STUFFS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
818300.5124Modification of arthropod vector competence via symbiotic bacteria. Some of the world's most devastating diseases are transmitted by arthropod vectors. Attempts to control these arthropods are currently being challenged by the widespread appearance of insecticide resistance. It is therefore desirable to develop alternative strategies to complement existing methods of vector control. In this review, Charles Beard, Scott O'Neill, Robert Tesh, Frank Richards and Serap Aksoy present an approach for introducing foreign genes into insects in order to confer refractoriness to vector populations, ie. the inability to transmit disease-causing agents. This approach aims to express foreign anti-parasitic or anti-viral gene products in symbiotic bacteria harbored by insects. The potential use of naturally occurring symbiont-based mechanisms in the spread of such refractory phenotypes is also discussed.199315463748
815510.5117Gut bacteria enable prostate cancer growth. Testosterone-synthetizing gut bacteria drive resistance to therapy.202134618567
81320.5114Fighting against evolution of antibiotic resistance by utilizing evolvable antimicrobial drugs. Antibiotic resistance is a worldwide public health problem (Bush et al. in Nat Rev Microbiol 9:894-896, 2011). The lack of effective therapies against resistant bacteria globally leads to prolonged treatments, increased mortality, and inflating health care costs (Oz et al. in Mol Biol Evol 31:2387-2401, 2014; Martinez in Science 321:365-367, 2008; Lipsitch et al. in Proc Natl Acad Sci USA 97:1938-1943, 2000; Taubes in Science 321:356-361, 2008; Laxminarayan et al. in Lancet, 2016; Laxminarayan et al. in Lancet Infect Dis 13:1057-1098, 2013). Current efforts towards a solution of this problem can be boiled down to two main strategies: (1) developing of new antimicrobial agents and (2) searching for smart strategies that can restore or preserve the efficacy of existing antimicrobial agents. In this short review article, we discuss the need for evolvable antimicrobial agents, focusing on a new antimicrobial technology that utilizes peptide-conjugated phosphorodiamidate morpholino oligomers to inhibit the growth of pathogenic bacteria by targeting bacterial genes.201728497241
50430.5107Activation of Dithiolopyrrolone Antibiotics by Cellular Reductants. Dithiolopyrrolone (DTP) natural products are broad-spectrum antimicrobial and anticancer prodrugs. The DTP structure contains a unique bicyclic ene-disulfide that once reduced in the cell, chelates metal ions and disrupts metal homeostasis. In this work we investigate the intracellular activation of the DTPs and their resistance mechanisms in bacteria. We show that the prototypical DTP holomycin is reduced by several bacterial reductases and small-molecule thiols in vitro. To understand how bacteria develop resistance to the DTPs, we generate Staphylococcus aureus mutants that exhibit increased resistance to the hybrid DTP antibiotic thiomarinol. From these mutants we identify loss-of-function mutations in redox genes that are involved in DTP activation. This work advances the understanding of how DTPs are activated and informs development of bioreductive disulfide prodrugs.202539665630
50640.5057A kiss of death--proteasome-mediated membrane fusion and programmed cell death in plant defense against bacterial infection. Eukaryotes have evolved various means for controlled and organized cellular destruction, known as programmed cell death (PCD). In plants, PCD is a crucial regulatory mechanism in multiple physiological processes, including terminal differentiation, senescence, and disease resistance. In this issue of Genes & Development, Hatsugai and colleagues (pp. 2496-2506) demonstrate a novel plant defense strategy to trigger bacteria-induced PCD, involving proteasome-dependent tonoplast and plasma membrane fusion followed by discharge of vacuolar antimicrobial and death-inducing contents into the apoplast.200919884251
815850.5056Nanobioconjugates: Weapons against Antibacterial Resistance. The increase in drug resistance in pathogenic bacteria is emerging as a global threat as we swiftly edge toward the postantibiotic era. Nanobioconjugates have gained tremendous attention to treat multidrug-resistant (MDR) bacteria and biofilms due to their tunable physicochemical properties, drug targeting ability, enhanced uptake, and alternate mechanisms of drug action. In this review, we highlight the recent advances made in the use of nanobioconjugates to combat antibacterial resistance and provide crucial insights for designing nanomaterials that can serve as antibacterial agents for nanotherapeutics, nanocargos for targeted antibiotic delivery, or both. Also discussed are different strategies for treating robust biofilms formed by bacteria.202035019602
82260.5036Exoglucanase-encoding genes from three Wickerhamomyces anomalus killer strains isolated from olive brine. Wickerhamomyces anomalus killer strains are important for fighting pathogenic yeasts and for controlling harmful yeasts and bacteria in the food industry. Targeted disruption of key genes in β-glucan synthesis of a sensitive Saccharomyces cerevisiae strain conferred resistance to the toxins of W. anomalus strains BS91, BCA15 and BCU24 isolated from olive brine. Competitive inhibition of the killing activities by laminarin and pustulan refer to β-1,3- and β-1,6-glucans as the main primary toxin targets. The extracellular exoglucanase-encoding genes WaEXG1 and WaEXG2 from the three strains were sequenced and were found to display noticeable similarities to those from known potent W. anomalus killer strains.201323148020
50770.5033Tellurite resistance and reduction by obligately aerobic photosynthetic bacteria. Seven species of obligately aerobic photosynthetic bacteria of the genera Erythromicrobium, Erythrobacter, and Roseococcus demonstrated high-level resistance to tellurite and accumulation of metallic tellurium crystals. High-level resistance without tellurite reduction was observed for Roseococcus thiosulfatophilus and Erythromicrobium ezovicum grown with certain organic carbon sources, implying that tellurite reduction is not essential to confer tellurite resistance.199616535446
10880.5030RtcB2-PrfH Operon Protects E. coli ATCC25922 Strain from Colicin E3 Toxin. In the bid to survive and thrive in an environmental setting, bacterial species constantly interact and compete for resources and space in the microbial ecosystem. Thus, they have adapted to use various antibiotics and toxins to fight their rivals. Simultaneously, they have evolved an ability to withstand weapons that are directed against them. Several bacteria harbor colicinogenic plasmids which encode toxins that impair the translational apparatus. One of them, colicin E3 ribotoxin, mediates cleavage of the 16S rRNA in the decoding center of the ribosome. In order to thrive upon deployment of such ribotoxins, competing bacteria may have evolved counter-conflict mechanisms to prevent their demise. A recent study demonstrated the role of PrfH and the RtcB2 module in rescuing a damaged ribosome and the subsequent re-ligation of the cleaved 16S rRNA by colicin E3 in vitro. The rtcB2-prfH genes coexist as gene neighbors in an operon that is sporadically spread among different bacteria. In the current study, we report that the RtcB2-PrfH module confers resistance to colicin E3 toxicity in E. coli ATCC25922 cells in vivo. We demonstrated that the viability of E. coli ATCC25922 strain that is devoid of rtcB2 and prfH genes is impaired upon action of colicin E3, in contrast to the parental strain which has intact rtcB2 and prfH genes. Complementation of the rtcB2 and prfH gene knockout with a high copy number-plasmid (encoding either rtcB2 alone or both rtcB2-prfH operon) restored resistance to colicin E3. These results highlight a counter-conflict system that may have evolved to thwart colicin E3 activity.202235742896
50590.5026Production of phytoalexins in peanut (Arachis hypogaea) seed elicited by selected microorganisms. Under favorable conditions, the peanut plant demonstrates appreciable resistance to fungal invasion by producing and accumulating phytoalexins, antimicrobial stilbenoids. This mechanism for resistance is little understood, yet it is crucial for breeding and genetically modifying peanut plants to develop new cultivars with fungal resistance. The dynamics of phytoalexin production in peanut seeds and embryos challenged by selected important fungi and bacteria was investigated. Different biotic agents selectively elicited production of major peanut stilbenoids, resveratrol, arachidin-1, arachidin-3, and SB-1. Aspergillis species, compared to other biotic agents, were more potent elicitors of stilbenoids. Embryos demonstrated significantly higher production of stilbenoids compared to cotyledons and may serve as a convenient source of genetic material in isolating genes for peanut plant defense enhancement.201323387286
9058100.5026Antisense Agents against Antibiotic-resistant Bacteria. The dramatically increasing levels of antibiotic resistance are being seen worldwide and are a significant threat to public health. Antibiotic and drug resistance is seen in various bacterial species. Antibiotic resistance is associated with increased morbidity and mortality and increased treatment costs. Antisense-related technologies include oligonucleotides that interfere with gene transcription and expression; these oligonucleotides can help treat antibiotic-resistant bacteria. The important oligonucleotides include Peptide Nucleic Acids (PNAs), Phosphorodiamidate Morpholino Oligomers (PPMOs), and Locked Nucleic Acids (LNAs). Typically, the size of these structures (oligonucleotides) is 10 to 20 bases. PNAs, PPMOs, and LNAs are highlighted in this review as targets for genes that cause the gene to be destroyed and impede bacterial growth. These results open a new perspective for therapeutic intervention. Future studies need to examine different aspects of antisense agents, such as the safety, toxicity, and pharmacokinetic properties of antisense agents in clinical treatment.202235034590
9811110.5007"Infectious Supercarelessness" in Discussing Antibiotic-Resistant Bacteria. Many bacterial pathogens are exhibiting resistance to increasing numbers of antibiotics making it much more challenging to treat the infections caused by these microbes. In many reports in the media and perhaps even in discussions among physicians and biomedical scientists, these bacteria are frequently referred to as "bugs" with the prefix "super" appended. This terminology has a high potential to elicit unjustified inferences and fails to highlight the broader evolutionary context. Understanding the full range of biological and evolutionary factors that influence the spread and outcomes of infections is critical to formulating effective individual therapies and public health interventions. Therefore, more accurate terminology should be used to refer these multidrug-resistant bacteria.201628174759
9980120.5002A vector for the expression of recombinant monoclonal Fab fragments in bacteria. The availability of genes coding for monoclonal Fab fragments of a desired specificity permits their expression in bacteria and provides a simple method for the generation of good quality reagents. In this paper we describe a new phagemid vector for the production of recombinant Fabs from genes obtained from phage display combinatorial libraries. The phagemid features an antibiotic resistance cassette which, once inserted between the heavy chain fragment and the light chain genes, avoids unwanted recombination and preserves useful restriction sites not affecting the Fab production rate.19989776589
6009130.5002Efflux pump inhibitor chlorpromazine effectively increases the susceptibility of Escherichia coli to antimicrobial peptide Brevinin-2CE. Aim: The response of E. coli ATCC8739 to Brevinin-2CE (B2CE) was evaluated as a strategy to prevent the development of antimicrobial peptide (AMP)-resistant bacteria. Methods: Gene expression levels were detected by transcriptome sequencing and RT-PCR. Target genes were knocked out using CRISPR-Cas9. MIC was measured to evaluate strain resistance. Results: Expression of acrZ and sugE were increased with B2CE stimulation. ATCC8739ΔacrZ and ATCC8739ΔsugE showed twofold and fourfold increased sensitivity, respectively. The survival rate of ATCC8739 was reduced in the presence of B2CE/chlorpromazine (CPZ). Combinations of other AMPs with CPZ also showed antibacterial effects. Conclusion: The results indicate that combinations of AMPs/efflux pump inhibitors (EPIs) may be a potential approach to combat resistant bacteria.202438683168
9996140.5000In Situ Localization of Staphylococcus shinii and Staphylococcus succinus in Infected Rhipicephalus microplus Ticks: Implications for Biocontrol Strategies. Rhipicephalus microplus is a blood-sucking parasite that causes heavy infestations on cattle and is a vector for severe tick-borne diseases, such as anaplasmosis and babesiosis, and poses a significant threat to the cattle industry. Cattle ticks show increasing acaricide resistance, which creates an additional problem concerning the inefficient chemical control of tick populations in cattle-grazing areas, necessitating the exploration of alternative tick biocontrol methods. Our study aimed to demonstrate the acaropathogenic efficacy of two bacterial species during experimental infections on R. microplus. Our experimental data confirmed that S. shinii and S. succinus exhibited significant acaropathogenic properties against R. microplus, as demonstrated by the tracking of fluorescent-labeled bacteria within the engorged-tick body. Our experiments revealed that both bacterial species could infect the hemolymph, salivary glands, and vestibular vagina of the tick, inducing histological changes in the affected organs that may impair feeding as well as reproductive capabilities. Gené's organ infection was detected only in S. succinus. Our findings offer valuable insights for developing biocontrol strategies to manage Rhipicephalus microplus populations effectively.202439770285
8435150.4992Antimicrobial Zeolitic Imidazolate Frameworks with Dual Mechanisms of Action. The horizontal transfer of drug-resistant genes and the formation of biofilm barriers have threatened the therapeutic efficacy of conventional antibiotic drugs. Development of non-antibiotic agents with high delivery efficiency through bacterial biofilms is urgently required. A pyrithione (PT)-loading zeolitic imidazolate framework (ZIF-8@PT) is synthesized to destroy biofilms and improve the sensitivity of bacteria to PT. ZIF-8@PT can target and destroy the biofilm as well as the cell membrane, promoting the intracellular delivery of PT and possibly its interaction with SmpB, a protein that could regulate the drug resistance of bacteria. ZIF-8@PT effectively suppresses abdominal infections induced by multiresistant Aeromonas veronii C4 in rodent models without systemic toxicity. ZIF-8@PT promises wide applications in treating infections caused by multidrug-resistant bacteria through a dual mechanism of action.202336815744
502160.4988A highly specialized flavin mononucleotide riboswitch responds differently to similar ligands and confers roseoflavin resistance to Streptomyces davawensis. Streptomyces davawensis is the only organism known to synthesize the antibiotic roseoflavin, a riboflavin (vitamin B2) analog. Roseoflavin is converted to roseoflavin mononucleotide (RoFMN) and roseoflavin adenine dinucleotide in the cytoplasm of target cells. (Ribo-)Flavin mononucleotide (FMN) riboswitches are genetic elements, which in many bacteria control genes responsible for the biosynthesis and transport of riboflavin. Streptomyces davawensis is roseoflavin resistant, and the closely related bacterium Streptomyces coelicolor is roseoflavin sensitive. The two bacteria served as models to investigate roseoflavin resistance of S. davawensis and to analyze the mode of action of roseoflavin in S. coelicolor. Our experiments demonstrate that the ribB FMN riboswitch of S. davawensis (in contrast to the corresponding riboswitch of S. coelicolor) is able to discriminate between the two very similar flavins FMN and RoFMN and shows opposite responses to the latter ligands.201222740651
6722170.4986Studies on the bacterial permeability of non-woven fabrics and cotton fabrics. The permeability of cotton and non-woven fabrics to bacteria, air and water was studied. Non-woven fabrics, even when wet, showed low resistance to air, and high resistance to permeation of water and bacteria. Water-repellent cotton fabrics were resistant to permeation of water, air and bacteria, but these properties decreased on washing. Non-water-repellent cotton fabrics were poor bacterial barriers even when new.19862873172
9160180.4984Interference in Bacterial Quorum Sensing: A Biopharmaceutical Perspective. Numerous bacteria utilize molecular communication systems referred to as quorum sensing (QS) to synchronize the expression of certain genes regulating, among other aspects, the expression of virulence factors and the synthesis of biofilm. To achieve this process, bacteria use signaling molecules, known as autoinducers (AIs), as chemical messengers to share information. Naturally occurring strategies that interfere with bacterial signaling have been extensively studied in recent years, examining their potential to control bacteria. To interfere with QS, bacteria use quorum sensing inhibitors (QSIs) to block the action of AIs and quorum quenching (QQ) enzymes to degrade signaling molecules. Recent studies have shown that these strategies are promising routes to decrease bacterial pathogenicity and decrease biofilms, potentially enhancing bacterial susceptibility to antimicrobial agents including antibiotics and bacteriophages. The efficacy of QSIs and QQ enzymes has been demonstrated in various animal models and are now considered in the development of new medical devices against bacterial infections, including dressings, and catheters for enlarging the therapeutic arsenal against bacteria.201829563876
110190.4982Resistance to the macrolide antibiotic tylosin is conferred by single methylations at 23S rRNA nucleotides G748 and A2058 acting in synergy. The macrolide antibiotic tylosin has been used extensively in veterinary medicine and exerts potent antimicrobial activity against Gram-positive bacteria. Tylosin-synthesizing strains of the Gram-positive bacterium Streptomyces fradiae protect themselves from their own product by differential expression of four resistance determinants, tlrA, tlrB, tlrC, and tlrD. The tlrB and tlrD genes encode methyltransferases that add single methyl groups at 23S rRNA nucleotides G748 and A2058, respectively. Here we show that methylation by neither TlrB nor TlrD is sufficient on its own to give tylosin resistance, and resistance is conferred by the G748 and A2058 methylations acting together in synergy. This synergistic mechanism of resistance is specific for the macrolides tylosin and mycinamycin that possess sugars extending from the 5- and 14-positions of the macrolactone ring and is not observed for macrolides, such as carbomycin, spiramycin, and erythromycin, that have different constellations of sugars. The manner in which the G748 and A2058 methylations coincide with the glycosylation patterns of tylosin and mycinamycin reflects unambiguously how these macrolides fit into their binding site within the bacterial 50S ribosomal subunit.200212417742