SURVEYS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
671900.9917Impacts of Antibiotic Residues in the Environment on Bacterial Resistance and Human Health in Eastern China: An Interdisciplinary Mixed-Methods Study Protocol. Antibiotic resistance is a global health challenge that threatens human and animal lives, especially among low-income and vulnerable populations in less-developed countries. Its multi-factorial nature requires integrated studies on antibiotics and resistant bacteria in humans, animals, and the environment. To achieve a comprehensive understanding of the situation and management of antibiotic use and environmental transmission, this paper describes a study protocol to document human exposure to antibiotics from major direct and indirect sources, and its potential health outcomes. Our mixed-methods approach addresses both microbiological and pathogen genomics, and epidemiological, geospatial, anthropological, and sociological aspects. Implemented in two rural residential areas in two provinces in Eastern China, linked sub-studies assess antibiotic exposure in population cohorts through household surveys, medicine diaries, and biological sampling; identify the types and frequencies of antibiotic resistance genes in humans and food-stock animals; quantify the presence of antibiotic residues and antibiotic resistance genes in the aquatic environment, including wastewater; investigate the drivers and behaviours associated with human and livestock antibiotic use; and analyse the national and local policy context, to propose strategies and systematic measurements for optimising and monitoring antibiotic use. As a multidisciplinary collaboration between institutions in the UK and China, this study will provide an in-depth understanding of the influencing factors and allow comprehensive awareness of the complexity of AMR and antibiotic use in rural Eastern China.202235805804
666110.9916Country Income Is Only One of the Tiles: The Global Journey of Antimicrobial Resistance among Humans, Animals, and Environment. Antimicrobial resistance (AMR) is one of the most complex global health challenges today: decades of overuse and misuse in human medicine, animal health, agriculture, and dispersion into the environment have produced the dire consequence of infections to become progressively untreatable. Infection control and prevention (IPC) procedures, the reduction of overuse, and the misuse of antimicrobials in human and veterinary medicine are the cornerstones required to prevent the spreading of resistant bacteria. Purified drinking water and strongly improved sanitation even in remote areas would prevent the pollution from inadequate treatment of industrial, residential, and farm waste, as all these situations are expanding the resistome in the environment. The One Health concept addresses the interconnected relationships between human, animal, and environmental health as a whole: several countries and international agencies have now included a One Health Approach within their action plans to address AMR. Improved antimicrobial usage, coupled with regulation and policy, as well as integrated surveillance, infection control and prevention, along with antimicrobial stewardship, sanitation, and animal husbandry should all be integrated parts of any new action plan targeted to tackle AMR on the Earth. Since AMR is found in bacteria from humans, animals, and in the environment, we briefly summarize herein the current concepts of One Health as a global challenge to enable the continued use of antibiotics.202032752276
660620.9916Comprehensive analysis of antimicrobial resistance in the Southwest Indian Ocean: focus on WHO critical and high priority pathogens. The spread of antimicrobial resistance (AMR) is a major global concern, and the islands of the Southwest Indian Ocean (SWIO) are not exempt from this phenomenon. As strategic crossroads between Southern Africa and the Indian subcontinent, these islands are constantly threatened by the importation of multidrug-resistant bacteria from these regions. In this systematic review, our aim was to assess the epidemiological situation of AMR in humans in the SWIO islands, focusing on bacterial species listed as priority by the World Health Organization. Specifically, we examined Enterobacterales, Acinetobacter spp., Pseudomonas spp. resistant to carbapenems, and Enterococcus spp. resistant to vancomycin. Our main objectives were to map the distribution of these resistant bacteria in the SWIO islands and identify the genes involved in their resistance mechanisms. We conducted literature review focusing on Comoros, Madagascar, Maldives, Mauritius, Mayotte, Reunion Island, Seychelles, Sri Lanka, and Zanzibar. Our findings revealed a growing interest in the investigation of these pathogens and provided evidence of their active circulation in many of the territories investigated. However, we also identified disparities in terms of data availability between the targeted bacteria and among the different territories, emphasizing the need to strengthen collaborative efforts to establish an efficient regional surveillance network.202438628847
672030.9915Human, animal and environmental contributors to antibiotic resistance in low-resource settings: integrating behavioural, epidemiological and One Health approaches. Antibiotic resistance (ABR) is recognized as a One Health challenge because of the rapid emergence and dissemination of resistant bacteria and genes among humans, animals and the environment on a global scale. However, there is a paucity of research assessing ABR contemporaneously in humans, animals and the environment in low-resource settings. This critical review seeks to identify the extent of One Health research on ABR in low- and middle-income countries (LMICs). Existing research has highlighted hotspots for environmental contamination; food-animal production systems that are likely to harbour reservoirs or promote transmission of ABR as well as high and increasing human rates of colonization with ABR commensal bacteria such as Escherichia coli However, very few studies have integrated all three components of the One Health spectrum to understand the dynamics of transmission and the prevalence of community-acquired resistance in humans and animals. Microbiological, epidemiological and social science research is needed at community and population levels across the One Health spectrum in order to fill the large gaps in knowledge of ABR in low-resource settings.201829643217
671340.9915Human Colonization with Antibiotic-Resistant Bacteria from Nonoccupational Exposure to Domesticated Animals in Low- and Middle-Income Countries: A Critical Review. Data on community-acquired antibiotic-resistant bacterial infections are particularly sparse in low- and middle-income countries (LMICs). Limited surveillance and oversight of antibiotic use in food-producing animals, inadequate access to safe drinking water, and insufficient sanitation and hygiene infrastructure in LMICs could exacerbate the risk of zoonotic antibiotic resistance transmission. This critical review compiles evidence of zoonotic exchange of antibiotic-resistant bacteria (ARB) or antibiotic resistance genes (ARGs) within households and backyard farms in LMICs, as well as assesses transmission mechanisms, risk factors, and environmental transmission pathways. Overall, substantial evidence exists for exchange of antibiotic resistance between domesticated animals and in-contact humans. Whole bacteria transmission and horizontal gene transfer between humans and animals were demonstrated within and between households and backyard farms. Further, we identified water, soil, and animal food products as environmental transmission pathways for exchange of ARB and ARGs between animals and humans, although directionality of transmission is poorly understood. Herein we propose study designs, methods, and topical considerations for priority incorporation into future One Health research to inform effective interventions and policies to disrupt zoonotic antibiotic resistance exchange in low-income communities.202235947446
660550.9915Antimicrobial Resistance in African Great Apes. BACKGROUND/OBJECTIVES: Antibiotic-resistant bacteria pose a significant global public health threat that demands serious attention. The proliferation of antimicrobial resistance (AMR) is primarily attributed to the overuse of antibiotics in humans, livestock, and the agro-industry. However, it is worth noting that antibiotic-resistant genes (ARGs) can be found in all ecosystems, even in environments where antibiotics have never been utilized. African great apes (AGAs) are our closest living relatives and are known to be susceptible to many of the same pathogens (and other microorganisms) as humans. AGAs could therefore serve as sentinels for human-induced AMR spread into the environment. They can potentially also serve as reservoirs for AMR. AGAs inhabit a range of environments from remote areas with little anthropogenic impact, over habitats that are co-used by AGAs and humans, to captive settings with close human-animal contacts like zoos and sanctuaries. This provides opportunities to study AMR in relation to human interaction. This review examines the literature on AMR in AGAs, identifying knowledge gaps. RESULTS: Of the 16 articles reviewed, 13 focused on wild AGAs in habitats with different degrees of human presence, 2 compared wild and captive apes, and 1 study tested captive apes alone. Ten studies included humans working with or living close to AGA habitats. Despite different methodologies, all studies detected AMR in AGAs. Resistance to beta-lactams was the most common (36%), followed by resistance to aminoglycosides (22%), tetracyclines (15%), fluoroquinolones (10%), sulphonamides (5%), trimethoprim (5%), macrolide (3%), phenicoles (2%) and fosfomycin (1%). CONCLUSIONS: While several studies suggest a correlation between increased human contact and higher AMR in AGAs, resistance was also found in relatively pristine habitats. While AGAs clearly encounter bacteria resistant to diverse antibiotics, significant gaps remain in understanding the underlying processes. Comparative studies using standardized methods across different sites would enhance our understanding of the origin and distribution of AMR in AGAs.202439766531
659060.9915Genomic epidemiology of Escherichia coli: antimicrobial resistance through a One Health lens in sympatric humans, livestock and peri-domestic wildlife in Nairobi, Kenya. BACKGROUND: Livestock systems have been proposed as a reservoir for antimicrobial-resistant (AMR) bacteria and AMR genetic determinants that may infect or colonise humans, yet quantitative evidence regarding their epidemiological role remains lacking. Here, we used a combination of genomics, epidemiology and ecology to investigate patterns of AMR gene carriage in Escherichia coli, regarded as a sentinel organism. METHODS: We conducted a structured epidemiological survey of 99 households across Nairobi, Kenya, and whole genome sequenced E. coli isolates from 311 human, 606 livestock and 399 wildlife faecal samples. We used statistical models to investigate the prevalence of AMR carriage and characterise AMR gene diversity and structure of AMR genes in different host populations across the city. We also investigated household-level risk factors for the exchange of AMR genes between sympatric humans and livestock. RESULTS: We detected 56 unique acquired genes along with 13 point mutations present in variable proportions in human and animal isolates, known to confer resistance to nine antibiotic classes. We find that AMR gene community composition is not associated with host species, but AMR genes were frequently co-located, potentially enabling the acquisition and dispersal of multi-drug resistance in a single step. We find that whilst keeping livestock had no influence on human AMR gene carriage, the potential for AMR transmission across human-livestock interfaces is greatest when manure is poorly disposed of and in larger households. CONCLUSIONS: Findings of widespread carriage of AMR bacteria in human and animal populations, including in long-distance wildlife species, in community settings highlight the value of evidence-based surveillance to address antimicrobial resistance on a global scale. Our genomic analysis provided an in-depth understanding of AMR determinants at the interfaces of One Health sectors that will inform AMR prevention and control.202236482440
511770.9915Metagenomic sequencing of mpox virus clade Ib lesions identifies possible bacterial and viral co-infections in hospitalized patients in eastern DRC. Mpox is an emerging zoonotic disease that caused two public health emergencies of international concern within two years. Less is known about the interplay of microbial organisms in mpox lesions which could result in superinfections that exacerbate outcomes or delay recovery. We utilized a unified metagenomic sequencing approach involving slow-speed centrifugation and differential lysis on 19 mpox lesion swabs of hospitalized patients in South Kivu province (eastern DRC) to characterize bacteria, antimicrobial resistance genes, mpox virus (MPXV), and viral co-infections. High-quality MPXV whole-genome sequences were obtained until a Ct value of 27. Furthermore, co-infections with other clinically relevant viruses, such as varicella zoster virus and herpes simplex virus-2, were detected and confirmed by real-time PCR. In addition, metagenomic sequence analysis of the bacterial content showed the presence of bacteria associated with skin and soft tissue infection in 10 of the 19 samples analyzed. These bacteria had a high abundance of resistance genes, with possible implications for antimicrobial treatment based on the predicted antimicrobial resistance. In conclusion, we report the presence of bacterial and viral pathogens in mpox lesions and detection of widespread resistance genes to the standard antibiotic treatment. The possibility of a co-infection, including antimicrobial resistance, should be considered when discussing treatment options, along with the determination of the case-fatality ratio.IMPORTANCEThe mpox virus clade Ib lineage emerged in the eastern Democratic Republic of the Congo owing to continuous human-to-human transmission in a vulnerable patient population. A major challenge of this ongoing outbreak is its occurrence in regions with severely limited healthcare infrastructure. As a result, less is known about co-infections in affected patients. Identifying and characterizing pathogens, including their antimicrobial resistance, is crucial for reducing infection-related complications and improving antimicrobial stewardship. In this study, we applied a unified metagenomics approach to detect and characterize bacterial and viral co-infections in mpox lesions of hospitalized mpox patients in the eastern DRC.202540445195
657680.9915Wastewater-based AMR surveillance associated with tourism on a Caribbean island (Guadeloupe). OBJECTIVES: Antimicrobial resistance (AMR) is a major public health concern worldwide. International travel is a risk factor for acquiring antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs). Therefore, understanding the transmission of ARB and ARGs is instrumental in tackling AMR. This longitudinal study aimed to assess the benefit of wastewater monitoring in Guadeloupe to evaluate the role of tourism in the spread of AMR. METHODS: A wastewater-based surveillance (WBS) study was conducted to monitor AMR in Guadeloupe in 2022 during dry and wet seasons. We characterized the resistome, microbiome and exposome of water samples collected in wastewater treatment facilities of two cities with different levels of tourism activities, in the content of aircraft toilets, and the pumping station receiving effluents from hotels. RESULTS: The results show that the WBS approach facilitates the differentiation of various untreated effluents concerning exposome, microbiome, and resistome, offering insights into AMR dissemination. Additionally, the findings reveal that microbiome and exposome are comparable across sites and seasons, while resistome characterisation at specific locations may be pertinent for health surveillance. The microbiome of aircraft was predominantly composed of anaerobic bacteria from human intestinal microbiota, whereas the other locations exhibited a blend of human and environmental bacteria. Notably, individuals arriving by air have not introduced clinically significant resistance genes. Exposome compounds have been shown to influence the resistome's variance. CONCLUSIONS: Clear differences were seen between the aircraft and the local sampling sites, indicating that the contribution of tourism to the observed resistance in Guadeloupe is not significant.202540154781
181990.9915Antimicrobial-resistant Enterobacteriaceae recovered from companion animal and livestock environments. Antimicrobial-resistant bacteria represent an important concern impacting both veterinary medicine and public health. The rising prevalence of extended-spectrum beta-lactamase (ESBL), AmpC beta-lactamase, carbapenemase (CRE) and fluoroquinolone-resistant Enterobacteriaceae continually decreases the efficiency of clinically important antibiotics. Moreover, the potential for zoonotic transmission of antibiotic-resistant enteric bacteria increases the risk to public health. Our objective was to estimate the prevalence of specific antibiotic-resistant bacteria on human contact surfaces in various animal environments. Environmental surface samples were collected from companion animal shelters, private equine facilities, dairy farms, livestock auction markets and livestock areas of county fairs using electrostatic cloths. Samples were screened for Enterobacteriaceae expressing AmpC, ESBL, CRE or fluoroquinolone resistance using selective media. Livestock auction markets and county fairs had higher levels of bacteria expressing both cephalosporin and fluoroquinolone resistance than did equine, dairy, and companion animal environments. Equine facilities harboured more bacteria expressing cephalosporin resistance than companion animal shelters, but less fluoroquinolone resistance. The regular use of extended-spectrum cephalosporins in livestock populations could account for the increased levels of cephalosporin resistance in livestock environments compared to companion animal and equine facilities. Human surfaces, as well as shared human and animal surfaces, were contaminated with resistant bacteria regardless of species environment. Detecting these bacteria on common human contact surfaces suggests that the environment can serve as a reservoir for the zoonotic transmission of antibiotic-resistant bacteria and resistance genes. Identifying interventions to lower the prevalence of antibiotic-resistant bacteria in animal environments will protect both animal and public health.201829575700
6604100.9915The spread of antimicrobial resistance in the aquatic environment from faecal pollution: a scoping review of a multifaceted issue. Antimicrobial resistance (AMR) is a major global health concern accelerated by the misuse and mismanagement of antibiotics in clinical and veterinary settings, leading to longer treatment times, increased costs and greater mortality rates. The environment can play a major role as a source and disseminator of AMR, with faecal pollution, from both anthropogenic and non-anthropogenic sources making a significant contribution. The review aimed to identify how faecal pollution contributes to AMR in surface water, focusing on current methods of source tracking faecal pollution. The databases used were Medline Ovid® and Scopus. From the search, 744 papers from January 2020 to November 2023 were identified, and after the screening, 33 papers were selected that reported on AMR, aquatic environments and faecal pollution and were published in English. The studies were from six different continents, most were from Europe and Asia indicating faecal pollution is influenced by spatiotemporal differences such as population and sanitation infrastructure. Multiple different methodologies were used with a lack of standardised methods making comparability challenging. All studies identified AMR strains of faecal indicator bacteria showing resistance to a wide variety of antibiotics, particularly beta-lactams and tetracyclines. Few studies investigated mobile gene elements with class 1 integrons being the most frequently studied. Wastewater treatment plants were significant contributors, releasing large amounts of AMR bacteria into the environment. Environmental factors such as seasonal differences, temperature, rainfall and UV exposure, along with local antibiotic usage influenced the local resistome. Animals, both wild and domestic, introduced antimicrobial resistance genes and potential pathogens into the aquatic environment. Overall, faecal pollution is a complicated issue with multiple factors contributing to and facilitating the spread of AMR. Standardisation of methods and surveillance, robust wastewater management and further research into AMR dissemination are needed to address the human health, animal health and environmental concerns.202540131552
4999110.9915Dissemination Routes of Carbapenem and Pan-Aminoglycoside Resistance Mechanisms in Hospital and Urban Wastewater Canalizations of Ghana. Wastewater has a major role in antimicrobial resistance (AMR) dynamics and public health. The impact on AMR of wastewater flux at the community-hospital interface in low- and middle-income countries (LMICs) is poorly understood. Therefore, the present study analyzed the epidemiological scenario of resistance genes, mobile genetic elements (MGEs), and bacterial populations in wastewater around the Tamale metropolitan area (Ghana). Wastewater samples were collected from the drainage and canalizations before and after three hospitals and one urban waste treatment plant (UWTP). From all carbapenem/pan-aminoglycoside-resistant bacteria, 36 isolates were selected to determine bacterial species and phenotypical resistance profiles. Nanopore sequencing was used to screen resistance genes and plasmids, whereas, sequence types, resistome and plasmidome contents, pan-genome structures, and resistance gene variants were analyzed with Illumina sequencing. The combination of these sequencing data allowed for the resolution of the resistance gene-carrying platforms. Hospitals and the UWTP collected genetic and bacterial elements from community wastewater and amplified successful resistance gene-bacterium associations, which reached the community canalizations. Uncommon carbapenemase/β-lactamase gene variants, like bla(DIM-1), and novel variants, including bla(VIM-71), bla(CARB-53), and bla(CMY-172), were identified and seem to spread via clonal expansion of environmental Pseudomonas spp. However, bla(NDM-1), bla(CTX-M-15), and armA genes, among others, were associated with MGEs that allowed for their dissemination between environmental and clinical bacterial hosts. In conclusion, untreated hospital wastewater in Ghana is a hot spot for the emergence and spread of genes and gene-plasmid-bacterium associations that accelerate AMR, including to last-resort antibiotics. Urgent actions must be taken in wastewater management in LMICs in order to delay AMR expansion. IMPORTANCE Antimicrobial resistance (AMR) is one the major threats to public health today, especially resistance to last-resort compounds for the treatment of critical infections, such as carbapenems and aminoglycosides. Innumerable works have focused on the clinical ambit of AMR, but studies addressing the impact of wastewater cycles on the emergence and dissemination of resistant bacteria are still limited. The lack of knowledge is even greater when referring to low- and middle-income countries, where there is an absence of accurate sanitary systems. Furthermore, the combination of short- and long-read sequencing has surpassed former technical limitations, allowing the complete characterization of resistance genes, mobile genetic platforms, plasmids, and bacteria. The present study deciphered the multiple elements and routes involved in AMR dynamics in wastewater canalizations and, therefore, in the local population of Tamale, providing the basis to adopt accurate control measures to preserve and promote public health.202235103490
6589120.9915Differential Overlap in Human and Animal Fecal Microbiomes and Resistomes in Rural versus Urban Bangladesh. Low- and middle-income countries (LMICs) bear the largest mortality burden of antibiotic-resistant infections. Small-scale animal production and free-roaming domestic animals are common in many LMICs, yet data on zoonotic exchange of gut bacteria and antibiotic resistance genes (ARGs) in low-income communities are sparse. Differences between rural and urban communities with regard to population density, antibiotic use, and cohabitation with animals likely influence the frequency of transmission of gut bacterial communities and ARGs between humans and animals. Here, we determined the similarity in gut microbiomes, using 16S rRNA gene amplicon sequencing, and resistomes, using long-read metagenomics, between humans, chickens, and goats in a rural community compared to an urban community in Bangladesh. Gut microbiomes were more similar between humans and chickens in the rural (where cohabitation is more common) than the urban community, but there was no difference for humans and goats in the rural versus the urban community. Human and goat resistomes were more similar in the urban community, and ARG abundance was higher in urban animals than rural animals. We identified substantial overlap of ARG alleles in humans and animals in both settings. Humans and chickens had more overlapping ARG alleles than humans and goats. All fecal hosts from the urban community and rural humans carried ARGs on chromosomal contigs classified as potentially pathogenic bacteria, including Escherichia coli, Campylobacter jejuni, Clostridioides difficile, and Klebsiella pneumoniae. These findings provide insight into the breadth of ARGs circulating within human and animal populations in a rural compared to urban community in Bangladesh. IMPORTANCE While the development of antibiotic resistance in animal gut microbiomes and subsequent transmission to humans has been demonstrated in intensive farming environments and high-income countries, evidence of zoonotic exchange of antibiotic resistance in LMIC communities is lacking. This research provides genomic evidence of overlap of antibiotic resistance genes between humans and animals, especially in urban communities, and highlights chickens as important reservoirs of antibiotic resistance. Chicken and human gut microbiomes were more similar in rural Bangladesh, where cohabitation is more common. Incorporation of long-read metagenomics enabled characterization of bacterial hosts of resistance genes, which has not been possible in previous culture-independent studies using only short-read sequencing. These findings highlight the importance of developing strategies for combatting antibiotic resistance that account for chickens being reservoirs of ARGs in community environments, especially in urban areas.202235862660
6695130.9915'Disperse abroad in the land': the role of wildlife in the dissemination of antimicrobial resistance. Antimicrobial resistance (AMR) has been detected in the microbiota of many wildlife species, including long-distance migrants. Inadequately treated wastes from humans and livestock dosed with antimicrobial drugs are often assumed to be the main sources of AMR to wildlife. While wildlife populations closely associated with human populations are more likely to harbour clinically important AMR related to that found in local humans and livestock, AMR is still common in remote wildlife populations with little direct human influence. Most reports of AMR in wildlife are survey based and/or small scale, so researchers can only speculate on possible sources and sinks of AMR or the impact of wildlife AMR on clinical resistance. This lack of quantitative data on the flow of AMR genes and AMR bacteria across the natural environment could reflect the numerous AMR sources and amplifiers in the populated world. Ecosystems with relatively simple and well-characterized potential inputs of AMR can provide tractable, but realistic, systems for studying AMR in the natural environment. New tools, such as animal tracking technologies and high-throughput sequencing of resistance genes and mobilomes, should be integrated with existing methodologies to understand how wildlife maintains and disperses AMR.201627531155
2525140.9914Review of antimicrobial resistance surveillance programmes in livestock and meat in EU with focus on humans. OBJECTIVES: In this review, we describe surveillance programmes reporting antimicrobial resistance (AMR) and resistance genes in bacterial isolates from livestock and meat and compare them with those relevant for human health. METHODS: Publications on AMR in European countries were assessed. PubMed was reviewed and AMR monitoring programmes were identified from reports retrieved by Internet searches and by contacting national authorities in EU/European Economic Area (EEA) member states. RESULTS: Three types of systems were identified: EU programmes, industry-funded supranational programmes and national surveillance systems. The mandatory EU-financed programme has led to some harmonization in national monitoring and provides relevant information on AMR and extended-spectrum β-lactamase/AmpC- and carbapenemase-producing bacteria. At the national level, AMR surveillance systems in livestock apply heterogeneous sampling, testing and reporting modalities, resulting in results that cannot be compared. Most reports are not publicly available or are written in a local language. The industry-funded monitoring systems undertaken by the Centre Européen d'Etudes pour la Santé Animale (CEESA) examines AMR in bacteria in food-producing animals. CONCLUSIONS: Characterization of AMR genes in livestock is applied heterogeneously among countries. Most antibiotics of human interest are included in animal surveillance, although results are difficult to compare as a result of lack of representativeness of animal samples. We suggest that EU/EEA countries provide better uniform AMR monitoring and reporting in livestock and link them better to surveillance systems in humans. Reducing the delay between data collection and publication is also important to allow prompt identification of new resistance patterns.201828970159
5008150.9914Genetic diversity and risk factors for the transmission of antimicrobial resistance across human, animals and environmental compartments in East Africa: a review. BACKGROUND: The emergence and spread of antimicrobial resistance (AMR) present a challenge to disease control in East Africa. Resistance to beta-lactams, which are by far the most used antibiotics worldwide and include the penicillins, cephalosporins, monobactams and carbapenems, is reducing options for effective control of both Gram-positive and Gram-negative bacteria. The World Health Organization, Food and Agricultural Organization and the World Organization for Animal Health have all advocated surveillance of AMR using an integrated One Health approach. Regional consortia also have strengthened collaboration to address the AMR problem through surveillance, training and research in a holistic and multisectoral approach. This review paper contains collective information on risk factors for transmission, clinical relevance and diversity of resistance genes relating to extended-spectrum beta-lactamase-producing (ESBL) and carbapenemase-producing Enterobacteriaceae, and Methicillin-resistant Staphylococcus aureus (MRSA) across the human, animal and environmental compartments in East Africa. MAIN BODY: The review of the AMR literature (years 2001 to 2019) was performed using search engines such as PubMed, Scopus, Science Direct, Google and Web of Science. The search terms included 'antimicrobial resistance and human-animal-environment', 'antimicrobial resistance, risk factors, genetic diversity, and human-animal-environment' combined with respective countries of East Africa. In general, the risk factors identified were associated with the transmission of AMR. The marked genetic diversity due to multiple sequence types among drug-resistant bacteria and their replicon plasmid types sourced from the animal, human and environment were reported. The main ESBL, MRSA and carbapenem related genes/plasmids were the (bla)CTX-Ms (45.7%), SCCmec type III (27.3%) and IMP types (23.8%), respectively. CONCLUSION: The high diversity of the AMR genes suggests there may be multiple sources of resistance bacteria, or the possible exchange of strains or a flow of genes amongst different strains due to transfer by mobile genetic elements. Therefore, there should be harmonized One Health guidelines for the use of antibiotics, as well as regulations governing their importation and sale. Moreover, the trend of ESBLs, MRSA and carbapenem resistant (CAR) carriage rates is dynamic and are on rise over time period, posing a public health concern in East Africa. Collaborative surveillance of AMR in partnership with regional and external institutions using an integrated One Health approach is required for expert knowledge and technology transfer to facilitate information sharing for informed decision-making.202032762743
6602160.9914Environmental Risk Factors Contributing to the Spread of Antibiotic Resistance in West Africa. Antibiotic resistance is a well-documented global health challenge that disproportionately impacts low- and middle-income countries. In 2019, the number of deaths attributed to and associated with antibiotic resistance in Western Sub-Saharan Africa was approximately 27 and 115 per 100,000, respectively, higher than in other regions worldwide. Extensive research has consistently confirmed the persistent presence and spread of antibiotic resistance in hospitals, among livestock, within food supply chains, and across various environmental contexts. This review documents the environmental risk factors contributing to the spread of antibiotic resistance in West Africa. We collected studies from multiple West African countries using the Web of Science and PubMed databases. We screened them for factors associated with antibiotic-resistant bacteria and resistance genes between 2018 and 2024. Our findings indicate that antibiotic resistance remains a significant concern in West Africa, with environmental pollution and waste management identified as major factors in the proliferation of antibiotic-resistant bacteria and resistance genes between 2018 and 2024. Additional contributing factors include poor hygiene, the use of antibiotics in agriculture, aquaculture, and animal farming, and the transmission of antibiotic resistance within hospital settings. Unfortunately, the lack of comprehensive genetic characterization of antibiotic-resistant bacteria and resistance genes hinders a thorough understanding of this critical issue in the region. Since antibiotic resistance transcends national borders and can spread within and between countries, it is essential to understand the environmental risk factors driving its dissemination in West African countries. Such understanding will be instrumental in developing and recommending effective strategies nationally and internationally to combat antibiotic resistance.202540284787
6694170.9914Interconnected microbiomes and resistomes in low-income human habitats. Antibiotic-resistant infections annually claim hundreds of thousands of lives worldwide. This problem is exacerbated by exchange of resistance genes between pathogens and benign microbes from diverse habitats. Mapping resistance gene dissemination between humans and their environment is a public health priority. Here we characterized the bacterial community structure and resistance exchange networks of hundreds of interconnected human faecal and environmental samples from two low-income Latin American communities. We found that resistomes across habitats are generally structured by bacterial phylogeny along ecological gradients, but identified key resistance genes that cross habitat boundaries and determined their association with mobile genetic elements. We also assessed the effectiveness of widely used excreta management strategies in reducing faecal bacteria and resistance genes in these settings representative of low- and middle-income countries. Our results lay the foundation for quantitative risk assessment and surveillance of resistance gene dissemination across interconnected habitats in settings representing over two-thirds of the world's population.201627172044
5012180.9914Extended-spectrum beta-lactamases-producing gram-negative bacteria in companion animals: action is clearly warranted! Extended-spectrum beta-lactamases (ESBL)-producing Gram-negative bacteria pose a serious threat to Public Health in human medicine as well as increasingly in the veterinary context worldwide. Several studies reported the transmission of zoonotic multidrug resistant bacteria between food-producing animals and humans, whilst the contribution of companion animals to this scenario is rather unknown. Within the last decades a change in the social role of companion animals has taken place, resulting in a very close contact between owners and their pets. As a consequence, humans may obtain antimicrobial resistant bacteria or the corresponding resistance genes not only from food-producing animals but also via close contact to their pets.This may give rise to bacterial infections with limited therapeutic options and an increased risk of treatment failure. As beta-lactams constitute one of the most important groups of antimicrobial agents in veterinary medicine, retaliatory actions in small animal and equine practices are urgently needed. This review addresses the increasing burden of extended-spectrum beta-lactam resistance among Enterobacteriaceae isolated from companion animals. It should emphasize the urgent need for the implementation of antibiotic stewardship as well as surveillance and monitoring programs of multi resistant bacteria in particular in view of new putative infection cycles between humans and their pets.201121462862
6718190.9913Agroecosystem exploration for Antimicrobial Resistance in Ahmedabad, India: A Study Protocol. INTRODUCTION: Antimicrobial resistance (AMR) has emerged as one of the leading threats to public health. AMR possesses a multidimensional challenge that has social, economic, and environmental dimensions that encompass the food production system, influencing human and animal health. The One Health approach highlights the inextricable linkage and interdependence between the health of people, animal, agriculture, and the environment. Antibiotic use in any of these areas can potentially impact the health of others. There is a dearth of evidence on AMR from the natural environment, such as the plant-based agriculture sector. Antibiotics, antibiotic-resistant bacteria (ARB), and related AMR genes (ARGs) are assumed to present in the natural environment and disseminate resistance to fresh produce/vegetables and thus to human health upon consumption. Therefore, this study aims to investigate the role of vegetables in the spread of AMR through an agroecosystem exploration in Ahmedabad, India. PROTOCOL: The present study will be executed in Ahmedabad, located in Gujarat state in the Western part of India, by adopting a mixed-method approach. First, a systematic review will be conducted to document the prevalence of ARB and ARGs on fresh produce in South Asia. Second, agriculture farmland surveys will be used to collect the general farming practices and the data on common vegetables consumed raw by the households in Ahmedabad. Third, vegetable and soil samples will be collected from the selected agriculture farms and analyzed for the presence or absence of ARB and ARGs using standard microbiological and molecular methods. DISCUSSION: The analysis will help to understand the spread of ARB/ARGs through the agroecosystem. This is anticipated to provide an insight into the current state of ARB/ARGs contamination of fresh produce/vegetables and will assist in identifying the relevant strategies for effectively controlling and preventing the spread of AMR.202338644926