START - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
875700.9955Soybean FGAM synthase promoters direct ectopic nematode feeding site activity. Soybean cyst nematode (SCN) resistance in soybean is a complex oligogenic trait. One of the most important nematode resistance genes, rhg1, has been mapped to a distal region of molecular linkage group G in soybean. A simplified genetic system to identify soybean genes with modified expression in response to SCN led to the identification of several genes within the nematode feeding sites. The genes were mapped to reveal their linkage relationship to known QTLs associated with soybean cyst nematode (SCN) resistance. One candidate, a phosphoribosyl formyl glycinamidine (FGAM) synthase (EC 6.3.5.3) gene, mapped to the same genomic interval as the major SCN resistance gene rhg1 within linkage group G. Isolation of FGAM synthase from a soybean bacterial artificial chromosome (BAC) library revealed two highly homologous paralogs. The genes appeared to be well conserved between bacteria and humans. Promoter analysis of the two soybean homologs was carried out with the Arabidopsis thaliana - Heterodera schachtii system to investigate gene response to nematode feeding. The two promoters and their derived deletion constructions effected green fluorescent protein (GFP) expression within nematode feeding sites. The 1.0-kb promoter sequence immediately adjacent to the translation start site was sufficient to direct expression of GFP within syncytia. A wound-inducible element and a floral organ expression sequence were also identified within these promoters. Although a nematode-responsive element could not be identified, the observed expression of GFP within feeding sites supports the hypothesis that plant gene expression is redirected within feeding sites to benefit the parasite.200415060594
24610.9953Changes in gene expression in canola roots induced by ACC-deaminase-containing plant-growth-promoting bacteria. The technique of RNA arbitrarily primed-polymerase chain reaction (RAP-PCR) was used to study changes in gene expression over time in canola roots treated with the 1-aminocyclopropane-1-carboxylate (ACC) deaminase-containing plant-growth-promoting bacterium Enterobacter cloacae UW4 and to compare the changes with those in a mutant of E. cloacae UW4 in which the ACC deaminase structural gene acdS was replaced by homologous recombination with acdS with an intentional knockout containing a tetracycline resistance gene. Genes that were either up- or down-regulated over a three-day period in canola plants treated with wild-type or mutant bacteria were isolated, cloned, and sequenced; all appeared to have high homology with Arabidopsis thaliana genes. The upregulated genes included a cell division cycle protein 48 homolog and a eukaryotic translation initiation factor 3 subunit 7 gene homolog. The downregulated genes included one encoding a glycine-rich RNA binding protein with a function in RNA processing or binding during ethylene-induced stress, which is expressed only in roots, and another gene thought to be involved in a defense signaling pathway. All RAP-PCR results were verified using Northern blotting. These data, indicate that roots isolated from canola seeds treated with the ACC deaminase-producing E. cloacae UW4 upregulate genes involved in cell division and proliferation but down-regulate stress genes. This data is in agreement with a model in which ACC deaminase-containing plant-growth-promoting bacteria reduce plant stress and induce root elongation and proliferation in plants, largely by lowering ethylene levels.200415305607
32420.9952Capillary electrophoresis-based profiling and quantitation of total salicylic acid and related phenolics for analysis of early signaling in Arabidopsis disease resistance. A capillary electrophoresis-based method for quantitation of total salicylic acid levels in Arabidopsis leaves was developed. Direct comparison to previous high-performance liquid chromatography (HPLC)-based measurements showed similar levels of salicylic acid. Simultaneous quantitation of trans-cinnamic acid, benzoic acid, sinapic acid, and an internal recovery standard was achieved. A rapid, streamlined protocol with requirements for plant tissue reduced relative to those of HPLC-based protocols is presented. Complicated, multiparameter experiments were thus possible despite the labor-intensive nature of inoculating plants with bacterial pathogens. As an example of this sort of experiment, detailed time course studies of total salicylic acid accumulation by wild-type Arabidopsis and two lines with mutations affecting salicylic acid accumulation in response to either of two avirulent bacterial strains were performed. Accumulation in the first 12h was biphasic. The first phase was partially SID2 and NDR1 dependent with both bacterial strains. The second phase was largely independent of both genes with bacteria carrying avrB, but dependent upon both genes with bacteria carrying avrRpt2. Virulent bacteria did not elicit salicylic acid accumulation at these time points. Application of this method to various Arabidopsis pathosystems and the wealth of available disease resistance signaling mutants will refine knowledge of disease resistance and associated signal transduction.200312927828
66130.9951A Putative Bacterial ABC Transporter Circumvents the Essentiality of Signal Peptidase. The type I signal peptidase of Staphylococcus aureus, SpsB, is an attractive antibacterial target because it is essential for viability and extracellularly accessible. We synthesized compound 103, a novel arylomycin-derived inhibitor of SpsB with significant potency against various clinical S. aureus strains (MIC of ~1 µg/ml). The predominant clinical strain USA300 developed spontaneous resistance to compound 103 with high frequency, resulting from single point mutations inside or immediately upstream of cro/cI, a homolog of the lambda phage transcriptional repressor cro These cro/cI mutations led to marked (>50-fold) overexpression of three genes encoding a putative ABC transporter. Overexpression of this ABC transporter was both necessary and sufficient for resistance and, notably, circumvented the essentiality of SpsB during in vitro culture. Mutation of its predicted ATPase gene abolished resistance, suggesting a possible role for active transport; in these bacteria, resistance to compound 103 occurred with low frequency and through mutations in spsB Bacteria overexpressing the ABC transporter and lacking SpsB were capable of secreting a subset of proteins that are normally cleaved by SpsB and instead were cleaved at a site distinct from the canonical signal peptide. These bacteria secreted reduced levels of virulence-associated proteins and were unable to establish infection in mice. This study reveals the mechanism of resistance to a novel arylomycin derivative and demonstrates that the nominal essentiality of the S. aureus signal peptidase can be circumvented by the upregulation of a putative ABC transporter in vitro but not in vivo IMPORTANCE: The type I signal peptidase of Staphylococcus aureus (SpsB) enables the secretion of numerous proteins by cleavage of the signal peptide. We synthesized an SpsB inhibitor with potent activity against various clinical S. aureus strains. The predominant S. aureus strain USA300 develops resistance to this inhibitor by mutations in a novel transcriptional repressor (cro/cI), causing overexpression of a putative ABC transporter. This mechanism promotes the cleavage and secretion of various proteins independently of SpsB and compensates for the requirement of SpsB for viability in vitro However, bacteria overexpressing the ABC transporter and lacking SpsB secrete reduced levels of virulence-associated proteins and are unable to infect mice. This study describes a bacterial resistance mechanism that provides novel insights into the biology of bacterial secretion.201627601569
878640.9951Pattern triggered immunity (PTI) in tobacco: isolation of activated genes suggests role of the phenylpropanoid pathway in inhibition of bacterial pathogens. BACKGROUND: Pattern Triggered Immunity (PTI) or Basal Resistance (BR) is a potent, symptomless form of plant resistance. Upon inoculation of a plant with non-pathogens or pathogenicity-mutant bacteria, the induced PTI will prevent bacterial proliferation. Developed PTI is also able to protect the plant from disease or HR (Hypersensitive Response) after a challenging infection with pathogenic bacteria. Our aim was to reveal those PTI-related genes of tobacco (Nicotiana tabacum) that could possibly play a role in the protection of the plant from disease. METHODOLOGY/PRINCIPAL FINDINGS: Leaves were infiltrated with Pseudomonas syringae pv. syringae hrcC- mutant bacteria to induce PTI, and samples were taken 6 and 48 hours later. Subtraction Suppressive Hybridization (SSH) resulted in 156 PTI-activated genes. A cDNA microarray was generated from the SSH clone library. Analysis of hybridization data showed that in the early (6 hpi) phase of PTI, among others, genes of peroxidases, signalling elements, heat shock proteins and secondary metabolites were upregulated, while at the late phase (48 hpi) the group of proteolysis genes was newly activated. Microarray data were verified by real time RT-PCR analysis. Almost all members of the phenyl-propanoid pathway (PPP) possibly leading to lignin biosynthesis were activated. Specific inhibition of cinnamic-acid-4-hydroxylase (C4H), rate limiting enzyme of the PPP, decreased the strength of PTI--as shown by the HR-inhibition and electrolyte leakage tests. Quantification of cinnamate and p-coumarate by thin-layer chromatography (TLC)-densitometry supported specific changes in the levels of these metabolites upon elicitation of PTI. CONCLUSIONS/SIGNIFICANCE: We believe to provide first report on PTI-related changes in the levels of these PPP metabolites. Results implicated an actual role of the upregulation of the phenylpropanoid pathway in the inhibition of bacterial pathogenic activity during PTI.201425101956
878550.9950Mechanism of resistance to Cucumber mosaic virus elicited by inoculation with Bacillus subtilis subsp. subtilis. BACKGROUND: Systemic resistance stimulated by rhizosphere bacteria is an important strategy for the management of plant viruses. The efficacy of Bacillus subtilis subsp. subtilis was assessed for protection of cucumber and Arabidopsis against Cucumber mosaic virus (CMV). Moreover, transcriptomic analysis was carried out for A. thaliana colonized with B. subtilis subsp. subtilis and infected with CMV. RESULTS: Treatment with a cell suspension of Bacillus revealed a significant reduction of CMV severity in comparison to their control. All Arabidopsis mutants treated with B. subtilis showed a clear reduction in CMV accumulation. Disease severity data and virus concentration titer measurements correlated with gene up-regulation in microarray and reverse transcription quantitative polymerase chain reaction (RT-qPCR) experiments. Bacillus treatment increased Arabidopsis growth characteristics (fresh and dry weights and number of leaflets) under pot conditions. The molecular mechanisms by which Bacillus activated resistance to CMV were investigated. Using the microarray hybridization technique, we were able to determine the mechanism of resistance elicited by B. subtilis against CMV. The transcriptomic analysis confirmed the up-regulation of more than 250 defense-related genes in Arabidopsis expressing induced systemic resistance (ISR). RT-qPCR results validated the overexpression of defense genes (YLS9 and PR1 in Arabidopsis and PR1 and LOX in cucumber), implying their important roles in the stimulated defense response. CONCLUSION: Through the study of microarray and RT-qPCR analyses, it can be concluded that the overexpression of pathogenesis-related genes was necessary to stimulate CMV defense in cucumber and Arabidopsis by B. subtilis subsp. subtilis. © 2021 Society of Chemical Industry.202234437749
875960.9950Genetic and transcriptomic dissection of host defense to Goss's bacterial wilt and leaf blight of maize. Goss's wilt, caused by the Gram-positive actinobacterium Clavibacter nebraskensis, is an important bacterial disease of maize. The molecular and genetic mechanisms of resistance to the bacterium, or, in general, Gram-positive bacteria causing plant diseases, remain poorly understood. Here, we examined the genetic basis of Goss's wilt through differential gene expression, standard genome-wide association mapping (GWAS), extreme phenotype (XP) GWAS using highly resistant (R) and highly susceptible (S) lines, and quantitative trait locus (QTL) mapping using 3 bi-parental populations, identifying 11 disease association loci. Three loci were validated using near-isogenic lines or recombinant inbred lines. Our analysis indicates that Goss's wilt resistance is highly complex and major resistance genes are not commonly present. RNA sequencing of samples separately pooled from R and S lines with or without bacterial inoculation was performed, enabling identification of common and differential gene responses in R and S lines. Based on expression, in both R and S lines, the photosynthesis pathway was silenced upon infection, while stress-responsive pathways and phytohormone pathways, namely, abscisic acid, auxin, ethylene, jasmonate, and gibberellin, were markedly activated. In addition, 65 genes showed differential responses (up- or down-regulated) to infection in R and S lines. Combining genetic mapping and transcriptional data, individual candidate genes conferring Goss's wilt resistance were identified. Collectively, aspects of the genetic architecture of Goss's wilt resistance were revealed, providing foundational data for mechanistic studies.202337652038
32770.9950Natural variation in RPS2-mediated resistance among Arabidopsis accessions: correlation between gene expression profiles and phenotypic responses. Natural variation in gene expression (expression traits or e-traits) is increasingly used for the discovery of genes controlling traits. An important question is whether a particular e-trait is correlated with a phenotypic trait. Here, we examined the correlations between phenotypic traits and e-traits among 10 Arabidopsis thaliana accessions. We studied defense against Pseudomonas syringae pv tomato DC3000 (Pst), with a focus on resistance gene-mediated resistance triggered by the type III effector protein AvrRpt2. As phenotypic traits, we measured growth of the bacteria and extent of the hypersensitive response (HR) as measured by electrolyte leakage. Genetic variation among accessions affected growth of Pst both with (Pst avrRpt2) and without (Pst) the AvrRpt2 effector. Variation in HR was not correlated with variation in bacterial growth. We also collected gene expression profiles 6 h after mock and Pst avrRpt2 inoculation using a custom microarray. Clusters of genes whose expression levels are correlated with bacterial growth or electrolyte leakage were identified. Thus, we demonstrated that variation in gene expression profiles of Arabidopsis accessions collected at one time point under one experimental condition has the power to explain variation in phenotypic responses to pathogen attack.200718083910
872880.9950Identification of the defense-related gene VdWRKY53 from the wild grapevine Vitis davidii using RNA sequencing and ectopic expression analysis in Arabidopsis. BACKGROUND: Grapevine is an important fruit crop grown worldwide, and its cultivars are mostly derived from the European species Vitis vinifera, which has genes for high fruit quality and adaptation to a wide variety of climatic conditions. Disease resistance varies substantially across grapevine species; however, the molecular mechanisms underlying such variation remain uncharacterized. RESULTS: The anatomical structure and disease symptoms of grapevine leaves were analyzed for two grapevine species, and the critical period of resistance of grapevine to pathogenic bacteria was determined to be 12 h post inoculation (hpi). Differentially expressed genes (DEGs) were identified from transcriptome analysis of leaf samples obtained at 12 and 36 hpi, and the transcripts in four pathways (cell wall genes, LRR receptor-like genes, WRKY genes, and pathogenesis-related (PR) genes) were classified into four co-expression groups by using weighted correlation network analysis (WGCNA). The gene VdWRKY53, showing the highest transcript level, was introduced into Arabidopsis plants by using a vector containing the CaMV35S promoter. These procedures allowed identifying the key genes contributing to differences in disease resistance between a strongly resistant accession of a wild grapevine species Vitis davidii (VID) and a susceptible cultivar of V. vinifera, 'Manicure Finger' (VIV). Vitis davidii, but not VIV, showed a typical hypersensitive response after infection with a fungal pathogen (Coniella diplodiella) causing white rot disease. Further, 20 defense-related genes were identified, and their differential expression between the two grapevine species was confirmed using quantitative real-time PCR analysis. VdWRKY53, showing the highest transcript level, was selected for functional analysis and therefore over-expressed in Arabidopsis under the control of the CaMV35S promoter. The transgenic plants showed enhanced resistance to C. diplodiella and to two other pathogens, Pseudomonas syringae pv. tomato DC3000 and Golovinomyces cichoracearum. CONCLUSION: The consistency of the results in VID and transgenic Arabidopsis indicated that VdWRKY53 might be involved in the activation of defense-related genes that enhance the resistance of these plants to pathogens. Thus, the over-expression of VdWRKY53 in transgenic grapevines might improve their resistance to pathogens.201931057347
2890.9950Screening of rice (Oryza sativa L.) OsPR1b-interacting factors and their roles in resisting bacterial blight. PR genes, a type of genetic marker, are constitutively expressed at background levels, while being easily inducible by pathogenic bacteria. By using a yeast two-hybrid technique, four rice (Oryza sativa L.) OsPR1b-interacting factors were screened. Homozygous plants overexpressing OsPR1b were prepared by transgenic technology. We postulated that OsPR1b may participate in the resistance signaling pathway of rice. Of simultaneous treatments with hormones and pathogenic bacteria, exogenously applying JA and ET significantly increased the expression level of OsPR1b genes in seedlings. Compared with the control group that was inoculated with water, inoculation with a mixture of water and pathogenic bacteria hardly affected the expression level of OsPR1b gene, while cotreatment with SA and pathogenic bacteria slightly upregulated the expression level. However, cotreatment with JA or ET and pathogenic bacteria managed to significantly upregulate the expression level of the OsPR1b gene by 4.8 or 5.7 fold. PR genes, which are sensitive, are prone to many unknown factors during expression, and the detailed regulatory mechanisms in rice still require in-depth studies.201525867332
6355100.9949Regulation of resistance to copper in Xanthomonas axonopodis pv. vesicatoria. Copper-resistant strains of Xanthomonas axonopodis pv. vesicatoria were previously shown to carry plasmid-borne copper resistance genes related to the cop and pco operons of Pseudomonas syringae and Escherichia coli, respectively. However, instead of the two-component (copRS and pcoRS) systems determining copper-inducible expression of the operons in P. syringae and E. coli, a novel open reading frame, copL, was found to be required for copper-inducible expression of the downstream multicopper oxidase copA in X. axonopodis. copL encodes a predicted protein product of 122 amino acids that is rich in histidine and cysteine residues, suggesting a possible direct interaction with copper. Deletions or frameshift mutations within copL, as well as an amino acid substitution generated at the putative start codon of copL, caused a loss of copper-inducible transcriptional activation of copA. A nonpolar insertion of a kanamycin resistance gene in copL resulted in copper sensitivity in the wild-type strain. However, repeated attempts to complement copL mutations in trans failed. Analysis of the genomic sequence databases shows that there are copL homologs upstream of copAB genes in X. axonopodis pv. citri, X. campestris pv. campestris, and Xylella fastidiosa. The cloned promoter area upstream of copA in X. axonopodis pv. vesicatoria did not function in Pseudomonas syringae or in E. coli, nor did the P. syringae cop promoter function in Xanthomonas. However, a transcriptional fusion of the Xanthomonas cop promoter with the Pseudomonas copABCDRS was able to confer resistance to copper in Xanthomonas, showing divergence in the mechanisms of regulation of the resistance to copper in phytopathogenic bacteria.200515691931
6162110.9949The resistance of BALB/cJ mice to Yersinia pestis maps to the major histocompatibility complex of chromosome 17. Yersinia pestis, the causative agent of plague, has been well studied at the molecular and genetic levels, but little is known about the role that host genes play in combating this highly lethal pathogen. We challenged several inbred strains of mice with Y. pestis and found that BALB/cJ mice are highly resistant compared to susceptible strains such as C57BL/6J. This resistance was observed only in BALB/cJ mice and not in other BALB/c substrains. Compared to C57BL/6J mice, the BALB/cJ strain exhibited reduced bacterial burden in the spleen and liver early after infection as well as lower levels of serum interleukin-6. These differences were evident 24 h postinfection and became more pronounced with time. Although a significant influx of neutrophils in the spleen and liver was exhibited in both strains, occlusive fibrinous thrombi resulting in necrosis of the surrounding tissue was observed only in C57BL/6J mice. In an effort to identify the gene(s) responsible for resistance, we measured total splenic bacteria in 95 F(2) mice 48 h postinfection and performed quantitative trait locus mapping using 58 microsatellite markers spaced throughout the genome. This analysis revealed a single nonrecessive plague resistance locus, designated prl1 (plague resistance locus 1), which coincides with the major histocompatibility complex of chromosome 17. A second screen of 95 backcrossed mice verified that this locus confers resistance to Y. pestis early in infection. Finally, eighth generation backcrossed mice harboring prl1 were found to maintain resistance in the susceptible C57BL/6J background. These results identify a novel genetic locus in BALB/cJ mice that confers resistance to Y. pestis.200818573896
8788120.9949Plant nitrate supply regulates Erwinia amylovora virulence gene expression in Arabidopsis. We showed previously that nitrogen (N) limitation decreases Arabidopsis resistance to Erwinia amylovora (Ea). We show that decreased resistance to bacteria in low N is correlated with lower apoplastic reactive oxygen species (ROS) accumulation and lower jasmonic acid (JA) pathway expression. Consistently, pretreatment with methyl jasmonate (Me-JA) increased the resistance of plants grown under low N. In parallel, we show that in planta titres of a nonvirulent type III secretion system (T3SS)-deficient Ea mutant were lower than those of wildtype Ea in low N, as expected, but surprisingly not in high N. This lack of difference in high N was consistent with the low expression of the T3SS-encoding hrp virulence genes by wildtype Ea in plants grown in high N compared to plants grown in low N. This suggests that expressing its virulence factors in planta could be a major limiting factor for Ea in the nonhost Arabidopsis. To test this hypothesis, we preincubated Ea in an inducing medium that triggers expression of hrp genes in vitro, prior to inoculation. This preincubation strongly enhanced Ea titres in planta, independently of the plant N status, and was correlated to a significant repression of JA-dependent genes. Finally, we identify two clusters of metabolites associated with resistance or with susceptibility to Ea. Altogether, our data showed that high susceptibility of Arabidopsis to Ea, under low N or following preincubation in hrp-inducing medium, is correlated with high expression of the Ea hrp genes in planta and low expression of the JA signalling pathway, and is correlated with the accumulation of specific metabolites.202134382308
8784130.9949Bacillus firmus Strain I-1582, a Nematode Antagonist by Itself and Through the Plant. Bacillus firmus I-1582 is approved in Europe for the management of Meloidogyne on vegetable crops. However, little information about its modes of action and temperature requirements is available, despite the effect of these parameters in its efficacy. The cardinal temperatures for bacterial growth and biofilm formation were determined. The bacteria was transformed with GFP to study its effect on nematode eggs and root colonization of tomato (Solanum lycopersicum) and cucumber (Cucumis sativus) by laser-scanning confocal microscopy. Induction of plant resistance was determined in split-root experiments and the dynamic regulation of genes related to jasmonic acid (JA) and salicylic acid (SA) by RT-qPCR at three different times after nematode inoculation. The bacteria was able to grow and form biofilms between 15 and 45°C; it degraded egg-shells and colonized eggs; it colonized tomato roots more extensively than cucumber roots; it induced systemic resistance in tomato, but not in cucumber; SA and JA related genes were primed at different times after nematode inoculation in tomato, but only the SA-related gene was up-regulated at 7 days after nematode inoculation in cucumber. In conclusion, B. firmus I-1582 is active at a wide range of temperatures; its optimal growth temperature is 35°C; it is able to degrade Meloidogyne eggs, and to colonize plant roots, inducing systemic resistance in a plant dependent species manner.202032765537
636140.9949Listeria monocytogenes is resistant to lysozyme through the regulation, not the acquisition, of cell wall-modifying enzymes. Listeria monocytogenes is a Gram-positive facultative intracellular pathogen that is highly resistant to lysozyme, a ubiquitous enzyme of the innate immune system that degrades cell wall peptidoglycan. Two peptidoglycan-modifying enzymes, PgdA and OatA, confer lysozyme resistance on L. monocytogenes; however, these enzymes are also conserved among lysozyme-sensitive nonpathogens. We sought to identify additional factors responsible for lysozyme resistance in L. monocytogenes. A forward genetic screen for lysozyme-sensitive mutants led to the identification of 174 transposon insertion mutations that mapped to 13 individual genes. Four mutants were killed exclusively by lysozyme and not other cell wall-targeting molecules, including the peptidoglycan deacetylase encoded by pgdA, the putative carboxypeptidase encoded by pbpX, the orphan response regulator encoded by degU, and the highly abundant noncoding RNA encoded by rli31. Both degU and rli31 mutants had reduced expression of pbpX and pgdA, yet DegU and Rli31 did not regulate each other. Since pbpX and pgdA are also present in lysozyme-sensitive bacteria, this suggested that the acquisition of novel enzymes was not responsible for lysozyme resistance, but rather, the regulation of conserved enzymes by DegU and Rli31 conferred high lysozyme resistance. Each lysozyme-sensitive mutant exhibited attenuated virulence in mice, and a time course of infection revealed that the most lysozyme-sensitive strain was killed within 30 min of intravenous infection, a phenotype that was recapitulated in purified blood. Collectively, these data indicate that the genes required for lysozyme resistance are highly upregulated determinants of L. monocytogenes pathogenesis that are required for avoiding the enzymatic activity of lysozyme in the blood.201425157076
8455150.9949RT-PCR: characterization of long multi-gene operons and multiple transcript gene clusters in bacteria. Reverse transcription (RT)-PCR is a valuable tool widely used for analysis of gene expression. In bacteria, RT-PCR is helpful beyond standard protocols of northern blot RNA/DNA hybridization (to identify transcripts) and primer extension (to locate their start points), as these methods have been difficult with transcripts that are low in abundance or unstable, similar to long multi-gene operons. In this report, RT-PCR is adapted to analyze transcripts that form long multi-gene operons--where they start and where they stop. The transcripts can also be semiquantitated to follow the expression of genes under different growth conditions. Examples using RT-PCR are presented with two different multi-gene systems for metal cation resistance to silver and mercury ions. The silver resistance system [9 open reading frames (ORFs); 12.5 kb] is shown by RT-PCR to synthesize three nonoverlapping messenger RNAs that are transcribed divergently. In the mercury resistance system (8 ORFs; 6.3 kb), all the genes are transcribed in the same orientation, and two promoter sites produce overlapping transcripts. For RT-PCR, reverse transcriptase enzyme is used to synthesize first-strand cDNA that is used as a template for PCR amplification of single-gene products, from the beginning, middle or end of long multi-gene, multi-transcript gene clusters.199910572645
689160.9948Regulatory and DNA repair genes contribute to the desiccation resistance of Sinorhizobium meliloti Rm1021. Sinorhizobium meliloti can form a nitrogen-fixing symbiotic relationship with alfalfa after bacteria in the soil infect emerging root hairs of the growing plant. To be successful at this, the bacteria must be able to survive in the soil between periods of active plant growth, including when conditions are dry. The ability of S. meliloti to withstand desiccation has been known for years, but genes that contribute to this phenotype have not been identified. Transposon mutagenesis was used in combination with novel screening techniques to identify four desiccation-sensitive mutants of S. meliloti Rm1021. DNA sequencing of the transposon insertion sites identified three genes with regulatory functions (relA, rpoE2, and hpr) and a DNA repair gene (uvrC). Various phenotypes of the mutants were determined, including their behavior on several indicator media and in symbiosis. All of the mutants formed an effective symbiosis with alfalfa. To test the hypothesis that UvrC-related excision repair was important in desiccation resistance, uvrA, uvrB, and uvrC deletion mutants were also constructed. These strains were sensitive to DNA damage induced by UV light and 4-NQO and were also desiccation sensitive. These data indicate that uvr gene-mediated DNA repair and the regulation of stress-induced pathways are important for desiccation resistance.200919028909
82170.9948Type III effectors orchestrate a complex interplay between transcriptional networks to modify basal defence responses during pathogenesis and resistance. To successfully infect a plant, bacterial pathogens inject a collection of Type III effector proteins (TTEs) directly into the plant cell that function to overcome basal defences and redirect host metabolism for nutrition and growth. We examined (i) the transcriptional dynamics of basal defence responses between Arabidopsis thaliana and Pseudomonas syringae and (ii) how basal defence is subsequently modulated by virulence factors during compatible interactions. A set of 96 genes displaying an early, sustained induction during basal defence was identified. These were also universally co-regulated following other bacterial basal resistance and non-host responses or following elicitor challenges. Eight hundred and eighty genes were conservatively identified as being modulated by TTEs within 12 h post-inoculation (hpi), 20% of which represented transcripts previously induced by the bacteria at 2 hpi. Significant over-representation of co-regulated transcripts encoding leucine rich repeat receptor proteins and protein phosphatases were, respectively, suppressed and induced 12 hpi. These data support a model in which the pathogen avoids detection through diminution of extracellular receptors and attenuation of kinase signalling pathways. Transcripts associated with several metabolic pathways, particularly plastid based primary carbon metabolism, pigment biosynthesis and aromatic amino acid metabolism, were significantly modified by the bacterial challenge at 12 hpi. Superimposed upon this basal response, virulence factors (most likely TTEs) targeted genes involved in phenylpropanoid biosynthesis, consistent with the abrogation of lignin deposition and other wall modifications likely to restrict the passage of nutrients and water to the invading bacteria. In contrast, some pathways associated with stress tolerance are transcriptionally induced at 12 hpi by TTEs.200616553893
662180.9948Gene expression and physiological role of Pseudomonas aeruginosa methionine sulfoxide reductases during oxidative stress. Pseudomonas aeruginosa PAO1 has two differentially expressed methionine sulfoxide reductase genes: msrA (PA5018) and msrB (PA2827). The msrA gene is expressed constitutively at a high level throughout all growth phases, whereas msrB expression is highly induced by oxidative stress, such as sodium hypochlorite (NaOCl) treatment. Inactivation of either msrA or msrB or both genes (msrA msrB mutant) rendered the mutants less resistant than the parental PAO1 strain to oxidants such as NaOCl and H2O2. Unexpectedly, msr mutants have disparate resistance patterns when exposed to paraquat, a superoxide generator. The msrA mutant had a higher paraquat resistance level than the msrB mutant, which had a lower paraquat resistance level than the PAO1 strain. The expression levels of msrA showed an inverse correlation with the paraquat resistance level, and this atypical paraquat resistance pattern was not observed with msrB. Virulence testing using a Drosophila melanogaster model revealed that the msrA, msrB, and, to a greater extent, msrA msrB double mutants had an attenuated virulence phenotype. The data indicate that msrA and msrB are essential genes for oxidative stress protection and bacterial virulence. The pattern of expression and mutant phenotypes of P. aeruginosa msrA and msrB differ from previously characterized msr genes from other bacteria. Thus, as highly conserved genes, the msrA and msrB have diverse expression patterns and physiological roles that depend on the environmental niche where the bacteria thrive.201323687271
8228190.9948Brucella abortus genes identified following constitutive growth and macrophage infection. The chronicity of Brucella abortus infection in humans and animals depends on the organism's ability to escape host defenses by gaining entry and surviving inside the macrophage. Although no human vaccine exists for Brucella, vaccine development in other bacteria has been based on deletions of selective nutritional as well as regulatory systems. Our goal is to develop a vaccine for Brucella. To further this aim, we have used a green fluorescent protein (GFP) reporter system to identify constitutively and intracellularly induced B. abortus genes. Constitutively producing gfp clones exhibited sequence homology with genes associated with protein synthesis and metabolism (initiation factor-1 and tRNA ribotransferase) and detoxification (organic hydroperoxidase resistance). Of greater interest, clones negative for constitutively produced gfp in agar were examined by fluorescence microscopy to detect promoter activity induced within macrophages 4 and 24 h following infection. Bacterial genes activated in macrophages 4 h postinfection appear to be involved in adapting to intracellular environmental conditions. Included in this group were genes for detoxification (lactoglyglutathione lyase gene), repair (formamidopyrimidine-DNA glycosylase gene), osmotic protection (K(+) transport gene), and site-specific recombination (xerD gene). A gene involved in metabolism and biosynthesis (deoxyxylulose 5' phosphate synthase gene) was also identified. Genes activated 24 h following infection were biosynthesis- and metabolism-associated genes (iron binding protein and rhizopine catabolism). Identification of B. abortus genes that are activated following macrophage invasion provides insight into Brucella pathogenesis and thus is valuable in vaccine design utilizing selective targeted deletions of newly identified Brucella genes.200111705955