SUCCESSIVELY - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
54000.9869Effect of ogt expression on mutation induction by methyl-, ethyl- and propylmethanesulphonate in Escherichia coli K12 strains. We have previously reported the isolation of an Escherichia coli K12 mutant that is extremely sensitive to mutagenesis by low doses of ethylating agents. We now show by Southern analysis that the mutation involves a gross deletion covering at least the ogt and fnr genes and that no O6-alkylguanine-DNA-alkyltransferase activity is present in cell-free extracts of an ada::Tn10 derivative of these bacteria. Confirmation that sensitisation to ethylation-induced mutagenesis was attributable to ogt and not to any other loci covered by the deletion was obtained by constructing derivatives. Thus an ogt::kanr disruption mutation was introduced into the parental ogt+ bacteria, and the ogt::kanr mutation was then eliminated by cotransduction of ogt+ with the closely linked Tetr marker (zcj::Tn10). The delta(ogt-fnr) deletion or ogt::kanr disruption mutants were highly sensitive to ethyl methanesulphonate-induced mutagenesis, as measured by the induction of forward mutations to L-arabinose resistance (Arar). Furthermore, the number of Arar mutants increased linearly with dose, unlike the case in ogt+ bacteria, which had a threshold dose below which no mutants accumulated. Differences in mutability were even greater with propyl methanesulphonate. Overproduction of the ogt alkyltransferase from a multicopy plasmid reduced ethylmethanesulphonate-induced mutagenesis in the ogt- mutant strains and also methylmethanesulphonate mutagenesis in ada- bacteria. A sample of AB1157 obtained from the E. coli K12 genetic stock centre also had a deletion covering the ogt and fnr genes. Since such deletions greatly influence the mutagenic responses to alkylating agents, a survey of the presence of the ogt gene in the E. coli K12 strain being used is advisable.19948152424
522210.9867Resistance to macrolides by ribosomal mutation in clinical isolates of Turicella otitidis. The genetic basis of erythromycin resistance in Turicella otitidis, a coryneform bacteria associated with otitis, was studied in five macrolide-resistant clinical isolates. Macrolide resistance genes were searched for by polymerase chain reaction (PCR). Genes for domain V of 23S rRNA (rrl) as well as rplD (L4 protein) and rplV (L22 protein) genes were characterised, amplified by PCR from total genomic DNA and sequenced. In the resistant isolates, cross-resistance to macrolides and clindamycin was associated with mutations at positions 2058 and/or 2059 (Escherichia coli numbering). Three isolates displayed A2058 mutations, one isolate had an A2059G mutation whereas another one contained mutations at positions 2058 and 2059. Southern blot experiments revealed that T. otitidis had three copies of the rrl gene. In conclusion, resistance to macrolides in T. otitidis is due, at least in part, to mutations in the rrl gene.200919414240
506620.9866Genetic Alterations Associated with Colistin Resistance Development in Escherichia coli. Background: The increased incidence of infections due to multidrug-resistant Gram-negative bacteria has led to the renewed interest in the use of 'forgotten' antibiotics such as colistin. In this work, we studied the chromosomal colistin resistance mechanisms among laboratory-induced colistin-resistant Escherichia coli isolates. Methods: Three colistin-susceptible (ColS) clinical isolates of E. coli assigning to ST131, ST405, and ST361 were exposed to successively increasing concentrations of colistin. The nucleotide sequences of pmrA, pmrB, pmrD, phoP, phoQ, and mgrB genes were determined. The fitness burden associated with colistin resistance acquisition was determined by measuring the in vitro growth rate. Results: Colistin resistance induction resulted in 16-64 times increase in colistin MICs in mutants (n = 8) compared with parental isolates. Analysis of chromosomal genes in colistin-resistant mutants compared with those of ColS ancestors revealed genetic alterations confined to PmrAB two-component system and included PmrA G53R/R81S/L105P and PmrB E121K/E121A/A159P/A159V/G302E changes. The PmrB E121 was found as a critical position for colistin resistance development being altered in three mutants with different ancestors. The acquired colistin-resistance phenotype was stable following 10 consecutive passages in the absence of selective pressure of colistin and it did not alter the susceptibility of mutants to other antimicrobial agents. All mutants exhibited growth rates similar to their respective ColS ancestors, except for one isolate, which revealed a significant growth defect. Conclusion: Our results revealed that colistin resistance in E. coli was more related to PmrAB alterations, which did not impose a fitness cost in most cases.202438905152
522330.9862Cloned ermTR Gene Confers Low Level Erythromycin but High Level Clindamycin Resistance in Streptococcus pyogenes NZ131. Objectives: The most common macrolide resistance mechanisms in streptococci are the presence of methylase encoding genes ermB and ermTR or the presence of efflux encoded by mef genes. In the present study we aimed to show the effects of the ermTR gene under isogenic conditions on the activities of macrolides and lincosamides in streptococci. Materials and Methods: Total DNA was extracted from Streptococcus pyogenes C1, and the ermTR gene was amplified with or without the regulatory region using modified primer with insertion of restriction sites to clone in to pUC18. Transformants were selected after electroporation of Escherichia coli DB10. The recombinant plasmids were purified and merged to pJIM2246 to transform Gram positive bacteria. Recombinant pJIM2246 plasmids with the ermTR gene were then introduced into S. pyogenes NZ131 by electroporation. Results: After transformation with ermTR without regulatory region the minimal inhibitory concentration (MIC) for erythromycin and clindamycin increased from ≤0.06 to ≤0.06 to 8 and >128 mg/L, respectively. Induction with erythromycin affected the MICs for clindamycin of S. pyogenes transformed with ermTR with the regulatory region. Double disk testing showed that induction with erythromycin and azithromycin for the S. pyogenes transformed with ermTR, and regulatory regions decreased the clindamycin inhibition zone but not telithromycin. The ermTR gene in isogenic conditions confers low level resistance to erythromycin and high level resistance to clindamycin. Conclusion: The different induction and resistance profiles of ermTR compared to other erm genes suggest that the methylation of ErmTR may be different than well studied methylases.202031971866
522940.9858Paradoxical High-Level Spiramycin Resistance and Erythromycin Susceptibility due to 23S rRNA Mutation in Streptococcus constellatus. Objectives: The aim of the study was to characterize phenotypically and genotypically an uncommon mechanism of resistance to macrolides, lincosamides, and streptogramins (MLS) in a Streptococcus milleri group clinical isolate. Materials and Methods: The isolate UCN96 was recovered from an osteoradionecrosis wound, and was identified using the matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry and the partial sequencing of the sodA gene. Antimicrobial susceptibility testing were carried out by the disk diffusion method and minimal inhibitory concentrations (MICs) were determined by the broth microdilution technique. PCR screening was performed for MLS resistance genes described in Gram-positive bacteria. Specific mutations in the ribosomal proteins L3-, L4-, and L22-encoding genes were also screened and those in domain V of the 23S rRNA gene (rrl). The number of mutated copies of the rrl gene was determined using amplification-refractory mutation system quantitative-polymerase chain reaction (qPCR) analysis. Results: The clinical isolate UCN96 was unambiguously identified as Streptococcus constellatus. It was susceptible to all macrolides and lincosamides (ML) antibiotics except spiramycin (MIC >256 mg/L) while it was also resistant to streptogramins. Screening for all acquired resistance genes was negative and no mutation was found in genes coding for L3, L4, and L22 ribosomal proteins. Of interest, a single mutation, A2062C (according to Escherichia coli numbering), was detected in the domain V of 23S rRNA. Conclusion: Mutations at the position 2062 of 23S rRNA have been detected once in Streptococcus pneumoniae, and not yet in other Streptococcus spp. This mechanism is very likely uncommon in Gram-positive bacteria because different copies of 23S rRNA operons should be mutated for development of such a resistance pattern.202032031922
124650.9858Ciprofloxacin-resistant Gram-negative isolates from a tertiary care hospital in Eastern India with novel gyrA and parC gene mutations. BACKGROUND: Expanded-spectrum quinolones (ciprofloxacin) are highly effective against gram-negative bacteria, but significant resistance to quinolones has been increasingly reported. We sought to evaluate the prevalence of gram-negative ciprofloxacin-resistant isolates (CRIs) from our hospital and their mechanism of action. METHODS: Gram-negative CRIs were identified as per standard procedures and confirmed using the Ezy MICTM Strip (HiMedia). DNA from 67 CRIs was amplified for the quinolone resistance-determining region (QRDR) and plasmid-mediated quinolone resistance genes. Thirty isolates positive for QRDR DNA were sequenced by Sanger's method to detect mutation. RESULTS: Of the isolates, 42.5% were found to be CRIs, the majority (74.42%) from inpatient departments, and E scherichia coli (64.19%) was the predominant isolate. Among the CRIs, 24.55% were ESBL producers and 35.29% were multidrug resistant. The polymerase chain reaction results showed the majority were amplified by QRDR target regions of gyrA (35.4%) while 4.61% were amplified for the plasmid-mediated fluoroquinolone resistance region of the qnrB gene. Further sequencing of QRDR-positive genes showed point mutations with amino acid changes at codons Ser83 and Asp87 in the gyrA gene and Ser80, Glu84, and Leu88 positions in the parC gene. CONCLUSION: Ciprofloxacin resistance observed in our study was mostly due to point mutations. Hence, strategies for rational use of ciprofloxacin and adherence to the dose and duration of treatment could be helpful to prevent selection and spread of mutant CRIs/strains.202235035040
298360.9857Plasmid copy number and qnr gene expression in selection of fluoroquinolone-resistant Escherichia coli. Fluoroquinolone resistance in Enterobacteriales is developed by chromosomal and plasmid-mediated mechanisms. Plasmids play an important role in dissemination of resistant genes and they carry genes that protect bacteria in different stress-induced situations. In this study, we studied Escherichia coli strains, each carried one plasmid-mediated quinolone resistance determinant namely, qnrA1, qnrB1, qnrC1, and qnrD1. We exposed 0.5 McFarland density of each strain to 0.5 mg/L ciprofloxacin from the period of 30, 60, 90, and 120 min over 24 h. All treated strains were further exposed to a constantly increasing 1, 2, 4, and 8 mg/L ciprofloxacin solution through 24, 48, and 120 h. In given timepoints, RNA was extracted from all treated strains. Expression of qnrA1, qnrB1, qnrC1, and qnrD1 was investigated by quantitative PCR. Mutations in gyrA and parC genes were analyzed by PCR and nucleic acid sequencing. In this study, during 0.5 mg/L ciprofloxacin exposition, the following expression levels were detected: 1.2 for qnrA1, 1.47 for qnrD1, 12.44 for qnrC1, and 80.63 for qnrB1. In case of long-term study, we selected a resistant strain in qnrB1-positive E. coli, and its expression increased from 105.91 to 212.31. On the contrary, plasmid copy number increased in time from 1 to 4.13. No mutations in gyrA or in parC chromosomal genes of treated strains were detected. Our results show that qnrB1-positive E. coli strain was able to develop fluoroquinolone resistance by upregulated qnrB1 expression that was linked to a minor increase in plasmid copy number but no mutations occurred in gyrA or parC.201930465448
244670.9856Low selection of topoisomerase mutants from strains of Escherichia coli harbouring plasmid-borne qnr genes. OBJECTIVES: To investigate mutations in the type II topoisomerase genes in quinolone-resistant mutants selected from bacteria harbouring plasmid-borne qnr genes. METHODS: Mutants were selected by nalidixic acid, ciprofloxacin and moxifloxacin from two Escherichia coli reference strains and corresponding transconjugants harbouring qnrA1, qnrA3, qnrB2 or qnrS1 genes. RESULTS: The proportion of resistant mutants selected by the three quinolones was, respectively, in the same range for qnr-positive transconjugants and reference strains. Only 20% (65/329) of the mutants selected from the transconjugants showed a gyrase mutation, whereas 79% (94/119) of those from the reference strains without a qnr gene did (P < 0.0001). At four times the MIC of the selector quinolone, gyrA mutants represented 49% and 95% of the mutants selected with nalidixic acid, 4% and 94% with ciprofloxacin and 0% and 54% with moxifloxacin for qnr-positive transconjugants and reference strains, respectively. Mutations within gyrA were distributed at codon 87 (D87G, H, N or Y) and at codon 83 (S83L) with three novel mutations (gyrA Ser83stop, gyrA Asp82Asn and gyrB insertion of Glu at 465) and three rare mutations (gyrA Gly81Asp, gyrA Asp82Gly and gyrA Ser431Pro), mainly obtained from reference strains after moxifloxacin selection. Strikingly, none of the mutants selected by moxifloxacin from qnr-positive transconjugants harboured a mutation in the topoisomerase genes. CONCLUSIONS: Topoisomerase mutants are rarely selected by ciprofloxacin and moxifloxacin from strains harbouring qnr. This suggests that the quinolone resistance-determining region domains are protected from quinolones by the Qnr protein and consequently other mechanisms are developed to acquire a further step of fluoroquinolone resistance.200818325893
537580.9856Mechanism of Eravacycline Resistance in Clinical Enterococcus faecalis Isolates From China. Opportunistic infections caused by multidrug-resistant Enterococcus faecalis strains are a significant clinical challenge. Eravacycline (Erava) is a synthetic fluorocycline structurally similar to tigecycline (Tige) that exhibits robust antimicrobial activity against Gram-positive bacteria. This study investigated the in vitro antimicrobial activity and heteroresistance risk of Eravacycline (Erava) in clinical E. faecalis isolates from China along with the mechanism of Erava resistance. A total of 276 non-duplicate E. faecalis isolates were retrospectively collected from a tertiary care hospital in China. Heteroresistance to Erava and the influence of tetracycline (Tet) resistance genes on Erava susceptibility were examined. To clarify the molecular basis for Erava resistance, E. faecalis variants exhibiting Erava-induced resistance were selected under Erava pressure. The relative transcript levels of six candidate genes linked to Erava susceptibility were determined by quantitative reverse-transcription PCR, and their role in Erava resistance and heteroresistance was evaluated by in vitro overexpression experiments. We found that Erava minimum inhibitory concentrations (MICs) against clinical E. faecalis isolates ranged from ≤0.015 to 0.25 mg/l even in strains harboring Tet resistance genes. The detection frequency of Erava heteroresistance in isolates with MICs ≤ 0.06, 0.125, and 0.25 mg/l were 0.43% (1/231), 7.5% (3/40), and 0 (0/5), respectively. No mutations were detected in the 30S ribosomal subunit gene in Erava heteroresistance-derived clones, although mutations in this subunit conferred cross resistance to Tige in Erava-induced resistant E. faecalis. Overexpressing RS00630 (encoding a bone morphogenetic protein family ATP-binding cassette transporter substrate-binding protein) in E. faecalis increased the frequency of Erava and Tige heteroresistance, whereas RS12140, RS06145, and RS06880 overexpression conferred heteroresistance to Tige only. These results indicate that Erava has potent in vitro antimicrobial activity against clinical E. faecalis isolates from China and that Erava heteroresistance can be induced by RS00630 overexpression.202032523563
244790.9855Mutational analysis of quinolone resistance in the plasmid-encoded pentapeptide repeat proteins QnrA, QnrB and QnrS. OBJECTIVES: Pentapeptide repeat proteins (PRPs) QnrA, QnrB and QnrS confer reduced susceptibility to quinolones. This study presents an in vitro analysis of the genetic evolution of quinolone resistance mediated by changes in the coding sequences and promoter regions of qnrA1, qnrS1 and qnrB1 genes. METHODS: A random mutagenesis technique was used to predict the evolutionary potential of these PRPs against nalidixic acid and fluoroquinolones. After comparing the amino acid sequences of these and other PRPs protecting bacteria from quinolone activity, several conserved positions were found. The role of these residues in their effect against quinolones was evaluated by site-directed mutagenesis. RESULTS: Three different phenotypes (similar resistance, higher resistance or lower resistance to quinolones) were obtained in the random mutagenesis assays when compared with wild-type phenotypes. Only one mutant increased quinolone resistance: QnrS1 containing D185Y substitution (4-fold for ciprofloxacin). Using site-directed mutagenesis, residues G56, C72, C92, G96, F114, C115, S116, A117 and L159, according to the sequence of QnrA1, were analysed and despite the wide amino acid variability of the PRPs, most conserved residues analysed were critical to QnrA1, QnrB1 and QnrS1. CONCLUSIONS: Amino acid sequences of PRPs QnrA1, QnrB1 and QnrS1 could be already optimized for quinolone resistance. One or several changes appear to be insufficient to obtain variants producing fluoroquinolone clinical resistance (MIC > 1 mg/L). Critical residues for quinolone resistance in PRPs were described. Interestingly, different effects were observed for QnrA1, QnrB1 and QnrS1 with the same substitution in several positions.200919357158
1492100.9855Characterization of the tet(M)-bearing transposon Tn7125 of Escherichia coli strain A13 isolated from an intensive pig farm located in Henan province, China. BACKGROUND: Transposons carrying tet(M) in Gram-positive bacteria have been reported extensively, while there is a paucity of data on the transmission characteristics of tet(M) in Gram-negative bacteria. Therefore, the aim of this study was to investigate the genetic characteristics of the tet(M)-bearing transposon Tn7125, and to clarify the transmission mechanism of the plasmids pTA13-1 and pTA13-3 in Escherichia coli strain A13. METHODS: Plasmids from strain A13 and a corresponding transconjugant were determined by whole genome sequencing and analyzed using bioinformatics tools. The plasmids pTA13-1 and pTA13-3 of the transconjugant TA13 were characterized by S1-pulse-field gel electrophoresis, Southern hybridization, stability experiments, and direct competition assays. RESULTS: The conjugated IncF2:A6:B20 plasmid pTA13-1 co-transferred with the 41-kb plasmid pTA13-3, which carried no resistance genes; plasmid pTA13-2, which harbored the replication initiator PO111; and the IncX4 plasmid pTA13-4, which harbored the antibiotic resistance gene mcr-1. The novel IS26-bracked composite transposon Tn7125 was located on plasmid pTA13-1, which mainly consists of three resistance modules: IS26-ctp-lp-tet(M)-hp-IS406tnp, qac-aadA1-cmlA1-aadA2-DUF1010-dfrA12, and ∆ISVSa3-VirD-floR-LysR-ISVSa3. The plasmid pTA13-1 was highly stable in E. coli strain J53 with no fitness cost to the host or disadvantage in growth competition. CONCLUSION: Evolution of co-integrated transposons, such as Tn7125, may convey antibiotic resistance to a wide spectrum of hosts via the plasmids pTA13-1 and pTA13-3, which acts as an adaptable and mobile multidrug resistance reservoir to accelerate dissemination of other genes by co-selection, thereby posing a potentially serious barrier to clinical treatment regimens.202540639501
2449110.9855Transcriptional expression of secondary resistance genes ccdB and repA2 is enhanced in presence of cephalosporin and carbapenem in Escherichia coli. BACKGROUND: The issue of carbapenem resistance in E.coli is very concerning and it is speculated that cumulative effect of both primary resistance genes and secondary resistance genes that act as helper to the primary resistance genes are the reason behind their aggravation. Therefore, here we attempted to find the role of two secondary resistance genes (SRG) ccdB and repA2 in carbapenem resistance in E. coli (CRE). In this context influential genes belonging to secondary resistome that act as helper to the primary resistance genes like bla(NDM) and bla(CTX-M) in aggravating β-lactam resistance were selected from an earlier reported in silico study. Transcriptional expression of the selected genes in clinical isolates of E.coli that were discretely harboring bla(NDM-1), bla(NDM-4), bla(NDM-5), bla(NDM-7) and bla(CTX-M-15) with and without carbapenem and cephalosporin stress (2 μg/ml) was determined by real time PCR. Cured mutants sets that were lacking (i) primary resistance genes, (ii) secondary resistance genes and (iii) both primary and secondary resistance genes were prepared by SDS treatment. These sets were then subjected to antibiotic susceptibility testing by Kirby Bauer disc diffusion method. RESULTS: Out of the 21 genes reported in the in silico study, 2 genes viz. repA2 and ccdB were selected for transcriptional expression analysis. repA2, coding replication regulatory protein, was downregulated in response to carbapenems and cephalosporins. ccdB, coding for plasmid maintenance protein, was also downregulated in response to carbapenems except imipenem and cephalosporins. Following plasmid elimination assay increase in diameter of zone of inhibition under stress of both antibiotics was observed as compared to uncured control hinting at the reversion of antibiotic susceptibility by the-then resistant bacteria. CONCLUSION: SRGs repA2 and ccdB help sustenance of bla(NDM) and bla(CTX-M) under carbapenem and cephalosporin stress.202133750290
6007120.9854Human tear fluid modulates the Pseudomonas aeruginosa transcriptome to alter antibiotic susceptibility. PURPOSE: Previously, we showed that tear fluid protects corneal epithelial cells against Pseudomonas aeruginosa without suppressing bacterial viability. Here, we studied how tear fluid affects bacterial gene expression. METHODS: RNA-sequencing was used to study the P. aeruginosa transcriptome after tear fluid exposure (5 h, 37 (o)C). Outcomes were further investigated by biochemical and physiological perturbations to tear fluid and tear-like fluid (TLF) and assessment of bacterial viability following tear/TLF pretreatment and antibiotic exposure. RESULTS: Tear fluid deregulated ~180 P. aeruginosa genes ≥8 fold versus PBS including downregulating lasI, rhlI, qscR (quorum sensing/virulence), oprH, phoP, phoQ (antimicrobial resistance) and arnBCADTEF (polymyxin B resistance). Upregulated genes included algF (biofilm formation) and hemO (iron acquisition). qPCR confirmed tear down-regulation of oprH, phoP and phoQ. Tear fluid pre-treatment increased P. aeruginosa resistance to meropenem ~5-fold (4 μg/ml), but enhanced polymyxin B susceptibility ~180-fold (1 μg/ml), the latter activity reduced by dilution in PBS. Media containing a subset of tear components (TLF) also sensitized bacteria to polymyxin B, but only ~22.5-fold, correlating with TLF/tear fluid Ca(2+) and Mg(2+) concentrations. Accordingly, phoQ mutants were not sensitized by TLF or tear fluid. Superior activity of tear fluid versus TLF against wild-type P. aeruginosa was heat resistant but proteinase K sensitive. CONCLUSION: P. aeruginosa responds to human tear fluid by upregulating genes associated with bacterial survival and adaptation. Meanwhile, tear fluid down-regulates multiple virulence-associated genes. Tears also utilize divalent cations and heat resistant/proteinase K sensitive component(s) to enhance P. aeruginosa sensitivity to polymyxin B.202134332149
3612130.9853Copper resistance in Desulfovibrio strain R2. A sulfate-reducing bacterium, designated as strain R2, was isolated from wastewater of a ball-bearing manufacturing facility in Tomsk, Western Siberia. This isolate was resistant up to 800 mg Cu/l in the growth medium. By comparison, Cu-resistance of reference cultures of sulfate-reducing bacteria ranged from 50 to 75 mg Cu/l. Growth experiments with strain R2 showed that Cu was an essential trace element and, on one hand, enhanced growth at concentrations up to 10 mg/l but, on the other hand, the growth rate decreased and lag-period extended at copper concentrations of >50 mg/l. Phenotypic characteristics and a 1078 bp nucleotide sequence of the 16S rDNA placed strain R2 within the genus Desulfovibrio. Desulfovibrio R2 carried at least one plasmid of approximately of 23.1 kbp. A 636 bp fragment of the pcoR gene of the pco operon that encodes Cu resistance was amplified by PCR from plasmid DNA of strain R2. The pco genes are involved in Cu-resistance in some enteric and aerobic soil bacteria. Desulfovibrio R2 is a prospective strain for bioremediation purposes and for developing a homologous system for transformation of Cu-resistance in sulfate-reducing bacteria.200312755486
2293140.9852Mechanisms of Resistance in Clinical Isolates of Enterobacter cloacae that Are Less Susceptible to Cefepime than to Ceftazidime. Thirty-two Enterobacter cloacae strains that are less susceptible to cefepime than to ceftazidime were collected. This unique phenotype of 8 strains was confirmed using the agar dilution method. OXA1, OXA10, OXA31 and OXA35 were detected in 3, 2, 3, and 2 strains, respectively, whereas all strains were negative for PSE-1 genes. OXA genes were also identified in the plasmid DNA of 5 strains, but only 2 strains were positive in a conjugation experiment. The acrA, acrB and tolC genes were identified in 4, 4 and 6 strains, respectively. Decreased expression of the acrA mRNA and overexpression of the acrB and tolC mRNAs were observed using real-time RT-PCR. Most of the bacteria (n=7) stably expressed the marA gene, which is a regulatory gene in the AcrAB-TolC multidrug efflux system, whereas all strains were negative for ramA. The acrA, acrB, tolC, acrR and marA genes were similar to the genes in reference strains in GenBank, with nucleotide homologies of 96%, 98%, 98%, 98% and 100%, respectively. In conclusion, the mechanism of resistance of Enterobacter cloacae with less susceptibility to cefepime than to ceftazidime is associated with the overexpression of AcrAB-TolC and the production of OXA1, XA10, OXA31 and OXA35.201829970440
334150.9851Transformation of soybean protoplasts from permanent suspension cultures by cocultivation with cells of Agrobacterium tumefaciens. Cell wall regenerating protoplasts from soybean cells kept in suspension culture were cocultivated with bacteria which were derived from the nopaline strain C58 of Agrobacterium tumefaciens. When the bacteria carried an oncogenic Ti-plasmid, about 5% of the surviving protoplasts were able to form calli on hormone-free agar in contrast to controls, where bacteria without Ti-plasmid were applied, and where no calli were formed. After isolation of DNA from hormone-independently growing cells further evidence for transformation was obtained by hybridization to Ti-plasmid specific RNA and by rescue of a segment with a bacterial resistance gene which had been inserted before into the T-DNA. Transfer of T-DNA harboring a neomycin-resistance gene activated by the nos-promoter resulted in calli growing on kanamycin. Verification of segments located at the left and the right part of the T-DNA indicated the presence of its entire length in transformed soybean cells. Expression of T-DNA genes was measured by the assay of nopaline-synthase. Cells cultured on agar had a much higher level of nopaline-synthase than fast growing cells in suspension culture. Transferring them to agar or treatment with azacytidine strongly increased synthesis of nopaline-synthase indicating a reversible repression presumably via a methylation mechanism.198724276903
2240160.9851Evaluation of multiplex tandem PCR (MT-PCR) assays for the detection of bacterial resistance genes among Enterobacteriaceae in clinical urines. BACKGROUND: Increasing resistance drives empirical use of less potent and previously reserved antibiotics, including for urinary tract infections (UTIs). Molecular profiling, without culture, might better guide early therapy. OBJECTIVES: To explore the potential of AusDiagnostics multiplex tandem (MT) PCR UTI assays. METHODS: Two MT-PCR assays were developed successively, seeking 8 or 16 resistance genes. Amplification was tracked in real time, with melting temperatures used to confirm product identity. Assays were variously performed on: (i) extracted DNA; (ii) cultured bacteria; (iii) urine spiked with reference strains; and (iv) bacteria harvested from clinical urines. Results were compared with those from sequencing, real-time SybrGreen PCR or phenotypic susceptibility. RESULTS: Performance was similar irrespective of whether DNA, cultures or urines were used, with >90% sensitivity and specificity with respect to common β-lactamases, dfr genes and aminoglycoside resistance determinants except aadA1/A2/A3, for which carriage correlated poorly with streptomycin resistance. Fluoroquinolone-susceptible and -resistant Escherichia coli (but not other species) were distinguished by the melting temperatures of their gyrA PCR products. The time from urine to results was <3 h. CONCLUSIONS: The MT-PCR assays rapidly identified resistance genes from Gram-negative bacteria in urines as well as from cultivated bacteria. Used directly on urines, this assay has the potential to guide early therapy.201930476137
5405170.9851Characterization of florfenicol resistance genes in the coagulase-negative Staphylococcus (CoNS) isolates and genomic features of a multidrug-resistant Staphylococcus lentus strain H29. BACKGROUND: With the wide use of florfenicol to prevent and treat the bacterial infection of domestic animals, the emergence of the florfenicol resistance bacteria is increasingly serious. It is very important to elucidate the molecular mechanism of the bacteria's resistance to florfenicol. METHODS: The minimum inhibitory concentration (MIC) levels were determined by the agar dilution method, and polymerase chain reaction was conducted to analyze the distribution of florfenicol resistance genes in 39 CoNS strains isolated from poultry and livestock animals and seafood. The whole genome sequence of one multidrug resistant strain, Staphylococcus lentus H29, was characterized, and comparative genomics analysis of the resistance gene-related sequences was also performed. RESULTS: As a result, the isolates from the animals showed a higher resistance rate (23/28, 82.1%) and much higher MIC levels to florfenicol than those from seafood. Twenty-seven animal isolates carried 37 florfenicol resistance genes (including 26 fexA, 6 cfr and 5 fexB genes) with one carrying a cfr gene, 16 each harboring a fexA gene, 5 with both a fexA gene and a fexB gene and the other 5 with both a fexA gene and a cfr gene. On the other hand, all 11 isolates from seafood were sensitive to florfenicol, and only 3 carried a fexA gene each. The whole genome sequence of S. lentus H29 was composed of a chromosome and two plasmids (pH29-46, pH29-26) and harbored 11 resistance genes, including 6 genes [cfr, fexA, ant(6)-Ia, aacA-aphD, mecA and mph(C)] encoded on the chromosome, 4 genes [cfr, fexA, aacA-aphD and tcaA] on pH29-46 and 1 gene (fosD) on pH29-26. We found that the S. lentus H29 genome carried two identical copies of the gene arrays of radC-tnpABC-hp-fexA (5671 bp) and IS256-cfr (2690 bp), of which one copy of the two gene arrays was encoded on plasmid pH29-46, while the other was encoded on the chromosome. CONCLUSIONS: The current study revealed the wide distribution of florfenicol resistance genes (cfr, fexA and fexB) in animal bacteria, and to the best of our knowledge, this is the first report that one S. lentus strain carried two identical copies of florfenicol resistance-related gene arrays.202133413633
2056180.9850Mechanisms of resistance in nontyphoidal Salmonella enterica strains exhibiting a nonclassical quinolone resistance phenotype. Nontyphoidal Salmonella enterica strains with a nonclassical quinolone resistance phenotype were isolated from patients returning from Thailand or Malaysia to Finland. A total of 10 isolates of seven serovars were studied in detail, all of which had reduced susceptibility (MIC > or = 0.125 microg/ml) to ciprofloxacin but were either susceptible or showed only low-level resistance (MIC < or = 32 microg/ml) to nalidixic acid. Phenotypic characterization included susceptibility testing by the agar dilution method and investigation of efflux activity. Genotypic characterization included the screening of mutations in the quinolone resistance-determining regions (QRDR) of gyrA, gyrB, parC, and parE by PCR and denaturing high-pressure liquid chromatography and the amplification of plasmid-mediated quinolone resistance (PMQR) genes qnrA, qnrB, qnrS, qnrD, aac(6')-Ib-cr, and qepA by PCR. PMQR was confirmed by plasmid analysis, Southern hybridization, and plasmid transfer. No mutations in the QRDRs of gyrA, gyrB, parC, or parE were detected with the exception of a Thr57-Ser substitution within ParC seen in all but the S. enterica serovar Typhimurium strains. The qnrA and qnrS genes were the only PMQR determinants detected. Plasmids carrying qnr alleles were transferable in vitro, and the resistance phenotype was reproducible in Escherichia coli DH5alpha transformants. These data demonstrate the emergence of a highly mobile qnr genotype that, in the absence of mutation within topoisomerase genes, confers the nontypical quinolone resistance phenotype in S. enterica isolates. The qnr resistance mechanism enables bacteria to survive elevated quinolone concentrations, and therefore, strains carrying qnr alleles may be able to expand during fluoroquinolone treatment. This is of concern since nonclassical quinolone resistance is plasmid mediated and therefore mobilizable.200919596880
2448190.9850Emerging coexistence of three PMQR genes on a multiple resistance plasmid with a new surrounding genetic structure of qnrS2 in E. coli in China. BACKGROUND: Quinolones are commonly used for treatment of infections by bacteria of the Enterobacteriaceae family. However, the rising resistance to quinolones worldwide poses a major clinical and public health risk. This study aimed to characterise a novel multiple resistance plasmid carrying three plasmid-mediated quinolone resistance genes in Escherichia coli clinical stain RJ749. METHODS: MICs of ceftriaxone, cefepime, ceftazidime, ciprofloxacin, and levofloxacin for RJ749 and transconjugant c749 were determined by the Etest method. Conjugation was performed using sodium azide-resistant E. coli J53 strain as a recipient. The quinolone resistance-determining regions of gyrA, gyrB, parC, and parE were PCR-amplified. RESULTS: RJ749 was highly resistant to quinolones, while c749 showed low-level resistance. S1-nuclease pulsed-field gel electrophoresis revealed that RJ749 and c749 both harboured a plasmid. PCR presented chromosomal mutation sites of the quinolone resistance-determining region, which mediated quinolone resistance. The c749 genome comprised a single plasmid, pRJ749, with a multiple resistance region, including three plasmid-mediated quinolone resistance (PMQR) genes (aac (6')-Ib-cr, qnrS2, and oqxAB) and ten acquired resistance genes. One of the genes, qnrS2, was shown for the first time to be flanked by two IS26s. Three IS26-mediated circular molecules carrying the PMQR genes were detected. CONCLUSIONS: We revealed the coexistence of three PMQR genes on a multiple resistance plasmid and a new surrounding genetic structure of qnrS2 flanked by IS26 elements. IS26 plays an important role in horizontal spread of quinolone resistance.202032293532