome sequencing. Results showed that 21.5% (42/200) of the birds carried either an extended-spectrum beta-lactamase (ESBL) or an acquired AmpC gene. Diverse bla (CTX-M) genes were responsible for the ESBL phenotype, bla (CTX-M-14) being the most prevalent, while only bla (CMY-2) and one bla (CMY-62) were found in AmpC-positive isolates. Likewise, different genetic determinants carried these resistance genes, including IncHI2, and IncF plasmids for bla (CTX-M) genes and IncI1 plasmids for bla (CMY-2) genes. Three chromosomally encoded bla (CTX-M-15) genes were also identified. Surprisingly, species identification revealed a large proportion (32.7%) of Escherichia marmotae isolates. This species is phenotypically indistinguishable from Escherichia coli and has obviously the same capacity to acquire ESC-R genes. Our data also strongly suggest that at least the IncHI2/pST3 plasmid can spread equally between E. coli and E. marmotae. Given the potential transmission routes between humans and animals, either by direct contact with dejections or through meat preparation, it is important to closely monitor antimicrobial resistance in European starlings in Tunisia and to set up further studies to identify the sources of contamination of these birds. IMPORTANCE The One Health concept highlighted knowledge gaps in the understanding of the transmission routes of resistant bacteria. A major interest was shown in wild migratory birds since they might spread resistant bacteria over long distances. Our study brings further evidence that wild birds, even though they are not directly submitted to antibiotic treatments, can be heavily contaminated by resistant bacteria. Our results identified numerous combinations of resistance genes, genetic supports, and bacterial clones that can spread vertically or horizontally and maintain a high level of resistance in the bird population. Some of these determinants are widespread in humans or animals (IncHI2/pST3 plasmids and pandemic clones), while some others are less frequent (atypical IncI1 plasmid and minor clones). Consequently, it is essential to be aware of the risks of transmission and to take all necessary measures to prevent the proportions of resistant isolates from increasing uncontrollably.202337772831
259030.9831Combining stool and stories: exploring antimicrobial resistance among a longitudinal cohort of international health students. BACKGROUND: Antimicrobial resistance (AMR) is a global public health concern that requires transdisciplinary and bio-social approaches. Despite the continuous calls for a transdisciplinary understanding of this problem, there is still a lack of such studies. While microbiology generates knowledge about the biomedical nature of bacteria, social science explores various social practices related to the acquisition and spread of these bacteria. However, the two fields remain disconnected in both methodological and conceptual levels. Focusing on the acquisition of multidrug resistance genes, encoding extended-spectrum betalactamases (CTX-M) and carbapenemases (NDM-1) among a travelling population of health students, this article proposes a methodology of 'stool and stories' that combines methods of microbiology and sociology, thus proposing a way forward to a collaborative understanding of AMR. METHODS: A longitudinal study with 64 health students travelling to India was conducted in 2017. The study included multiple-choice questionnaires (n = 64); a collection of faecal swabs before travel (T0, n = 45), in the first week in India (T1, n = 44), the second week in India (T2, n = 41); and semi-structured interviews (n = 11). Stool samples were analysed by a targeted metagenomic approach. Data from semi-structured interviews were analysed using the method of thematic analysis. RESULTS: The incidence of ESBL- and carbapenemase resistance genes significantly increased during travel indicating it as a potential risk; for CTX-M from 11% before travel to 78% during travel and for NDM-1 from 2% before travel to 11% during travel. The data from semi-structured interviews showed that participants considered AMR mainly in relation to individual antibiotic use or its presence in a clinical environment but not to travelling. CONCLUSION: The microbiological analysis confirmed previous research showing that international human mobility is a risk factor for AMR acquisition. However, sociological methods demonstrated that travellers understand AMR primarily as a clinical problem and do not connect it to travelling. These findings indicate an important gap in understanding AMR as a bio-social problem raising a question about the potential effectiveness of biologically driven AMR stewardship programs among travellers. Further development of the 'stool and stories' approach is important for a transdisciplinary basis of AMR stewardship.202134579656
156240.9830Detection of an IMI-2 carbapenemase-producing Enterobacter asburiae at a Swedish feed mill. Occurrence of multidrug resistant Enterobacteriaceae in livestock is of concern as they can spread to humans. A potential introduction route for these bacteria to livestock could be animal feed. We therefore wanted to identify if Escherichia spp., Enterobacter spp., Klebsiella spp., or Raoutella spp. with transferable resistance to extended spectrum cephalosporins, carbapenems or colistin could be detected in the environment at feed mills in Sweden. A second aim was to compare detected isolates to previous described isolates from humans and animals in Sweden to establish relatedness which could indicate a potential transmission between sectors and feed mills as a source for antibiotic resistant bacteria. However, no isolates with transferable resistance to extended-cephalosporins or colistin could be identified, but one isolate belonging to the Enterobacter cloacae complex was shown to be carbapenem-resistant and showing carbapenemase-activity. Based on sequencing by both short-read Illumina and long-read Oxford Nanopore MinIon technologies it was shown that this isolate was an E. asburiae carrying a bla (IMI-2) gene on a 216 Kbp plasmid, designated pSB89A/IMI-2, and contained the plasmid replicons IncFII, IncFIB, and a third replicon showing highest similarity to the IncFII(Yp). In addition, the plasmid contained genes for various functions such as plasmid segregation and stability, plasmid transfer and arsenical transport, but no additional antibiotic resistance genes. This isolate and the pSB89A/IMI-2 was compared to three human clinical isolates positive for bla (IMI-2) available from the Swedish antibiotic monitoring program Swedres. It was shown that one of the human isolates carried a plasmid similar with regards to gene content to the pSB89A/IMI-2 except for the plasmid transfer system, but that the order of genes was different. The pSB89A/IMI-2 did however share the same transfer system as the bla (IMI-2) carrying plasmids from the other two human isolates. The pSB89A/IMI-2 was also compared to previously published plasmids carrying bla (IMI-2), but no identical plasmids could be identified. However, most shared part of the plasmid transfer system and DNA replication genes, and the bla (IMI-2) gene was located next the transcription regulator imiR. The IS3-family insertion element downstream of imiR in the pSB89A was also related to the IS elements in other bla (IMI)-carrying plasmids.202236338068
580450.9829Quinolone resistance mutations in the faecal microbiota of Swedish travellers to India. BACKGROUND: International travel contributes to the spread of antibiotic resistant bacteria over the world. Most studies addressing travel-related changes in the faecal flora have focused on specific mobile resistance genes, or depended on culturing of individual bacterial isolates. Antibiotic resistance can, however, also spread via travellers colonized by bacteria carrying chromosomal antibiotic resistance mutations, but this has received little attention so far. Here we aimed at exploring the abundance of chromosomal quinolone resistance mutations in Escherichia communities residing in the gut of Swedish travellers, and to determine potential changes after visiting India. Sweden is a country with a comparably low degree of quinolone use and quinolone resistance, whereas the opposite is true for India. METHODS: Massively parallel amplicon sequencing targeting the quinolone-resistance determining region of gyrA and parC was applied to total DNA extracted from faecal samples. Paired samples were collected from 12 Swedish medical students before and after a 4-15 week visit to India. Twelve Indian residents were included for additional comparisons. Methods known resistance mutations were common in Swedes before travel as well as in Indians, with a trend for all mutations to be more common in the Indian sub group. There was a significant increase in the abundance of the most common amino acid substitution in GyrA (S83L, from 44 to 72%, p=0.036) in the samples collected after return to Sweden. No other substitution, including others commonly associated with quinolone resistance (D87N in GyrA, S80I in ParC) changed significantly. The number of distinct genotypes encoded in each traveller was significantly reduced after their visit to India for both GyrA (p=0.0020) and ParC (p=0.0051), indicating a reduced genetic diversity, similar to that found in the Indians. CONCLUSIONS: International travel can alter the composition of the Escherichia communities in the faecal flora, favouring bacteria carrying certain resistance mutations, and, thereby, contributes to the global spread of antibiotic resistance. A high abundance of specific mutations in Swedish travellers before visiting India is consistent with the hypothesis that these mutation have no fitness cost even in the absence of an antibiotic selection pressure.201526498929
175060.9829The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2020/2021. Antimicrobial resistance (AMR) data on zoonotic and indicator bacteria from humans, animals and food are collected annually by the EU Member States (MSs) and reporting countries, jointly analysed by EFSA and ECDC and presented in a yearly EU Summary Report. This report provides an overview of the main findings of the 2020-2021 harmonised AMR monitoring in Salmonella spp., Campylobacter jejuni and C. coli in humans and food-producing animals (broilers, laying hens and turkeys, fattening pigs and bovines under 1 year of age) and relevant meat thereof. For animals and meat thereof, indicator E. coli data on the occurrence of AMR and presumptive Extended spectrum β-lactamases (ESBL)-/AmpC β-lactamases (AmpC)-/carbapenemases (CP)-producers, as well as the occurrence of methicillin-resistant Staphylococcus aureus are also analysed. In 2021, MSs submitted for the first time AMR data on E. coli isolates from meat sampled at border control posts. Where available, monitoring data from humans, food-producing animals and meat thereof were combined and compared at the EU level, with emphasis on multidrug resistance, complete susceptibility and combined resistance patterns to selected and critically important antimicrobials, as well as Salmonella and E. coli isolates exhibiting ESBL-/AmpC-/carbapenemase phenotypes. Resistance was frequently found to commonly used antimicrobials in Salmonella spp. and Campylobacter isolates from humans and animals. Combined resistance to critically important antimicrobials was mainly observed at low levels except in some Salmonella serotypes and in C. coli in some countries. The reporting of a number of CP-producing E. coli isolates (harbouring bla (OXA-48), bla (OXA-181), and bla (NDM-5) genes) in pigs, bovines and meat thereof by a limited number of MSs (4) in 2021, requests a thorough follow-up. The temporal trend analyses in both key outcome indicators (rate of complete susceptibility and prevalence of ESBL-/AmpC- producers) showed that encouraging progress have been registered in reducing AMR in food-producing animals in several EU MSs over the last years.202336891283
264070.9829Enterobacteriaceae Harboring AmpC (bla(CMY)) and ESBL (bla(CTX-M)) in Migratory and Nonmigratory Wild Songbird Populations on Ohio Dairies. Extended-spectrum β-lactamases (ESBLs) confer bacterial resistance to critically important antimicrobials, including extended-spectrum cephalosporins (ESCs). Livestock are important reservoirs for the zoonotic food-borne transmission of ESC-resistant enteric bacteria. Our aim is to describe the potential role of migratory and resident wild birds in the epidemiology of ESBL-mediated bacterial resistance on dairy farms. Using mist nets, we sampled wild migratory and resident birds either immediately adjacent to or 600 ft away from free-stall barns on three Ohio dairy farms during the 2014 and 2015 spring migrations. Individual swabs were used to obtain both a cloacal and external surface swab from each bird. Samples were inoculated into MacConkey broth containing cefotaxime then inoculated onto MacConkey agar with cefoxitin, cefepime, or meropenem to identify the bla(CMY,) bla(CTX-M,) and carbapenemase phenotypes, respectively. Six hundred twenty-three birds were sampled, 19 (3.0%) of which harbored bacteria with bla(CMY) and 32 (5.1%) harbored bacteria with bla(CTX-M) from either their cloacal sample or from their external swab. There was no difference in the prevalence of either gene between migratory and resident birds. Prevalence of bla(CMY) and bla(CTX-M) was higher among birds sampled immediately outside the barns compared with those sampled 600 ft away. Our results suggest that wild birds can serve as mechanical and/or biological vectors for Enterobacteriaceae with resistance to ESCs. Birds live in close contact with dairy cows and their feed, therefore, transmission locally between farms is possible. Finding a similar prevalence in migratory and nonmigratory birds suggests the potential for regional and intercontinental movement of these resistance genes via birds.201728165890
264180.9828Carriage of CTX-M type extended spectrum β-lactamases (ESBLs) in gulls across Europe. BACKGROUND: Extended spectrum β-lactamases (ESBLs), a group of enzymes conferring resistance to third generation cephalosporins have rapidly increased in Enterobacteriacae and pose a major challenge to human health care. Resistant isolates are common in domestic animals and clinical settings, but prevalence and genotype distribution varies on a geographical scale. Although ESBL genes are frequently detected in bacteria isolated from wildlife samples, ESBL dissemination of resistant bacteria to the environment is largely unknown. To address this, we used three closely related gull species as a model system and collected more than 3000 faecal samples during breeding times in nine European countries. Samples were screened for ESBL-producing bacteria, which were characterized to the level of ESBL genotype groups (SHV, TEM), or specific genotypes (CTX-M). RESULTS: ESBL-producing bacteria were frequently detected in gulls (906 of 3158 samples, 28.7 %), with significant variation in prevalence rates between countries. Highest levels were found in Spain (74.8 %), The Netherlands (37.8 %) and England (27.1 %). Denmark and Poland represented the other extreme with no, or very few positive samples. Genotyping of CTX-M isolates identified 13 different variants, with bla CTX-M-1 and bla CTX-M-14 as the most frequently detected. In samples from England, Spain and Portugal, bla CTX-M-14 dominated, while in the rest of the sampled countries bla CTX-M-1 (except Sweden where bla CTX-M-15 was dominant) was the most frequently detected genotype, a pattern similar to what is known from studies of human materials. CONCLUSIONS: CTX-M type ESBLs are common in the faecal microbiota from gulls across Europe. The gull ESBL genotype distribution was in large similar to published datasets from human and food-production animals in Europe. The data suggests that the environmental dissemination of ESBL is high from anthropogenic sources, and widespread occurrence of resistant bacteria in common migratory bird species utilizing urban and agricultural areas suggests that antibiotic resistance genes may also be spread through birds.201526526188
186190.9827Extended-spectrum beta-lactamase-producing Escherichia coli in common vampire bats Desmodus rotundus and livestock in Peru. Antibiotic resistance mediated by bacterial production of extended-spectrum beta-lactamase (ESBL) is a global threat to public health. ESBL resistance is most commonly hospital-acquired; however, infections acquired outside of hospital settings have raised concerns over the role of livestock and wildlife in the zoonotic spread of ESBL-producing bacteria. Only limited data are available on the circulation of ESBL-producing bacteria in animals. Here, we report ESBL-producing Escherichia coli in wild common vampire bats Desmodus rotundus and livestock near Lima, Peru. Molecular analyses revealed that most of this resistance resulted from the expression of bla(CTX-M-15) genes carried by plasmids, which are disseminating worldwide in hospital settings and have also been observed in healthy children of Peru. Multilocus sequence typing showed a diverse pool of E. coli strains carrying this resistance that were not always host species-specific, suggesting sharing of strains between species or infection from a common source. This study shows widespread ESBL resistance in wild and domestic animals, supporting animal communities as a potential source of resistance. Future work is needed to elucidate the role of bats in the dissemination of antibiotic-resistant strains of public health importance and to understand the origin of the observed resistance.201829575785
1820100.9827Intensive farming as a source of bacterial resistance to antimicrobial agents in sedentary and migratory vultures: Implications for local and transboundary spread. The role of wild birds in the carriage and transmission of human and food animal bacteria with resistant genotypes has repeatedly been highlighted. However, few studies have focussed on the specific exposure sources and places of acquisition and selection for antimicrobial-resistant bacteria in vultures relying on livestock carcasses across large areas and different continents. The occurrence of bacterial resistance to antimicrobial agents was assessed in the faecal microbiota of sedentary Griffon vultures (Gyps fulvus) and trans-Saharan migratory Egyptian vultures (Neophron percnopterus) in central Spain. High rates (generally >50%) of resistant Escherichia coli and other enterobacteria to amoxicillin, cotrimoxazole and tetracycline were found. About 25-30% of samples were colonised by extended-spectrum beta-lactamases (ESBL) producing bacteria, while 5-17% were positive for plasmid mediated quinolone resistance (PMQR) phenotypes, depending on vulture species and age. In total, nine ESBL types were recorded (7 in griffon vultures and 5 in Egyptian vultures), with CTX-M-1 the most prevalent in both species. The most prevalent PMQR was mediated by qnrS genes. We found no clear differences in the occurrence of antimicrobial resistance in adult vultures of each species, or between nestling and adult Egyptian vultures. This supports the hypothesis that antimicrobial resistance is acquired in the European breeding areas of both species. Bacterial resistance can directly be driven by the regular ingestion of multiple active antimicrobials found in medicated livestock carcasses from factory farms, which should be not neglected as a contributor to the emergence of novel resistance clones. The One Health framework should consider the potential transboundary carriage and spread of epidemic resistance from high-income European to low-income African countries via migratory birds.202032758969
1828110.9826Monitoring of hospital sewage shows both promise and limitations as an early-warning system for carbapenemase-producing Enterobacterales in a low-prevalence setting. Carbapenemase-producing Enterobacterales (CPE) constitute a significant threat to healthcare systems. Continuous surveillance is important for the management and early warning of these bacteria. Sewage monitoring has been suggested as a possible resource-efficient complement to traditional clinical surveillance. It should not least be suitable for rare forms of resistance since a single sewage sample contains bacteria from a large number of individuals. Here, the value of sewage monitoring in early warning of CPE was assessed at the Sahlgrenska University Hospital in Gothenburg, Sweden, a setting with low prevalence of CPE. Twenty composite hospital sewage samples were collected during a two-year period. Carbapenemase genes in the complex samples were analyzed by quantitative PCR and the CPE loads were assessed through cultures on CPE-selective agar followed by species determination as well as phenotypic and genotypic tests targeting carbapenemases of presumed CPE. The findings were related to CPE detected in hospitalized patients. A subset of CPE isolates from sewage and patients were subjected to whole genome sequencing. For three of the investigated carbapenemase genes, bla(NDM), bla(OXA-48-like) and bla(KPC), there was concordance between gene levels and abundance of corresponding CPE in sewage. For the other two analyzed genes, bla(VIM) and bla(IMP), there was no such concordance, most likely due to the presence of those genes in non-Enterobacterales populating the sewage samples. In line with the detection of OXA-48-like- and NDM-producing CPE in sewage, these were also the most commonly detected CPE in patients. NDM-producing CPE were detected on a single occasion in sewage and isolated strains were shown to match strains detected in a patient. A marked peak in CPE producing OXA-48-like enzymes was observed in sewage during a few months. When levels started to increase there were no known cases of such CPE at the hospital but soon after a few cases were detected in samples from patients. The OXA-48-like-producing CPE from sewage and patients represented different strains, but they carried similar bla(OXA-48-like)-harbouring mobile genetic elements. In conclusion, sewage analyses show both promise and limitations as a complement to traditional clinical resistance surveillance for early warning of rare forms of resistance. Further evaluation and careful interpretation are needed to fully assess the value of such a sewage monitoring system.202134082263
904120.9826High prevalence of contamination of sink drains with carbapenemase-producing Enterobacteriaceae in 4 intensive care units apart from any epidemic context. We report a high prevalence (28%) of sink drains contaminated with carbapenemase-producing Enterobacteriaceae (CPE) in 4 intensive care units with a history of CPE carriage in hospitalized patients within the previous 5 years, but apart from any current epidemic context. Carbapenemase genes, particularly bla(VIM) and bla(NDM), were identified by polymerase chain reaction in sink drains in which no CPE was detected, but very few data are available in the literature concerning their presence in sink drains.202031495643
1749130.9826The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2021-2022. This report by the European Food Safety Authority and the European Centre for Disease prevention and Control, provides an overview of the main findings of the 2021-2022 harmonised Antimicrobial Resistance (AMR) monitoring in Salmonella spp., Campylobacter jejuni and C. coli from humans and food-producing animals (broilers, laying hens and fattening turkeys, fattening pigs and cattle under one year of age) and relevant meat thereof. For animals and meat thereof, AMR data on indicator commensal Escherichia coli, presumptive extended-spectrum beta-lactamases (ESBL)-/AmpC beta-lactamases (AmpC)-/carbapenemase (CP)-producing E. coli, and the occurrence of methicillin-resistant Staphylococcus aureus (MRSA) are also analysed. Generally, resistance levels differed greatly between reporting countries and antimicrobials. Resistance to commonly used antimicrobials was frequently found in Salmonella and Campylobacter isolates from humans and animals. In humans, increasing trends in resistance to one of two critically antimicrobials (CIA) for treatment was observed in poultry-associated Salmonella serovars and Campylobacter, in at least half of the reporting countries. Combined resistance to CIA was however observed at low levels except in some Salmonella serovars and in C. coli from humans and animals in some countries. While CP-producing Salmonella isolates were not detected in animals in 2021-2022, nor in 2021 for human cases, in 2022 five human cases of CP-producing Salmonella were reported (four harbouring bla (OXA-48) or bla (OXA-48-like) genes). The reporting of a number of CP-producing E. coli isolates (harbouring bla (OXA-48), bla (OXA-181), bla (NDM-5) and bla (VIM-1) genes) in fattening pigs, cattle under 1 year of age, poultry and meat thereof by a limited number of MSs (5) in 2021 and 2022, requires a thorough follow-up. The temporal trend analyses in both key outcome indicators (rate of complete susceptibility and prevalence of ESBL-/AmpC-producers in E. coli) showed an encouraging progress in reducing AMR in food-producing animals in several EU MSs over the last 7 years.202438419967
1776140.9826Broad-Host Dissemination of Plasmids Coharboring the fos Operon for Fructooligosaccharide Metabolism with Antibiotic Resistance Genes. The fos operon encoding short-chain fructooligosaccharide (scFOS) utilization enables bacteria of the family Enterobacteriaceae to grow and be sustained in environments where they would struggle to survive. Despite several cases of the detection of the fos operon in isolates of avian and equine origins, its global distribution in bacterial genomes remains unknown. The presence of the plasmid-harbored fos operon among resistant bacteria may promote the spread of antibiotic resistance. A collection of 11,538 antimicrobial-resistant Enterobacteriaceae isolates from various sources was screened for the fosT gene encoding the scFOS transporter. Out of 307 fosT-positive isolates, 80% of them originated from sources not previously linked to fosT (humans, wastewater, and animals). The chromosomally harbored fos operon was detected in 163/237 isolates subjected to whole-genome sequencing. In the remaining 74 isolates, the operon was carried by plasmids. Further analyses focusing on the isolates with a plasmid-harbored fos operon showed that the operon was linked to various incompatibility (Inc) groups, including the IncHI1, IncF-type, IncK2, IncI1, and IncY families. Long-read sequencing of representative plasmids showed the colocalization of fos genes with antibiotic resistance genes (ARGs) in IncHI1 (containing a multidrug resistance region), IncK2 (bla(TEM-1A)), IncI1 [sul2 and tet(A)], and IncY [aadA5, dfrA17, sul2, and tet(A)] plasmids, while IncF-type plasmids had no ARGs but coharbored virulence-associated genes. Despite the differences in the locations and structures of the fos operons, all isolates except one were proven to utilize scFOSs. In this study, we show that the fos operon and its spread are not strictly bound to one group of plasmids, and therefore, it should not be overlooked. IMPORTANCE It was believed that members of the family Enterobacteriaceae are unable to grow under conditions with short-chain fructooligosaccharides as the only source of carbon. Nevertheless, the first Escherichia coli isolate from chicken intestine was able to utilize these sugars owing to the chromosomally harbored fos operon. Studies on E. coli isolates from horses discovered the horizontal transfer of the fos operon on IncHI1 plasmids along with genes for antibiotic resistance. The first plasmid detected was pEQ1, originating from the feces of a hospitalized horse in the Czech Republic. Follow-up studies also revealed the dissemination of the IncHI1 plasmid-harbored fos operon in the Netherlands, Germany, Denmark, and France among healthy horses. Despite several cases of detection of the fos operon, its global distribution in bacterial genomes remains unknown. The fos operon possibly plays a role in the adaptation of plasmids among resistant bacteria and therefore may promote the spread of antibiotic resistance.202337578374
3295150.9825Metagenomic Analysis of the Abundance and Composition of Antibiotic Resistance Genes in Hospital Wastewater in Benin, Burkina Faso, and Finland. Antibiotic resistance is a global threat to human health, with the most severe effect in low- and middle-income countries. We explored the presence of antibiotic resistance genes (ARGs) in the hospital wastewater (HWW) of nine hospitals in Benin and Burkina Faso, two low-income countries in West Africa, with shotgun metagenomic sequencing. For comparison, we also studied six hospitals in Finland. The highest sum of the relative abundance of ARGs in the 68 HWW samples was detected in Benin and the lowest in Finland. HWW resistomes and mobilomes in Benin and Burkina Faso resembled each other more than those in Finland. Many carbapenemase genes were detected at various abundances, especially in HWW from Burkina Faso and Finland. The bla(GES) genes, the most widespread carbapenemase gene in the Beninese HWW, were also found in water intended for hand washing and in a puddle at a hospital yard in Benin. mcr genes were detected in the HWW of all three countries, with mcr-5 being the most common mcr gene. These and other mcr genes were observed in very high relative abundances, even in treated wastewater in Burkina Faso and a street gutter in Benin. The results highlight the importance of wastewater treatment, with particular attention to HWW. IMPORTANCE The global emergence and increased spread of antibiotic resistance threaten the effectiveness of antibiotics and, thus, the health of the entire population. Therefore, understanding the resistomes in different geographical locations is crucial in the global fight against the antibiotic resistance crisis. However, this information is scarce in many low- and middle-income countries (LMICs), such as those in West Africa. In this study, we describe the resistomes of hospital wastewater in Benin and Burkina Faso and, as a comparison, Finland. Our results help to understand the hitherto unrevealed resistance in Beninese and Burkinabe hospitals. Furthermore, the results emphasize the importance of wastewater management infrastructure design to minimize exposure events between humans, HWW, and the environment, preventing the circulation of resistant bacteria and ARGs between humans (hospitals and community) and the environment.202336728456
4914160.9825The carriage of antibiotic resistance by enteric bacteria from imported tokay geckos (Gekko gecko) destined for the pet trade. The emergence of antibiotic-resistant bacteria is a growing public health concern and has serious implications for both human and veterinary medicine. The nature of the global economy encourages the movement of humans, livestock, produce, and wildlife, as well as their potentially antibiotic-resistant bacteria, across international borders. Humans and livestock can be reservoirs for antibiotic-resistant bacteria; however, little is known about the prevalence of antibiotic-resistant bacteria harbored by wildlife and, to our knowledge, limited data has been reported for wild-caught reptiles that were specifically collected for the pet trade. In the current study, we examined the antibiotic resistance of lactose-positive Enterobacteriaceae isolates from wild-caught Tokay geckos (Gekko gecko) imported from Indonesia for use in the pet trade. In addition, we proposed that the conditions under which wild animals are captured, transported, and handled might affect the shedding or fecal prevalence of antibiotic resistance. In particular we were interested in the effects of density; to address this, we experimentally modified densities of geckos after import and documented changes in antibiotic resistance patterns. The commensal enteric bacteria from Tokay geckos (G. gecko) imported for the pet trade displayed resistance against some antibiotics including: ampicillin, amoxicillin/clavulanic acid, cefoxitin, chloramphenicol, kanamycin and tetracycline. There was no significant difference in the prevalence of antibiotic-resistant bacteria after experimentally mimicking potentially stressful transportation conditions reptiles experience prior to purchase. There were, however, some interesting trends observed when comparing Tokay geckos housed individually and those housed in groups. Understanding the prevalence of antibiotic resistant commensal enteric flora from common pet reptiles is paramount because of the potential for humans exposed to these animals to acquire antibiotic-resistant bacteria and the potential for released pets to disseminate these bacteria to native wildlife.201525461031
3545170.9825Fecal indicators and antibiotic resistance genes exhibit diurnal trends in the Chattahoochee River: Implications for water quality monitoring. Water bodies that serve as sources of drinking or recreational water are routinely monitored for fecal indicator bacteria (FIB) by state and local agencies. Exceedances of monitoring thresholds set by those agencies signal likely elevated human health risk from exposure, but FIB give little information about the potential source of contamination. To improve our understanding of how within-day variation could impact monitoring data interpretation, we conducted a study at two sites along the Chattahoochee River that varied in their recreational usage and adjacent land-use (natural versus urban), collecting samples every 30 min over one 24-h period. We assayed for three types of microbial indicators: FIB (total coliforms and Escherichia coli); human fecal-associated microbial source tracking (MST) markers (crAssphage and HF183/BacR287); and a suite of clinically relevant antibiotic resistance genes (ARGs; blaCTX-M, blaCMY, MCR, KPC, VIM, NDM) and a gene associated with antibiotic resistance (intl1). Mean levels of FIB and clinically relevant ARGs (blaCMY and KPC) were similar across sites, while MST markers and intI1 occurred at higher mean levels at the natural site. The human-associated MST markers positively correlated with antibiotic resistant-associated genes at both sites, but no consistent associations were detected between culturable FIB and any molecular markers. For all microbial indicators, generalized additive mixed models were used to examine diurnal variability and whether this variability was associated with environmental factors (water temperature, turbidity, pH, and sunlight). We found that FIB peaked during morning and early afternoon hours and were not associated with environmental factors. With the exception of HF183/BacR287 at the urban site, molecular MST markers and intI1 exhibited diurnal variability, and water temperature, pH, and turbidity were significantly associated with this variability. For blaCMY and KPC, diurnal variability was present but was not correlated with environmental factors. These results suggest that differences in land use (natural or urban) both adjacent and upstream may impact overall levels of microbial contamination. Monitoring agencies should consider matching sample collection times with peak levels of target microbial indicators, which would be in the morning or early afternoon for the fecal associated indicators. Measuring multiple microbial indicators can lead to clearer interpretations of human health risk associated with exposure to contaminated water.202236439800
2629180.9825Occurrence of plasmid-mediated quinolone resistance genes in Escherichia coli and Klebsiella spp. recovered from Corvus brachyrhynchos and Corvus corax roosting in Canada. The spread of antimicrobial resistance from human activity derived sources to natural habitats implicates wildlife as potential vectors of antimicrobial resistance transfer. Wild birds, including corvid species can disseminate mobile genetic resistance determinants through faeces. This study aimed to determine the occurrence of plasmid-mediated quinolone resistance (PMQR) genes in Escherichia coli and Klebsiella spp. isolates obtained from winter roosting sites of American crows (Corvus brachyrhynchos) and common ravens (Corvus corax) in Canada. Faecal swabs were collected at five roosting sites across Canada. Selective media isolation and multiplex PCR screening was utilized to identify PMQR genes followed by gene sequencing, pulse-field gel electrophoresis and multilocus sequence typing to characterize isolates. Despite the low prevalence of E. coli containing PMQR (1·3%, 6/449), qnrS1, qnrB19, qnrC, oqxAB and aac(6')-Ib-cr genes were found in five sequence types (ST), including E. coli ST 131. Conversely, one isolate of Klebsiella pneumoniae contained the plasmid-mediated resistance gene qnrB19. Five different K. pneumoniae STs were identified, including two novel types. The occurrence of PMQR genes and STs of public health significance in E. coli and Klebsiella pneumoniae recovered from corvids gives further evidence of the anthropogenic derived dissemination of antimicrobial resistance determinants at the human activity-wildlife-environment interface. SIGNIFICANCE AND IMPACT OF THE STUDY: This study examined large corvids as possible vector species for the dissemination of antimicrobial resistance in indicator and pathogenic bacteria as a means to assess the anthropogenic dissemination of plasmid-mediated quinolone resistance (PMQR) genes. Although rare, PMQR genes were found among corvid populations across Canada. The clinically important Escherichia coli strain ST131 containing aac(6')-Ib-cr gene along with a four-class phenotypic antimicrobial resistance (AMR) pattern as well as one Klebsiella pneumoniae strain containing a qnrB19 gene were identified in one geographical location. Corvids are a viable vector for the circulation of PMQR genes and clinically important clones in wide-ranging environments.201829675942
3301190.9825Hospital Wastewater Releases of Carbapenem-Resistance Pathogens and Genes in Urban India. Increasing antibiotic resistant hospital-acquired infections and limited new antibiotic discovery are jeopardizing human health at global scales, although how hospitals themselves fuel antimicrobial resistance (AMR) in the wider environment is largely unknown. Antibiotic resistance (AR) in hospitals in countries such as India is potentially problematic because of high antibiotic use, overcrowding, and inadequate wastewater containment. Here we quantified fecal coliforms (FC), carbapenem-resistant Enterobacteriaceae (CRE), bla(NDM-1), and selected extended-spectrum β-lactam (ESBL) resistant bacteria and genes in 12 hospital wastewater outfalls and five background sewer drains across New Delhi over two seasons. Hospital wastewaters had up to 9 orders of magnitude greater concentrations of CRE bacteria and bla(NDM-1) than local sewers (depending on the hospital), implying hospitals contribute high concentrations of AR relative to community sources in Delhi, especially during the winter. Significant correlations were found between FC levels (a fecal indictor), and CRE (r = 0.924; p = 0.005), bla(NDM-1) (r = 0.934, p = 0.009), and ESBL-resistant bacteria (r = 0.913, p = 0.010) levels across hospital wastewaters, respectively, implying that elevated CRE and bla(NDM-1) are of patient origin. However, of greater importance to global health, microbial culturing found 18 to 41% of wastewater CRE isolates (n = 1447) were on the WHO "critical pathogen" list in urgent need of new antibiotics, and 55% of CRE isolates from larger hospitals carried at least one bla(NDM-1) gene. Wastewater releases from New Delhi hospitals may pose a greater AR exposure risk to residents than believed, implying in-hospital antibiotic use must be better controlled and more effective waste treatment is needed for hospital wastewaters.201728949542