SUPPLEMENT - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
471200.9938The chicken gut metagenome and the modulatory effects of plant-derived benzylisoquinoline alkaloids. BACKGROUND: Sub-therapeutic antibiotics are widely used as growth promoters in the poultry industry; however, the resulting antibiotic resistance threatens public health. A plant-derived growth promoter, Macleaya cordata extract (MCE), with effective ingredients of benzylisoquinoline alkaloids, is a potential alternative to antibiotic growth promoters. Altered intestinal microbiota play important roles in growth promotion, but the underlying mechanism remains unknown. RESULTS: We generated 1.64 terabases of metagenomic data from 495 chicken intestinal digesta samples and constructed a comprehensive chicken gut microbial gene catalog (9.04 million genes), which is also the first gene catalog of an animal's gut microbiome that covers all intestinal compartments. Then, we identified the distinctive characteristics and temporal changes in the foregut and hindgut microbiota. Next, we assessed the impact of MCE on chickens and gut microbiota. Chickens fed with MCE had improved growth performance, and major microbial changes were confined to the foregut, with the predominant role of Lactobacillus being enhanced, and the amino acids, vitamins, and secondary bile acids biosynthesis pathways being upregulated, but lacked the accumulation of antibiotic-resistance genes. In comparison, treatment with chlortetracycline similarly enriched some biosynthesis pathways of nutrients in the foregut microbiota, but elicited an increase in antibiotic-producing bacteria and antibiotic-resistance genes. CONCLUSION: The reference gene catalog of the chicken gut microbiome is an important supplement to animal gut metagenomes. Metagenomic analysis provides insights into the growth-promoting mechanism of MCE, and underscored the importance of utilizing safe and effective growth promoters.201830482240
825610.9937Revolutionizing Tomato Cultivation: CRISPR/Cas9 Mediated Biotic Stress Resistance. Tomato (Solanum lycopersicon L.) is one of the most widely consumed and produced vegetable crops worldwide. It offers numerous health benefits due to its rich content of many therapeutic elements such as vitamins, carotenoids, and phenolic compounds. Biotic stressors such as bacteria, viruses, fungi, nematodes, and insects cause severe yield losses as well as decreasing fruit quality. Conventional breeding strategies have succeeded in developing resistant genotypes, but these approaches require significant time and effort. The advent of state-of-the-art genome editing technologies, particularly CRISPR/Cas9, provides a rapid and straightforward method for developing high-quality biotic stress-resistant tomato lines. The advantage of genome editing over other approaches is the ability to make precise, minute adjustments without leaving foreign DNA inside the transformed plant. The tomato genome has been precisely modified via CRISPR/Cas9 to induce resistance genes or knock out susceptibility genes, resulting in lines resistant to common bacterial, fungal, and viral diseases. This review provides the recent advances and application of CRISPR/Cas9 in developing tomato lines with resistance to biotic stress.202439204705
944820.9936Fresh Ideas Bloom in Gut Healthcare to Cross-Fertilize Lake Management. Harmful bacteria may be the most significant threat to human gut and lake ecosystem health, and they are often managed using similar tools, like poisoning with antibiotics or algicides. Out-of-the-box thinking in human microbiome engineering is leading to novel methods, like engineering bacteria to kill pathogens, "persuade" them not to produce toxins, or "mop up" their toxins. The bacterial agent can be given a competitive edge via an exclusive nutrient, and they can be engineered to commit suicide once their work is done. Viruses can kill pathogens with specific DNA sequences or knock out their antibiotic resistance genes using CRISPR technology. Some of these ideas may work for lakes. We critically review novel methods for managing harmful bacteria in the gut from the perspective of managing toxic cyanobacteria in lakes, and discuss practical aspects such as modifying bacteria using genetic engineering or directed evolution, mass culturing and controlling the agents. A key knowledge gap is in the ecology of strains, like toxigenic vs nontoxigenic Microcystis, including allelopathic and Black Queen interactions. Some of the "gut methods" may have future potential for lakes, but there presently is no substitute for established management approaches, including reducing N and P nutrient inputs, and mitigating climate change.201931647664
862830.9936Biofertilizer microorganisms accompanying pathogenic attributes: a potential threat. Application of biofertilizers containing living or dormant plant growth promoting bacterial cells is considered to be an ecofriendly alternative of chemical fertilizers for improved crop production. Biofertilizers opened myriad doors towards sustainable agriculture as they effectively reduce heavy use of chemical fertilizers and pesticides by keeping soils profuse in micro and macronutrients, regulating plant hormones and restraining infections caused by the pests present in soil without inflicting environmental damage. Generally, pathogenicity and biosafety testing of potential plant growth promoting bacteria (PGPB) are not performed, and the bacteria are reported to be beneficial solely on testing plant growth promoting characteristics. Unfortunately, some rhizosphere and endophytic PGPB are reported to be involved in various diseases. Such PGPB can also spread virulence and multidrug resistance genes carried by them through horizontal gene transfer to other bacteria in the environment. Therefore, deployment of such microbial populations in open fields could lead to disastrous side effects on human health and environment. Careless declaration of bacteria as PGPB is more pronounced in research publications. Here, we present a comprehensive report of declared PGPB which are reported to be pathogenic in other studies. This review also suggests the employment of some additional safety assessment protocols before reporting a bacteria as beneficial and product development.202235221573
961740.9935Multiplex CRISPRi System Enables the Study of Stage-Specific Biofilm Genetic Requirements in Enterococcus faecalis. Enterococcus faecalis is an opportunistic pathogen, which can cause multidrug-resistant life-threatening infections. Gaining a complete understanding of enterococcal pathogenesis is a crucial step in identifying a strategy to effectively treat enterococcal infections. However, bacterial pathogenesis is a complex process often involving a combination of genes and multilevel regulation. Compared to established knockout methodologies, CRISPR interference (CRISPRi) approaches enable the rapid and efficient silencing of genes to interrogate gene products and pathways involved in pathogenesis. As opposed to traditional gene inactivation approaches, CRISPRi can also be quickly repurposed for multiplexing or used to study essential genes. Here, we have developed a novel dual-vector nisin-inducible CRISPRi system in E. faecalis that can efficiently silence via both nontemplate and template strand targeting. Since the nisin-controlled gene expression system is functional in various Gram-positive bacteria, the developed CRISPRi tool can be extended to other genera. This system can be applied to study essential genes, genes involved in antimicrobial resistance, and genes involved in biofilm formation and persistence. The system is robust and can be scaled up for high-throughput screens or combinatorial targeting. This tool substantially enhances our ability to study enterococcal biology and pathogenesis, host-bacterium interactions, and interspecies communication.IMPORTANCEEnterococcus faecalis causes multidrug-resistant life-threatening infections and is often coisolated with other pathogenic bacteria from polymicrobial biofilm-associated infections. Genetic tools to dissect complex interactions in mixed microbial communities are largely limited to transposon mutagenesis and traditional time- and labor-intensive allelic-exchange methods. Built upon streptococcal dCas9, we developed an easily modifiable, inducible CRISPRi system for E. faecalis that can efficiently silence single and multiple genes. This system can silence genes involved in biofilm formation and antibiotic resistance and can be used to interrogate gene essentiality. Uniquely, this tool is optimized to study genes important for biofilm initiation, maturation, and maintenance and can be used to perturb preformed biofilms. This system will be valuable to rapidly and efficiently investigate a wide range of aspects of complex enterococcal biology.202033082254
846750.9935The Impacts of Lactiplantibacillus plantarum on the Functional Properties of Fermented Foods: A Review of Current Knowledge. One of the most varied species of lactic acid bacteria is Lactiplantibacillus plantarum (Lb. plantarum), formerly known as Lactobacillus plantarum. It is one of the most common species of bacteria found in foods, probiotics, dairy products, and beverages. Studies related to genomic mapping and gene locations of Lb. plantarum have shown the novel findings of its new strains along with their non-pathogenic or non-antibiotic resistance genes. Safe strains obtained with new technologies are a pioneer in the development of new probiotics and starter cultures for the food industry. However, the safety of Lb. plantarum strains and their bacteriocins should also be confirmed with in vivo studies before being employed as food additives. Many of the Lb. plantarum strains and their bacteriocins are generally safe in terms of antibiotic resistance genes. Thus, they provide a great opportunity for improving the nutritional composition, shelf life, antioxidant activity, flavour properties and antimicrobial activities in the food industry. Moreover, since some Lb. plantarum strains have the ability to reduce undesirable compounds such as aflatoxins, they have potential use in maintaining food safety and preventing food spoilage. This review emphasizes the impacts of Lb. plantarum strains on fermented foods, along with novel approaches to their genomic mapping and safety aspects.202235456875
918960.9935CRISPR-Cas9 System: A Prospective Pathway toward Combatting Antibiotic Resistance. Antibiotic resistance is rising to dangerously high levels throughout the world. To cope with this problem, scientists are working on CRISPR-based research so that antibiotic-resistant bacteria can be killed and attacked almost as quickly as antibiotic-sensitive bacteria. Nuclease activity is found in Cas9, which can be programmed with a specific target sequence. This mechanism will only attack pathogens in the microbiota while preserving commensal bacteria. This article portrays the delivery methods used in the CRISPR-Cas system, which are both viral and non-viral, along with its implications and challenges, such as microbial dysbiosis, off-target effects, and failure to counteract intracellular infections. CRISPR-based systems have a lot of applications, such as correcting mutations, developing diagnostics for infectious diseases, improving crops productions, improving breeding techniques, etc. In the future, CRISPR-based systems will revolutionize the world by curing diseases, improving agriculture, and repairing genetic disorders. Though all the drawbacks of the technology, CRISPR carries great potential; thus, the modification and consideration of some aspects could result in a mind-blowing technique to attain all the applications listed and present a game-changing potential.202337370394
884770.9935Phage-delivered sensitisation with subsequent antibiotic treatment reveals sustained effect against antimicrobial resistant bacteria. Temperate phages integrated with clustered regularly interspaced short palindromic repeat (CRISPR)/Cas systems have been gaining attention as potential strategies for combating bacteria resistant to antimicrobials. To further advance this technology, phage recombination procedure should be improved, and the bactericidal effect should be examined in detail and compared with conventional lytic phage strategy. The possibility of the emergence of mutational resistance, a phenomenon commonly observed with lytic phage therapy, should be illustrated. Methods: Here, we developed a novel one-step cloning method to fulfil the recombination of CRISPR/Cas9 system within the genome of a new isolated lysogenic Escherichia coli phage. Then, we proposed and developed a phage-delivered resistance eradication with subsequent antibiotic treatment (PRESA) strategy. The removal efficiency and antimicrobial effect of the plasmids were analysed. Long-term antimicrobial effect was evaluated by continued OD(600) monitoring for 240 hours to illustrate the potential mutational resistance, compared with the lytic phage strategy. The treatment effect of PRESA was evaluated in vivo by determining bacterial loads in the skin and intestine of infected mice, in contrast with lytic phage therapy. Genome sequencing was performed to identify mutations in bacterial cells treated with phage strategies. Results: Phage-delivered CRISPR targeting efficiently eradicated and blocked the transfer of the antibiotic resistance plasmid. PRESA decreased the bacterial load by over 6- and 5-logs in vitro and in vivo, respectively. Importantly, while lytic phages induced mutational phage resistance at 24 h in vitro and 48 hours in vivo, PRESA demonstrated a constant effect and revealed no resistant mutants. Genes involved in DNA mismatch repair were upregulated in cells undergoing Cas9-based plasmid cleavage, which may reduce the development of mutations. Conclusion: The PRESA strategy for eradicating resistant bacteria showed high bactericidal efficacy and a sustained inhibition effect against resistant bacteria. By restoring the efficacy of low-cost antibiotics, PRESA could be developed as an efficient and economical therapy for infections of antibiotic resistant bacteria.202032483454
923180.9935CRISPR: new horizons in phage resistance and strain identification. Bacteria have been widely used as starter cultures in the food industry, notably for the fermentation of milk into dairy products such as cheese and yogurt. Lactic acid bacteria used in food manufacturing, such as lactobacilli, lactococci, streptococci, Leuconostoc, pediococci, and bifidobacteria, are selectively formulated based on functional characteristics that provide idiosyncratic flavor and texture attributes, as well as their ability to withstand processing and manufacturing conditions. Unfortunately, given frequent viral exposure in industrial environments, starter culture selection and development rely on defense systems that provide resistance against bacteriophage predation, including restriction-modification, abortive infection, and recently discovered CRISPRs (clustered regularly interspaced short palindromic repeats). CRISPRs, together with CRISPR-associated genes (cas), form the CRISPR/Cas immune system, which provides adaptive immunity against phages and invasive genetic elements. The immunization process is based on the incorporation of short DNA sequences from virulent phages into the CRISPR locus. Subsequently, CRISPR transcripts are processed into small interfering RNAs that guide a multifunctional protein complex to recognize and cleave matching foreign DNA. Hypervariable CRISPR loci provide insights into the phage and host population dynamics, and new avenues for enhanced phage resistance and genetic typing and tagging of industrial strains.201222224556
908990.9935An adjunctive therapy administered with an antibiotic prevents enrichment of antibiotic-resistant clones of a colonizing opportunistic pathogen. A key challenge in antibiotic stewardship is figuring out how to use antibiotics therapeutically without promoting the evolution of antibiotic resistance. Here, we demonstrate proof of concept for an adjunctive therapy that allows intravenous antibiotic treatment without driving the evolution and onward transmission of resistance. We repurposed the FDA-approved bile acid sequestrant cholestyramine, which we show binds the antibiotic daptomycin, as an 'anti-antibiotic' to disable systemically-administered daptomycin reaching the gut. We hypothesized that adjunctive cholestyramine could enable therapeutic daptomycin treatment in the bloodstream, while preventing transmissible resistance emergence in opportunistic pathogens colonizing the gastrointestinal tract. We tested this idea in a mouse model of Enterococcus faecium gastrointestinal tract colonization. In mice treated with daptomycin, adjunctive cholestyramine therapy reduced the fecal shedding of daptomycin-resistant E. faecium by up to 80-fold. These results provide proof of concept for an approach that could reduce the spread of antibiotic resistance for important hospital pathogens.202033258450
8403100.9934Uncovering virulence factors in Cronobacter sakazakii: insights from genetic screening and proteomic profiling. The increasing problem of antibiotic resistance has driven the search for virulence factors in pathogenic bacteria, which can serve as targets for the development of new antibiotics. Although whole-genome Tn5 transposon mutagenesis combined with phenotypic assays has been a widely used approach, its efficiency remains low due to labor-intensive processes. In this study, we aimed to identify specific genes and proteins associated with the virulence of Cronobacter sakazakii, a pathogenic bacterium known for causing severe infections, particularly in infants and immunocompromised individuals. By employing a combination of genetic screening, comparative proteomics, and in vivo validation using zebrafish and rat models, we rapidly screened highly virulent strains and identified two genes, rcsA and treR, as potential regulators of C. sakazakii toxicity toward zebrafish and rats. Proteomic profiling revealed upregulated proteins upon knockout of rcsA and treR, including FabH, GshA, GppA, GcvH, IhfB, RfaC, MsyB, and three unknown proteins. Knockout of their genes significantly weakened bacterial virulence, confirming their role as potential virulence factors. Our findings contribute to understanding the pathogenicity of C. sakazakii and provide insights into the development of targeted interventions and therapies against this bacterium.IMPORTANCEThe emergence of antibiotic resistance in pathogenic bacteria has become a critical global health concern, necessitating the identification of virulence factors as potential targets for the development of new antibiotics. This study addresses the limitations of conventional approaches by employing a combination of genetic screening, comparative proteomics, and in vivo validation to rapidly identify specific genes and proteins associated with the virulence of Cronobacter sakazakii, a highly pathogenic bacterium responsible for severe infections in vulnerable populations. The identification of two genes, rcsA and treR, as potential regulators of C. sakazakii toxicity toward zebrafish and rats and the proteomic profiling upon knockout of rcsA and treR provides novel insights into the mechanisms underlying bacterial virulence. The findings contribute to our understanding of C. sakazakii's pathogenicity, shed light on the regulatory pathways involved in bacterial virulence, and offer potential targets for the development of novel interventions against this highly virulent bacterium.202337750707
9182110.9934Harnessing CRISPR/Cas9 in engineering biotic stress immunity in crops. There is significant potential for CRISPR/Cas9 to be used in developing crops that can adapt to biotic stresses such as fungal, bacterial, viral, and pest infections and weeds. The increasing global population and climate change present significant threats to food security by putting stress on plants, making them more vulnerable to diseases and productivity losses caused by pathogens, pests, and weeds. Traditional breeding methods are inadequate for the rapid development of new plant traits needed to counteract this decline in productivity. However, modern advances in genome-editing technologies, particularly CRISPR/Cas9, have transformed crop protection through precise and targeted modifications of plant genomes. This enables the creation of resilient crops with improved resistance to pathogens, pests, and weeds. This review examines various methods by which CRISPR/Cas9 can be utilized for crop protection. These methods include knocking out susceptibility genes, introducing resistance genes, and modulating defense genes. Potential applications of CRISPR/Cas9 in crop protection involve introducing genes that confer resistance to pathogens, disrupting insect genes responsible for survival and reproduction, and engineering crops that are resistant to herbicides. In conclusion, CRISPR/Cas9 holds great promise for advancing crop protection and ensuring food security in the face of environmental challenges and increasing population pressures. The most recent advancements in CRISPR technology for creating resistance to bacteria, fungi, viruses, and pests are covered here. We wrap up by outlining the most pressing issues and technological shortcomings, as well as unanswered questions for further study.202540663257
8184120.9934Development of CRISPR-Cas13a-based antimicrobials capable of sequence-specific killing of target bacteria. The emergence of antimicrobial-resistant bacteria is an increasingly serious threat to global health, necessitating the development of innovative antimicrobials. Here we report the development of a series of CRISPR-Cas13a-based antibacterial nucleocapsids, termed CapsidCas13a(s), capable of sequence-specific killing of carbapenem-resistant Escherichia coli and methicillin-resistant Staphylococcus aureus by recognizing corresponding antimicrobial resistance genes. CapsidCas13a constructs are generated by packaging programmed CRISPR-Cas13a into a bacteriophage capsid to target antimicrobial resistance genes. Contrary to Cas9-based antimicrobials that lack bacterial killing capacity when the target genes are located on a plasmid, the CapsidCas13a(s) exhibit strong bacterial killing activities upon recognizing target genes regardless of their location. Moreover, we also demonstrate that the CapsidCas13a(s) can be applied to detect bacterial genes through gene-specific depletion of bacteria without employing nucleic acid manipulation and optical visualization devices. Our data underscore the potential of CapsidCas13a(s) as both therapeutic agents against antimicrobial-resistant bacteria and nonchemical agents for detection of bacterial genes.202032523110
7672130.9934Multiple micronutrient deficiencies in early life cause multi-kingdom alterations in the gut microbiome and intrinsic antibiotic resistance genes in mice. Globally, ~340 million children suffer from multiple micronutrient deficiencies, accompanied by high pathogenic burden and death due to multidrug-resistant bacteria. The microbiome is a reservoir of antimicrobial resistance (AMR), but the implications of undernutrition on the resistome is unclear. Here we used a postnatal mouse model that is deficient in multiple micronutrients (that is, zinc, folate, iron, vitamin A and vitamin B12 deficient) and shotgun metagenomic sequencing of faecal samples to characterize gut microbiome structure and functional potential, and the resistome. Enterobacteriaceae were enriched in micronutrient-deficient mice compared with mice fed an isocaloric experimental control diet. The mycobiome and virome were also altered with multiple micronutrient deficiencies including increased fungal pathogens such as Candida dubliniensis and bacteriophages. Despite being antibiotic naïve, micronutrient deficiency was associated with increased enrichment of genes and gene networks encoded by pathogenic bacteria that are directly or indirectly associated with intrinsic antibiotic resistance. Bacterial oxidative stress was associated with intrinsic antibiotic resistance in these mice. This analysis reveals multi-kingdom alterations in the gut microbiome as a result of co-occurring multiple micronutrient deficiencies and the implications for antibiotic resistance.202337973864
9228140.9934In Situ Cas12a-Based Allele-Specific PCR for Imaging Single-Nucleotide Variations in Foodborne Pathogenic Bacteria. In situ profiling of single-nucleotide variations (SNVs) can elucidate drug-resistant genotypes with single-cell resolution. The capacity to directly "see" genetic information is crucial for investigating the relationship between mutated genes and phenotypes. Fluorescence in situ hybridization serves as a canonical tool for genetic imaging; however, it cannot detect subtle sequence alteration including SNVs. Herein, we develop an in situ Cas12a-based amplification refractory mutation system-PCR (ARMS-PCR) method that allows the visualization of SNVs related to quinolone resistance inside cells. The capacity of discriminating SNVs is enhanced by incorporating optimized mismatched bases in the allele-specific primers, thus allowing to specifically amplify quinolone-resistant related genes. After in situ ARMS-PCR, we employed a modified Cas12a/CRISPR RNA to tag the amplicon, thereby enabling specific binding of fluorophore-labeled DNA probes. The method allows to precisely quantify quinolone-resistant Salmonella enterica in the bacterial mixture. Utilizing this method, we investigated the survival competition capacity of quinolone-resistant and quinolone-sensitive bacteria toward antimicrobial peptides and indicated the enrichment of quinolone-resistant bacteria under colistin sulfate stress. The in situ Cas12a-based ARMS-PCR method holds the potential for profiling cellular phenotypes and gene regulation with single-nucleotide resolution at the single-cell level.202438277772
8793150.9934Enhanced Phytopathogen Biofilm Control in the Soybean Phyllosphere by the Phoresy of Bacteriophages Hitchhiking on Biocontrol Bacteria. Phage-based biocontrol has shown notable advantages in protecting plants against pathogenic bacteria in agricultural settings compared to chemical-based bactericides. However, the efficiency and scope of phage biocontrol of pathogenic bacteria are limited by the intrinsic properties of phages. Here, we investigated pathogen biofilm eradication in the phyllosphere using the phoresy system of hitchhiking phages onto carrier biocontrol bacteria. The phoresy system efficiently removed the pathogen biofilm in the soybean phyllosphere, reducing the total biomass by 58% and phytopathogens by 82% compared to the untreated control. Biofilm eradication tests demonstrated a significant combined beneficial effect (Bliss independence model, CI < 1) as phages improved carrier bacteria colonization by 1.2-fold and carrier bacteria facilitated phage infection by 1.4-fold. Transcriptomic analysis showed that phoresy significantly enhanced motility (e.g., fliC and pilD genes) and energy metabolism (e.g., pgm and pgk genes) of carrier bacteria and suppressed the defense system (e.g., MSH3 and FLS2 genes) and energy metabolism (e.g., petB and petC genes) of pathogens. Metabolomics analysis revealed that the phoresy system stimulated the secretion of beneficial metabolites (e.g., flavonoid and tropane alkaloid) that could enhance stress response and phyllosphere protection in soybeans. Overall, the phoresy of phages hitchhiking on biocontrol bacteria offers a novel and effective strategy for phyllosphere microbiome manipulation and bacterial disease control.202540315344
9807160.9934Multi-label classification for multi-drug resistance prediction of Escherichia coli. Antimicrobial resistance (AMR) is a global health and development threat. In particular, multi-drug resistance (MDR) is increasingly common in pathogenic bacteria. It has become a serious problem to public health, as MDR can lead to the failure of treatment of patients. MDR is typically the result of mutations and the accumulation of multiple resistance genes within a single cell. Machine learning methods have a wide range of applications for AMR prediction. However, these approaches typically focus on single drug resistance prediction and do not incorporate information on accumulating antimicrobial resistance traits over time. Thus, identifying multi-drug resistance simultaneously and rapidly remains an open challenge. In our study, we could demonstrate that multi-label classification (MLC) methods can be used to model multi-drug resistance in pathogens. Importantly, we found the ensemble of classifier chains (ECC) model achieves accurate MDR prediction and outperforms other MLC methods. Thus, our study extends the available tools for MDR prediction and paves the way for improving diagnostics of infections in patients. Furthermore, the MLC methods we introduced here would contribute to reducing the threat of antimicrobial resistance and related deaths in the future by improving the speed and accuracy of the identification of pathogens and resistance.202235317240
9147170.9934A Critical Review on the Potential of Inactivated Bacteria in Counteracting Human Pathogens. Bacterial infections are a major global public health challenge, especially with increasing antibiotic resistance. Postbiotics, bioactive compounds produced by probiotics, have been proposed as a novel strategy to inhibit the growth of pathogenic bacteria and address antibiotic resistance. Similar to probiotics and certain food ingredients, postbiotics can also modulate beneficial microbial communities and ultimately contribute to host health. Postbiotics derived from probiotics may affect the physical and chemical conditions of the intestinal environment, and by enhancing the host's immune system, directly interfere with the metabolic pathways and signaling of pathogenic bacteria. Postbiotics inhibit biofilm formation, reduce the expression of antibiotic resistance genes, and enhance the efficacy of antibiotic therapies. They are effective against resistant bacteria such as Escherichia coli and Clostridium difficile and reduce the risk of dental infections caused by Streptococcus mutans. Some postbiotics, such as lactic acid and antimicrobial peptides derived from Lactobacillus and Bifidobacterium genus, help the immune system dealing resistant bacteria such as Pseudomonas aeruginosa, Staphylococcus aureus, and Helicobacter pylori. The review investigates the mechanisms of action and applications of postbiotics in the control of pathogenic bacteria and their role as a complement to existing treatments.202540394322
9616180.9934Precision targeting of food biofilm-forming genes by microbial scissors: CRISPR-Cas as an effective modulator. The abrupt emergence of antimicrobial resistant (AMR) bacterial strains has been recognized as one of the biggest public health threats affecting the human race and food processing industries. One of the causes for the emergence of AMR is the ability of the microorganisms to form biofilm as a defense strategy that restricts the penetration of antimicrobial agents into bacterial cells. About 80% of human diseases are caused by biofilm-associated sessile microbes. Bacterial biofilm formation involves a cascade of genes that are regulated via the mechanism of quorum sensing (QS) and signaling pathways that control the production of the extracellular polymeric matrix (EPS), responsible for the three-dimensional architecture of the biofilm. Another defense strategy utilized commonly by various bacteria includes clustered regularly interspaced short palindromic repeats interference (CRISPRi) system that prevents the bacterial cell from viral invasion. Since multigenic signaling pathways and controlling systems are involved in each and every step of biofilm formation, the CRISPRi system can be adopted as an effective strategy to target the genomic system involved in biofilm formation. Overall, this technology enables site-specific integration of genes into the host enabling the development of paratransgenic control strategies to interfere with pathogenic bacterial strains. CRISPR-RNA-guided Cas9 endonuclease, being a promising genome editing tool, can be effectively programmed to re-sensitize the bacteria by targeting AMR-encoding plasmid genes involved in biofilm formation and virulence to revert bacterial resistance to antibiotics. CRISPRi-facilitated silencing of genes encoding regulatory proteins associated with biofilm production is considered by researchers as a dependable approach for editing gene networks in various biofilm-forming bacteria either by inactivating biofilm-forming genes or by integrating genes corresponding to antibiotic resistance or fluorescent markers into the host genome for better analysis of its functions both in vitro and in vivo or by editing genes to stop the secretion of toxins as harmful metabolites in food industries, thereby upgrading the human health status.202236016778
8258190.9934Elevating crop disease resistance with cloned genes. Essentially all plant species exhibit heritable genetic variation for resistance to a variety of plant diseases caused by fungi, bacteria, oomycetes or viruses. Disease losses in crop monocultures are already significant, and would be greater but for applications of disease-controlling agrichemicals. For sustainable intensification of crop production, we argue that disease control should as far as possible be achieved using genetics rather than using costly recurrent chemical sprays. The latter imply CO₂ emissions from diesel fuel and potential soil compaction from tractor journeys. Great progress has been made in the past 25 years in our understanding of the molecular basis of plant disease resistance mechanisms, and of how pathogens circumvent them. These insights can inform more sophisticated approaches to elevating disease resistance in crops that help us tip the evolutionary balance in favour of the crop and away from the pathogen. We illustrate this theme with an account of a genetically modified (GM) blight-resistant potato trial in Norwich, using the Rpi-vnt1.1 gene isolated from a wild relative of potato, Solanum venturii, and introduced by GM methods into the potato variety Desiree.201424535396