SUBCULTURING - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
80800.8884Exposure of Legionella pneumophila to low-shear modeled microgravity: impact on stress response, membrane lipid composition, pathogenicity to macrophages and interrelated genes expression. Here, we studied the effect of low-shear modeled microgravity (LSMMG) on cross stress resistance (heat, acid, and oxidative), fatty acid content, and pathogenicity along with alteration in expression of stress-/virulence-associated genes in Legionella pneumophila. The stress resistance analysis result indicated that bacteria cultivated under LSMMG environments showed higher resistance with elevated D-values at 55 °C and in 1 mM of hydrogen peroxide (H(2)O(2)) conditions compared to normal gravity (NG)-grown bacteria. On the other hand, there was no significant difference in tolerance (p < 0.05) toward simulated gastric fluid (pH-2.5) acid conditions. In fatty acid analysis, our result showed that a total amount of saturated and cyclic fatty acids was increased in LSMMG-grown cells; as a consequence, they might possess low membrane fluidity. An upregulated expression level was noticed for stress-related genes (hslV, htrA, grpE, groL, htpG, clpB, clpX, dnaJ, dnaK, rpoH, rpoE, rpoS, kaiB, kaiC, lpp1114, ahpC1, ahpC2, ahpD, grlA, and gst) under LSMMG conditions. The reduced virulence (less intracellular bacteria and less % of induce apoptosis in RAW 264.7 macrophages) of L. pneumophila under LSMMG conditions may be because of downregulation related genes (dotA, dotB, dotC, dotD, dotG, dotH, dotL, dotM, dotN, icmK, icmB, icmS, icmT, icmW, ladC, rtxA, letA, rpoN, fleQ, fleR, and fliA). In the LSMMG group, the expression of inflammation-related factors, such as IL-1α, TNF-α, IL-6, and IL-8, was observed to be reduced in infected macrophages. Also, scanning electron microscopy (SEM) analysis showed less number of LSMMG-cultivated bacteria attached to the host macrophages compared to NG. Thus, our study provides understandings about the changes in lipid composition and different genes expression due to LSMMG conditions, which apparently influence the alterations of L. pneumophila' stress/virulence response.202438305908
10110.8883The encapsulated strain TIGR4 of Streptococcus pneumoniae is phagocytosed but is resistant to intracellular killing by mouse microglia. The polysaccharide capsule is a major virulence factor of Streptococcus pneumoniae as it confers resistance to phagocytosis. The encapsulated serotype 4 TIGR4 strain was shown to be efficiently phagocytosed by the mouse microglial cell line BV2, whereas the type 3 HB565 strain resisted phagocytosis. Comparing survival after uptake of TIGR4 or its unencapsulated derivative FP23 in gentamicin protection and phagolysosome maturation assays, it was shown that TIGR4 was protected from intracellular killing. Pneumococcal capsular genes were up-regulated in intracellular TIGR4 bacteria recovered from microglial cells. Actual presence of bacteria inside BV2 cells was confirmed by transmission electron microscopy (TEM) for both TIGR4 and FP23 strains, but typical phagosomes/phagolysosomes were detected only in cells infected with the unencapsulated strain. In a mouse model of meningitis based on intracranic inoculation of pneumococci, TIGR4 caused lethal meningitis with an LD(50) of 2 × 10² CFU, whereas the LD(50) for the unencapsulated FP23 was greater than 10⁷ CFU. Phagocytosis of TIGR4 by microglia was also demonstrated by TEM and immunohistochemistry on brain samples from infected mice. The results indicate that encapsulation does not protect the TIGR4 strain from phagocytosis by microglia, while it affords resistance to intracellular killing.201020615478
73820.8874Protozoan-induced regulation of cyclic lipopeptide biosynthesis is an effective predation defense mechanism for Pseudomonas fluorescens. Environmental bacteria are exposed to a myriad of biotic interactions that influence their function and survival. The grazing activity of protozoan predators significantly impacts the dynamics, diversification, and evolution of bacterial communities in soil ecosystems. To evade protozoan predation, bacteria employ various defense strategies. Soil-dwelling Pseudomonas fluorescens strains SS101 and SBW25 produce the cyclic lipopeptide surfactants (CLPs) massetolide and viscosin, respectively, in a quorum-sensing-independent manner. In this study, CLP production was shown to protect these bacteria from protozoan predation as, compared to CLP-deficient mutants, strains SS101 and SBW25 exhibited resistance to grazing by Naegleria americana in vitro and superior persistence in soil in the presence of this bacterial predator. In the wheat rhizosphere, CLP-producing strains had a direct deleterious impact on the survival of N. americana. In vitro assays further showed that N. americana was three times more sensitive to viscosin than to massetolide and that exposure of strain SS101 or SBW25 to this protozoan resulted in upregulation of CLP biosynthesis genes. Enhanced expression of the massABC and viscABC genes did not require physical contact between the two organisms as gene expression levels were up to threefold higher in bacterial cells harvested 1 cm from feeding protozoans than in cells collected 4 cm from feeding protozoans. These findings document a new natural function of CLPs and highlight that bacterium-protozoan interactions can result in activation of an antipredator response in prey populations.200919717630
823930.8872Surviving bacterial sibling rivalry: inducible and reversible phenotypic switching in Paenibacillus dendritiformis. Natural habitats vary in available nutrients and room for bacteria to grow, but successful colonization can lead to overcrowding and stress. Here we show that competing sibling colonies of Paenibacillus dendritiformis bacteria survive overcrowding by switching between two distinct vegetative phenotypes, motile rods and immotile cocci. Growing colonies of the rod-shaped bacteria produce a toxic protein, Slf, which kills cells of encroaching sibling colonies. However, sublethal concentrations of Slf induce some of the rods to switch to Slf-resistant cocci, which have distinct metabolic and resistance profiles, including resistance to cell wall antibiotics. Unlike dormant spores of P. dendritiformis, the cocci replicate. If cocci encounter conditions that favor rods, they secrete a signaling molecule that induces a switch to rods. Thus, in contrast to persister cells, P. dendritiformis bacteria adapt to changing environmental conditions by inducible and reversible phenotypic switching. IMPORTANCE: In favorable environments, species may face space and nutrient limits due to overcrowding. Bacteria provide an excellent model for analyzing principles underlying overcrowding and regulation of density in nature, since their population dynamics can be easily and accurately assessed under controlled conditions. We describe a newly discovered mechanism for survival of a bacterial population during overcrowding. When competing with sibling colonies, Paenibacillus dendritiformis produces a lethal protein (Slf) that kills cells at the interface of encroaching colonies. Slf also induces a small proportion of the cells to switch from motile, rod-shaped cells to nonmotile, Slf-resistant, vegetative cocci. When crowding is reduced and nutrients are no longer limiting, the bacteria produce a signal that induces cocci to switch back to motile rods, allowing the population to spread. Genes encoding components of this phenotypic switching pathway are widespread among bacterial species, suggesting that this survival mechanism is not unique to P. dendritiformis.201121628502
603040.8872Molecular identification and probiotic potential characterization of lactic acid bacteria isolated from the pigs with superior immune responses. Lactic acid bacteria (LAB) belong to a significant group of probiotic bacteria that provide hosts with considerable health benefits. Our previous study showed that pigs with abundant LAB had more robust immune responses in a vaccination experiment. In this study, 52 isolate strains were isolated from the pigs with superior immune responses. Out of these, 14 strains with higher antibacterial efficacy were chosen. We then assessed the probiotic features of the 14 LAB strains, including such as autoaggregation, coaggregation, acid resistance, bile salt resistance, and adhesion capability, as well as safety aspects such as antibiotic resistance, hemolytic activity, and the presence or absence of virulence factors. We also compared these properties with those of an opportunistic pathogen EB1 and two commercial probiotics (cLA and cLP). The results showed that most LAB isolates exhibited higher abilities of aggregation, acid and bile salt resistance, adhesion, and antibacterial activity than the two commercial probiotics. Out of the 14 strains, only LS1 and LS9 carried virulence genes and none had hemolytic activity. We selected three LAB strains (LA6, LR6 and LJ1) with superior probiotic properties and LS9 with a virulence gene for testing their safety in vivo. Strains EB1, cLA and cLP were also included as control bacteria. The results demonstrated that mice treated LAB did not exhibit any adverse effects on weight gain, organ index, blood immune cells, and ileum morphology, except for those treated with LS9 and EB1. Moreover, the antimicrobial effect of LR6 and LA6 strains was examined in vivo. The results indicated that these strains could mitigate the inflammatory response, reduce bacterial translocation, and alleviate liver, spleen, and ileum injury caused by Salmonella typhimurium infection. In addition, the LR6 treatment group showed better outcomes than the LA6 treatment group; treatment with LR6 substantially reduced the mortality rate in mice. The study results provide evidence of the probiotic properties of the LAB isolates, in particular LR6, and suggest that oral administration of LR6 could have valuable health-promoting benefits.202438585699
873650.8871Effects of intracanal irrigant MTAD Combined with nisin at sub-minimum inhibitory concentration levels on Enterococcus faecalis growth and the expression of pathogenic genes. Exposure to antibiotics is considered to be the major driver in the selection of antibiotic-resistant bacteria and may induce diverse biological responses in bacteria. MTAD is a common intracanal irrigant, but its bactericidal activity remains to be improved. Previous studies have indicated that the antimicrobial peptide nisin can significantly improve the bactericidal activity of MTAD against Enterococcus faecalis. However, the effects of MTAD and its modification at sub-minimum inhibitory concentration (sub-MIC) levels on Enterococcus faecalis growth and the expression of pathogenic genes still need to be explored. In this study, the results of post-antibiotic effects (PAE) and post-antibiotic sub-MIC effects (PASME) showed that MTADN (nisin in combination with MTAD) had the best post-antibiotic effect. E. faecalis after challenge with MTAD was less sensitive to alkaline solutions compared with MTAN (nisin in place of doxycycline in MTAD) and MTADN. E. faecalis induced with sub-MIC of MTAD generated resistance to the higher concentration, but induction of E. faecalis with MTAN did not cause resistance to higher concentrations. Furthermore, real-time polymerase chain reaction (RT-PCR) showed that the stress caused by sub-MIC exposure to MTAD, MTAN, or MTADN resulted in up- or down-regulation of nine stress genes and four virulence-associated genes in E. faecalis and resulted in different stress states. These findings suggested that nisin improved the post-antibacterial effect of MTAD at sub-MIC levels and has considerable potential for use as a modification of MTAD.201424603760
906560.8870Gut Bacteria Promote Phosphine Susceptibility of Tribolium castaneum by Aggravating Oxidative Stress and Fitness Costs. Knowledge about resistance mechanisms can provide ideas for pesticide resistance management. Although several studies have unveiled the positive or negative impacts of gut microbes on host pesticide resistance, minimal research is available regarding the association between gut microbes and host phosphine resistance. To explore the influence of gut bacteria on host phosphine susceptibility and its molecular basis, mortality, fitness, redox responses, and immune responses of adult Tribolium castaneum were determined when it was challenged by phosphine exposure and/or gut bacteria inoculation. Five cultivable gut bacteria were excised from a population of phosphine-resistant T. castaneum. Among them, only Enterococcus sp. inoculation significantly promoted host susceptibility to phosphine, while inoculation of any other gut bacteria had no significant effect on host phosphine susceptibility. Furthermore, when T. castaneum was exposed to phosphine, Enterococcus sp. inoculation decreased the female fecundity, promoted host oxidative stress, and suppressed the expression and activity of host superoxide dismutase, catalase, and peroxidase. In the absence of phosphine, Enterococcus sp. inoculation also elicited overactive immune responses in T. castaneum, including the immune deficiency and Toll signaling pathways and the dual oxidase-reactive oxygen species system. These results indicate that Enterococcus sp. likely promotes host phosphine susceptibility by aggravating oxidative stress and fitness costs.202337887827
847570.8869Antibacterial Activity of Endophytic Bacteria Against Sugar Beet Root Rot Agent by Volatile Organic Compound Production and Induction of Systemic Resistance. The volatile organic compounds (VOCs) produced by endophytic bacteria have a significant role in the control of phytopathogens. In this research, the VOCs produced by the endophytic bacteria Streptomyces sp. B86, Pantoea sp. Dez632, Pseudomonas sp. Bt851, and Stenotrophomonas sp. Sh622 isolated from healthy sugar beet (Beta vulgaris) and sea beet (Beta maritima) were evaluated for their effects on the virulence traits of Bacillus pumilus Isf19, the causal agent of harvested sugar beet root rot disease. The gas chromatographymass spectrometry (GC-MS) analysis revealed that B86, Dez632, Bt851, and Sh622 produced 15, 28, 30, and 20 VOCs, respectively, with high quality. All antagonistic endophytic bacteria produced VOCs that significantly reduced soft root symptoms and inhibited the growth of B. pumilus Isf19 at different levels. The VOCs produced by endophytic bacteria significantly reduced swarming, swimming, and twitching motility by B. pumilus Isf19, which are important to pathogenicity. Our results revealed that VOCs produced by Sh622 and Bt851 significantly reduced attachment of B. pumilus Isf19 cells to sugar beetroots, and also all endophytic bacteria tested significantly reduced chemotaxis motility of the pathogen toward root extract. The VOCs produced by Dez632 and Bt851 significantly upregulated the expression levels of defense genes related to soft rot resistance. Induction of PR1 and NBS-LRR2 genes in sugar beetroot slices suggests the involvement of SA and JA pathways, respectively, in the induction of resistance against pathogen attack. Based on our results, the antibacterial VOCs produced by endophytic bacteria investigated in this study can reduce soft rot incidence.202235722285
473380.8867Impact of repeated in-vitro bacterial culture on virulence and antibiotic resistance characteristics: a study of Gram-positive and Gram-negative fish pathogens. The ability of bacteria to respond to environmental changes is critical for survival. This enables them to withstand stress, form complex communities, and trigger virulence responses during host infections. In this study, we examined the effects of repeated in vitro subculturing on the virulence and antimicrobial resistance (AMR) profiles of Gram-negative and Gram-positive fish pathogens. The fish pathogenic bacterial isolates, namely Lactococcus lactis, Enterococcus gallinarum, Proteus penneri, and Escherichia coli, underwent 56 consecutive subcultures in tryptic soy broth and were evaluated for virulence, antimicrobial susceptibility, and AMR gene expression. The results revealed a significant decrease in the virulence of Gram-positive pathogens. Both L. lactis and E. gallinarum exhibited a marked reduction in the mortality rates of Labeo rohita after repeated subculturing, ultimately achieving 0% mortality by day 56. This suggests losing key virulence factors, such as toxins and adhesins, under non-selective conditions. In contrast, Gram-negative bacteria, particularly P. penneri and E. coli, exhibited higher levels of virulence throughout the study, even though mortality rates gradually declined. The antimicrobial resistance profiles of L. lactis remained steady, demonstrating consistent resistance to a wide range of antibiotics, including rifampicin and polymyxin B. Meanwhile, E. gallinarum showed slight variations in resistance, especially to colistin, while P. penneri and E. coli experienced changes in resistance to multiple antibiotics, including polymyxin B and tetracycline, after 42 days of subculturing. Importantly, no genetic alterations were detected in AMR-related genes through quantitative PCR analysis, indicating that the observed changes in resistance were likely phenotypic rather than genetic. This study underscores the critical need for ongoing surveillance in aquaculture pathogen management, emphasizing the dynamic nature of bacterial virulence and resistance profiles that can develop from prolonged subculturing.202540469744
1490.8865Unraveling Pinus massoniana's Defense Mechanisms Against Bursaphelenchus xylophilus Under Aseptic Conditions: A Transcriptomic Analysis. Pine wilt disease (PWD) is caused by the pine wood nematode (PWN, Bursaphelenchus xylophilus) and significantly impacts pine forest ecosystems globally. This study focuses on Pinus massoniana, an important timber and oleoresin resource in China, which is highly susceptible to PWN. However, the defense mechanism of pine trees in response to PWN remains unclear. Addressing the complexities of PWD, influenced by diverse factors such as bacteria, fungi, and environment, we established a reciprocal system between PWN and P. massoniana seedlings under aseptic conditions. Utilizing combined second- and third-generation sequencing technologies, we identified 3,718 differentially expressed genes post PWN infection. Transcript analysis highlighted the activation of defense mechanisms via stilbenes, salicylic acid and jasmonic acid pathways, terpene synthesis, and induction of pathogenesis-related proteins and resistance genes, predominantly at 72 h postinfection. Notably, terpene synthesis pathways, particularly the mevalonate pathway, were crucial in defense, suggesting their significance in P. massoniana's response to PWN. This comprehensive transcriptome profiling offers insights into P. massoniana's intricate defense strategies against PWN under aseptic conditions, laying a foundation for future functional analyses of key resistance genes. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.202439283201
542100.8865Role of Yops and adhesins in resistance of Yersinia enterocolitica to phagocytosis. Yersinia enterocolitica is a pathogen endowed with two adhesins, Inv and YadA, and with the Ysc type III secretion system, which allows extracellular adherent bacteria to inject Yop effectors into the cytosol of animal target cells. We tested the influence of all of these virulence determinants on opsonic and nonopsonic phagocytosis by PU5-1.8 and J774 mouse macrophages, as well as by human polymorphonuclear leukocytes (PMNs). The adhesins contributed to phagocytosis in the absence of opsonins but not in the presence of opsonins. In agreement with previous results, YadA counteracted opsonization. In every instance, the Ysc-Yop system conferred a significant level of resistance to phagocytosis. Nonopsonized single-mutant bacteria lacking either YopE, -H, -T, or -O were phagocytosed significantly more by J774 cells and by PMNs. Opsonized bacteria were phagocytosed more than nonopsonized bacteria, and mutant bacteria lacking either YopH, -T, or -O were phagocytosed significantly more by J774 cells and by PMNs than were wild-type (WT) bacteria. Opsonized mutants lacking only YopE were phagocytosed significantly more than were WT bacteria by PMNs but not by J774 cells. Thus, YopH, -T, and -O were involved in all of the phagocytic processes studied here but YopE did not play a clear role in guarding against opsonic phagocytosis by J774. Mutants lacking YopP and YopM were, in every instance, as resistant as WT bacteria. Overexpression of YopE, -H, -T, or -O alone did not confer resistance to phagocytosis, although it affected the cytoskeleton. These results show that YopH, YopT, YopO, and, in some instances, YopE act synergistically to increase the resistance of Y. enterocolitica to phagocytosis by macrophages and PMNs.200212117925
8742110.8863Effect of Bacteria and Bacterial Constituents on Recovery and Resistance of Tulane Virus. Noroviruses encounter numerous and diverse bacterial populations in the host and environment, but the impact of bacteria on norovirus transmission, infection, detection, and inactivation are not well understood. Tulane virus (TV), a human norovirus surrogate, was exposed to viable bacteria, bacterial metabolic products, and bacterial cell constituents and was evaluated for impact on viral recovery, propagation, and inactivation resistance, respectively. TV was incubated with common soil, intestinal, skin, and phyllosphere bacteria, and unbound viruses were recovered by centrifugation and filtration. TV recovery from various bacterial suspensions was not impeded, which suggests a lack of direct, stable binding between viruses and bacteria. The cell-free supernatant (CFS) of Bifidobacterium bifidum 35914, a bacterium that produces glycan-modifying enzymes, was evaluated for effect on the propagation of TV in LLC-MK2 cells. CFS did not limit TV propagation relative to TV absent of CFS. The impact of Escherichia coli O111:B4 lipopolysaccharide (LPS) and Bacillus subtilis peptidoglycan (PEP) on TV thermal and chlorine inactivation resistance was evaluated. PEP increased TV thermal and chlorine inactivation resistance compared with control TV in phosphate-buffered saline (PBS). TV suspended in PBS and LPS was reduced by more than 3.7 log at 60°C, whereas in PEP, TV reduction was approximately 2 log. Chlorine treatment (200 ppm) rendered TV undetectable (>3-log reduction) in PBS and LPS; however, TV was still detected in PEP, reduced by 2.9 log. Virus inactivation studies and food processing practices should account for potential impact of bacteria on viral resistance.202032221571
551120.8863virK and mig-14 constitute a PhoP-dependent operon and contribute to the intracellular survival and polymyxin B resistance of Salmonella Typhi. In bacteria, adjacent and functionally similar genes are typically transcribed as operons. The virulence genes virK and mig-14 are acquired through horizontal gene transfer in Salmonella. Previous studies have reported that these two genes have similar functions in terms of bacterial survival within macrophages and resistance to antimicrobial peptides. Nevertheless, the specific expression characteristics of the two genes remain unclear. This study revealed that virK and mig-14 were transcribed as a single operon in Salmonella Typhi. The virK-mig-14 operon was found to be activated under conditions of early hyperosmotic stress and polymyxin B stimulation, and its activation was dependent on the presence of the regulator PhoP. The luminescence assay demonstrated that the activity of the virK promoter was markedly elevated in an environment conducive to operon activation, whereas the mig-14 promoter exhibited no discernible change. This suggests that mig-14 is predominantly transcribed as a component of the operon. In the PhoP activation environment, which has a mildly acidic pH, low Mg(2+) levels, and intracellular macrophages, the virK-mig-14 operon exhibited significant activation. The absence of virK or mig-14 resulted in the impaired survival of Salmonella Typhi within macrophages and decreased its tolerance to polymyxin B. Collectively, this study shows that virK and mig-14 constitute an operon whose activation depends on PhoP and that it promotes S. Typhi's survival in macrophages and resistance to polymyxin B.202540345346
235130.8858Effect of Application of Probiotic Pollen Suspension on Immune Response and Gut Microbiota of Honey Bees (Apis mellifera). Although the use of probiotic bacteria in invertebrates is still rare, scientists have begun to look into their usage in honey bees. The probiotic preparation, based on the autochthonous strain Lactobacillus brevis B50 Biocenol™ (CCM 8618), which was isolated from the digestive tracts of healthy bees, was applied to the bee colonies in the form of a pollen suspension. Its influence on the immune response was determined by monitoring the expression of genes encoding immunologically important molecules in the honey bee intestines. Changes in the intestinal microbiota composition were also studied. The results showed that the probiotic Lact. brevis B50, on a pollen carrier, significantly increased the expression of genes encoding antimicrobial peptides (abaecin, defensin-1) as well as pattern recognition receptors (toll-like receptor, peptidoglycan recognition proteins). Gene expression for the other tested molecules included in Toll and Imd signaling pathways (dorsal, cactus, kenny, relish) significantly changed during the experiment. The positive effect on intestinal microbiota was manifested mainly by a significant increase in the ratio of lactic acid bacteria to enterobacteria. These findings confirm the potential of the tested probiotic preparation to enhance immunity in bee colonies and thus increase their resistance to infectious diseases and stress conditions.202031912341
618140.8857A novel chemical inducer of Streptococcus quorum sensing acts by inhibiting the pheromone-degrading endopeptidase PepO. Bacteria produce chemical signals (pheromones) to coordinate behaviors across a population in a process termed quorum sensing (QS). QS systems comprising peptide pheromones and their corresponding Rgg receptors are widespread among Firmicutes and may be useful targets for manipulating microbial behaviors, like suppressing virulence. The Rgg2/3 QS circuit of the human pathogen Streptococcus pyogenes controls genes affecting resistance to host lysozyme in response to short hydrophobic pheromones (SHPs). Considering that artificial activation of a QS pathway may be as useful in the objective of manipulating bacteria as inhibiting it, we sought to identify small-molecule inducers of the Rgg2/3 QS system. We report the identification of a small molecule, P516-0475, that specifically induced expression of Rgg2/3-regulated genes in the presence of SHP pheromones at concentrations lower than typically required for QS induction. In searching for the mode of action of P516-0475, we discovered that an S. pyogenes mutant deficient in pepO, a neprilysin-like metalloendopeptidase that degrades SHP pheromones, was unresponsive to the compound. P516-0475 directly inhibited recombinant PepO in vitro as an uncompetitive inhibitor. We conclude that this compound induces QS by stabilizing SHP pheromones in culture. Our study indicates the usefulness of cell-based screens that modulate pathway activities to identify unanticipated therapeutic targets contributing to QS signaling.201829203527
6019150.8857Effects of Lactobacillus pentosus combined with Arthrospira platensis on the growth performance, immune response, and intestinal microbiota of Litopenaeus vannamei. Litopenaeus vannamei is one of the most productive shrimp species in the world. However, shrimp farming is suffering from adverse environmental conditions and disease outbreaks. Typically, Lactobacillus pentosus and Arthrospira platensis are used as substitutes for some antibiotics. In the present study, we assessed the effects of dietary supplements along with living bacteria or cell-free extracts of L. pentosus combined with A. platensis on the growth performance, immune response, intestinal microbiota, and disease resistance of L. vannamei against Vibrio alginolyticus. Shrimp fed L. pentosus live bacteria combined with A. platensis showed the best growth performance and lowest feed conversion rate. The supplementation diet with L. pentosus live bacteria and A. platensis could significantly enhance the trypsin activity in shrimp after the feeding trial. Given the lowest feed conversion rate in shrimp fed L. pentosus live bacteria combined with A. platensis, we reasonably speculated that the decrease in feed conversion rate may be related to the increase in trypsin activity. In addition, dietary cell-free extracts of L. pentosus combined with A. platensis enhanced the expression of immune-related genes after the feeding trial or challenge test. Moreover, results of the bacterial challenge test indicated that the shrimp fed cell-free extracts of L. pentosus combined with A. platensis diet resulted in the highest survival rate, which suggested that cell-free extracts of L. pentosus and A. platensis could improve the disease resistance against V. alginolyticus by up-regulating the expressions of immune-related genes. Dietary L.pentosus or A. platensis, or their combination, reduced the abundance of harmful bacteria, including Proteobacteria in shrimp intestine, which suggested that L. pentosus and A. platensis could improve the growth performance and health of shrimp by regulating the structure of the intestinal microbiota. The findings of this study demonstrated that L. pentosus live bacteria and A. platensis exerted synergistic effects on the growth performance and digestion in shrimp, while cell-free extracts of L. pentosus and A. platensis showed synergistic effects on the immune response and disease resistance of shrimp against V. alginolyticus.202234883257
8737160.8856Role of Biosynthetic Gene Cluster BGC3 in the Cariogenic Virulence of Streptococcus mutans. OBJECTIVE: To investigate the role of the biosynthetic gene cluster BGC3 of Streptococcus mutans (S. mutans) in the process of dental caries. METHODS: BGC3 and ∆BGC3 S. mutans strains were constructed and their growth curves were evaluated. Acid production capacity was assessed by evaluating pH reduction levels over identical culture periods. The survival of bacteria in phosphate citrate buffer solution (pH 3.0) was quantified. The expression levels of virulence genes (atpF, gtfC, gtfD, spaP, vicR and ftf) were analysed using the qPCR. Co-culture experiments were conducted to evaluate bacterial adaptability. Bacterial viability was determined by microscopical examination of live/dead staining. RESULTS: Deletion of BGC3 did not significantly impact S. mutans growth or acid production in biofilms. The ∆BGC3 strain exhibited enhanced acid resistance and higher expression levels of virulence genes compared to the wild type. In addition, ∆BGC3 exhibited superior bacterial viability in the co-culture system. CONCLUSION: BGC3 affected the acid resistance and expression of caries-related genes in S. mutans. The BGC3 knockout strain exhibited a more robust survival capability than the wild-type strain.202540162656
8186170.8855Tumor-infiltrating bacteria disrupt cancer epithelial cell interactions and induce cell-cycle arrest. Tumor-infiltrating bacteria are increasingly recognized as modulators of cancer progression and therapy resistance. We describe a mechanism by which extracellular intratumoral bacteria, including Fusobacterium, modulate cancer epithelial cell behavior. Spatial imaging and single-cell spatial transcriptomics show that these bacteria predominantly localize extracellularly within tumor microniches of colorectal and oral cancers, characterized by reduced cell density, transcriptional activity, and proliferation. In vitro, Fusobacterium nucleatum disrupts epithelial contacts, inducing G0-G1 arrest and transcriptional quiescence. This state confers 5-fluorouracil resistance and remodels the tumor microenvironment. Findings were validated by live-cell imaging, spatial profiling, mouse models, and a 52-patient colorectal cancer cohort. Transcriptomics reveals downregulation of cell cycle, transcription, and antigen presentation genes in bacteria-enriched regions, consistent with a quiescent, immune-evasive phenotype. In an independent rectal cancer cohort, high Fusobacterium burden correlates with reduced therapy response. These results link extracellular bacteria to cancer cell quiescence and chemoresistance, highlighting microbial-tumor interactions as therapeutic targets.202541106380
539180.8853A role of ygfZ in the Escherichia coli response to plumbagin challenge. Plumbagin is found in many herbal plants and inhibits the growth of various bacteria. Escherichia coli strains are relatively resistant to this drug. The mechanism of resistance is not clear. Previous findings showed that plumbagin treatment triggered up-regulation of many genes in E. coli including ahpC, mdaB, nfnB, nfo, sodA, yggX and ygfZ. By analyzing minimal inhibition concentration and inhibition zones of plumbagin in various gene-disruption mutants, ygfZ and sodA were found critical for the bacteria to resist plumbagin toxicity. We also found that the roles of YgfZ and SodA in detoxifying plumbagin are independent of each other. This is because of the fact that ectopically expressed SodA reduced the superoxide stress but not restore the resistance of bacteria when encountering plumbagin at the absence of ygfZ. On the other hand, an ectopically expressed YgfZ was unable to complement and failed to rescue the plumbagin resistance when sodA was perturbed. Furthermore, mutagenesis analysis showed that residue Cys228 within YgfZ fingerprint region was critical for the resistance of E. coli to plumbagin. By solvent extraction and HPLC analysis to follow the fate of the chemical, it was found that plumbagin vanished apparently from the culture of YgfZ-expressing E. coli. A less toxic form, methylated plumbagin, which may represent one of the YgfZ-dependent metabolites, was found in the culture supernatant of the wild type E. coli but not in the ΔygfZ mutant. Our results showed that the presence of ygfZ is not only critical for the E coli resistance to plumbagin but also facilitates the plumbagin degradation.201021059273
8801190.8853CyuR is a Dual Regulator for L-Cysteine Dependent Antimicrobial Resistance in Escherichia coli. Hydrogen sulfide (H (2) S), mainly produced from L-cysteine (Cys), renders bacteria highly resistant to oxidative stress. This mitigation of oxidative stress was suggested to be an important survival mechanism to achieve antimicrobial resistance (AMR) in many pathogenic bacteria. CyuR (known as DecR or YbaO) is a recently characterized Cys-dependent transcription regulator, responsible for the activation of the cyuAP operon and generation of hydrogen sulfide from Cys. Despite its potential importance, the regulatory network of CyuR remains poorly understood. In this study, we investigated the roles of the CyuR regulon in a Cys-dependent AMR mechanism in E. coli strains. We found: 1) Cys metabolism has a significant role in AMR and its effect is conserved in many E. coli strains, including clinical isolates; 2) CyuR negatively controls the expression of mdlAB encoding a transporter that exports antibiotics such as cefazolin and vancomycin; 3) CyuR binds to a DNA sequence motif 'GAAwAAATTGTxGxxATTTsyCC' in the absence of Cys, confirmed by an in vitro binding assay; and 4) CyuR may regulate 25 additional genes as suggested by in silico motif scanning and transcriptome sequencing. Collectively, our findings expanded the understanding of the biological roles of CyuR relevant to antibiotic resistance associated with Cys.202337292663