# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7489 | 0 | 0.9897 | Rethinking water treatment targets: Bacteria regrowth under unprovable conditions. Ozonation is among the currently used technologies to remove chemical and biological contaminants from secondary treated urban wastewater (UWW). Despite its effectiveness on the abatement of organic micropollutants (OMPs) and disinfection, previous studies have shown that regrow of bacteria may occur upon storage of the ozonated UWW. This reactivation has been attributed to the high content of assimilable organic carbon after treatment. In order to investigate if ozonation by-products are the main biological regrowth drivers in stored ozonated UWW, the ozonation surviving cells were resuspended in sterile bottled mineral water (MW), simulating a pristine oligotrophic environment. After 7 days storage, organisms such as Acinetobacter, Methylobacterium, Cupriavidus, Massilia, Acidovorax and Pseudomonas were dominant in both ozonated UWW and pristine MW, demonstrating that bacterial regrowth is not strictly related to the eventual presence of ozonation by-products, but instead with the ability of the surviving cells to cope with nutrient-poor environments. The resistome of UWW before and after ozonation was analysed by metagenomic techniques. Draft metagenome assembled genomes (dMAGs), recovered from both ozonated UWW and after cell resuspension in MW, harboured genes conferring resistance to diverse antibiotics classes. Some of these antibiotic resistance genes (ARGs) were located in the vicinity of mobile genetic elements, suggesting their potential to be mobilized. Among these, dMAGs affiliated to taxa with high relative abundance in stored water, such as P. aeruginosa and Acinetobacter spp., harboured ARGs conferring resistance to 12 and 4 families of antibiotics, respectively, including those encoding carbapenem hydrolysing oxacillinases. The results herein obtained point out that the design and development of new wastewater treatment technologies should include measures to attenuate the imbalance of the bacterial communities promoted by storage of the final treated wastewater, even when applying processes with high mineralization rates. | 2021 | 34214892 |
| 8431 | 1 | 0.9895 | A quaternary ammonium salt grafted tannin-based flocculant boosts the conjugative transfer of plasmid-born antibiotic resistance genes: The nonnegligible side of their flocculation-sterilization properties. This study developed dual-function tannin-based flocculants, namely tannin-graft-acrylamide-diallyl dimethyl ammonium chloride (TGCC-A/TGCC-C), endowed with enhanced flocculation-sterilization properties. The impacts of these flocculants on proliferation and transformation of antibiotic resistance genes (ARGs) among bacteria during the flocculation-deposition process were examined. TGCC-A/TGCC-C exhibited remarkable flocculation capacities towards both Escherichia coli and Staphylococcus aureus, encompassing a logarithmic range of initial cell density (10(8)-10(9) CFU/mL) and a broad pH spectrum (pH 2-11). The grafted quaternary ammonium salt groups played pivotal parts in flocculation through charge neutralization and bridging mechanisms, concurrently contributing to sterilization by disrupting cellular membranes. The correlation between flocculation and sterilization entails a sequential progression, where an excess of TGCC, initially employed for flocculation, is subsequently consumed for sterilization purposes. The frequencies of ARGs conjugative transfer were enhanced in bacterial flocs across all TGCC treatments, stemming from augmented bacterial aggregation and cell membrane permeability, elicited stress response, and up-regulated genes encoding plasmid transfer. These findings underscore the indispensable role of flocculation-sterilization effects in mediating the propagation of ARGs, consequently providing substantial support for the scientific evaluation of the environmental risks associated with flocculants in the context of ARGs dissemination during the treatment of raw water featuring high bacterial density. | 2023 | 37619725 |
| 6904 | 2 | 0.9894 | Ionic Liquid Enriches the Antibiotic Resistome, Especially Efflux Pump Genes, Before Significantly Affecting Microbial Community Structure. An expanding list of chemicals may permeabilize bacterial cells and facilitate horizontal gene transfer (HGT), which enhances propagation of antibiotic resistance genes (ARGs) in the environment. Previous studies showed that 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]), an ionic liquid, can facilitate HGT of some ARGs among bacteria. However, the dynamic response of a wider range of ARGs and associated mobile genetic elements (MGEs) in different environments is unknown. Here, we used metagenomic tools to study shifts of the resistome and microbiome in both sediments and freshwater microcosms exposed to [BMIm][PF6]. Exposure for 16 h to 0.1 or 1.0 g/L significantly enriched more than 207 ARG subtypes primarily encoding efflux pumps in freshwater microcosms as well as cultivable antibiotic-resistant bacteria. This resistome enrichment was attributed to HGT facilitated by MGEs (428 plasmids, 61 integron-integrase genes, and 45 gene cassettes were enriched) as well as to HGT-related functional genes. Interestingly, resistome enrichment occurred fast (within 16 h) after [BMIm][PF6] exposure, before any significant changes in bacterial community structure. Similar ARG enrichment occurred in sediment microcosms exposed to [BMIm][PF6] for 28 d, and this longer exposure affected the microbial community structure (e.g., Proteobacteria abundance increased significantly). Overall, this study suggests that [BMIm][PF6] releases could rapidly enrich the antibiotic resistome in receiving environments by increasing HGT and fortuitously selecting for efflux pump genes, thus contributing to ARG propagation. | 2020 | 31944684 |
| 8123 | 3 | 0.9894 | The effect of bulk-biochar and nano-biochar amendment on the removal of antibiotic resistance genes in microplastic contaminated soil. Biochar amendment has significant benefits in removing antibiotic resistance genes (ARGs) in the soil. Nevertheless, there is little information on ARGs removal in microplastic contaminated soil. Herein, a 42-day soil microcosm experiment were carried out to study how two coconut shell biochars (bulk- and nano-size) eliminate soil ARGs with/without microplastic presence. The results showed that microplastic increased significantly the numbers and abundances of ARGs in soil at 14d of cultivation. And, two biochars amendment effectively inhibited soil ARGs spread whether or not microplastic was present, especially for nano-biochar which had more effective removal compared to bulk-biochar. However, microplastic weakened soil ARGs removal after applying same biochar. Two biochars removed ARGs through decreasing horizontal gene transfer (HGT) of ARGs, potential host-bacteria abundances, some bacteria crowding the eco-niche of hosts and promoting soil properties. The adverse effect of microplastic on ARGs removal was mainly caused by weakening mobile genetic elements (MGEs) removal, and by changing soil properties. Structural equation modeling (SEM) analysis indicated that biochar's effect on ARGs profile was changed by its size and microplastic presence through altering MGEs abundances. These results highlight that biochar amendment is still an effective method for ARGs removal in microplastic contaminated soil. | 2024 | 37907163 |
| 6921 | 4 | 0.9894 | Impacts of Chemical and Organic Fertilizers on the Bacterial Communities, Sulfonamides and Sulfonamide Resistance Genes in Paddy Soil Under Rice-Wheat Rotation. The responses of sulfonamides, sulfonamide-resistance genes (sul) and soil bacterial communities to different fertilization regimes were investigated by performing a field experiment using paddy soil with no fertilizer applied, chemical fertilizer applied, organic fertilizer applied, and combination of chemical and organic fertilizer applied. Applying organic fertilizer increased the bacterial community diversity and affected the bacterial community composition. Eutrophic bacteria (Bacteroidetes, Gemmatimonadetes, and Proteobacteria) were significantly enriched by applying organic fertilizer. It was also found organic fertilizer application increased sulfamethazine content and the relative abundances of sul1 and sul2 in the soil. In contrast, applying chemical fertilizer significantly increased the abundance of Nitrospirae, Parcubacteria, and Verrucomicrobia and caused no obvious changes on sul. Correlation analysis indicated that sul enrichment was associated with the increases in sulfamethazine content and potential hosts (e.g., Novosphingobium and Rhodoplanes) population. The potential ecological risks of antibiotics in paddy soil with organic fertilizer applied cannot be ignored. | 2022 | 36547725 |
| 8568 | 5 | 0.9894 | Bioremediation potential of sulfadiazine-degrading bacteria: Impacts on ryegrass growth and soil functionality. The extensive use of antibiotics, particularly sulfadiazine (SDZ), has led to significant environmental contamination and the proliferation of antibiotic resistance genes (ARGs). This study investigates the bioremediation potential of two SDZ-degrading bacterial strains, Acinetobacter sp. M9 and Enterobacter sp. H1, and their impact on ryegrass (Lolium perenne) growth and the inter-root microenvironment in SDZ-contaminated soils. A pot experiment combined with amplicon and metagenomic sequencing revealed that inoculation with M9 and H1 significantly enhanced ryegrass growth by alleviating oxidative stress, increasing chlorophyll content, and improving soil nutrient availability. The strains also promoted SDZ degradation efficiency and improved carbon and nitrogen cycling through the upregulation of key functional genes. Furthermore, microbial community analysis demonstrated increased alpha diversity, shifts in dominant taxa, and functional enrichment in pollutant degradation pathways. The dynamics of ARGs revealed a decrease in aminoglycoside, rifamycin, and streptomycin resistance genes, while sulfonamide resistance genes increased due to the residual SDZ stress. These findings highlight the potential of M9 and H1 as sustainable bioremediation agents to mitigate antibiotic contamination, improve soil health, and support plant growth in polluted environments. | 2025 | 40122011 |
| 7950 | 6 | 0.9893 | Fate and removal of fluoroquinolone antibiotics in mesocosmic wetlands: Impact on wetland performance, resistance genes and microbial communities. The fate of fluoroquinolone antibiotics norfloxacin and ofloxacin were investigated in mesocosmic wetlands, along with their effects on nutrients removal, antibiotic resistance genes (ARGs) and epiphytic microbial communities on Hydrilla verticillate using bionic plants as control groups. Approximately 99% of norfloxacin and ofloxacin were removed from overlaying water, and H. verticillate inhibited fluoroquinolones accumulation in surface sediments compared to bionic plants. Partial least squares path modeling showed that antibiotics significantly inhibited the nutrient removal capacity (0.55) but had no direct effect on plant physiology. Ofloxacin impaired wetland performance more strongly than norfloxacin and more impacted the primary microbial phyla, whereas substrates played the most decisive role on microbial diversities. High antibiotics concentration shifted the most dominant phyla from Proteobacteria to Bacteroidetes and inhibited the Xenobiotics biodegradation function, contributing to the aggravation in wetland performance. Dechloromonas and Pseudomonas were regarded as the key microorganisms for antibiotics degradation. Co-occurrence network analysis excavated that microorganisms degrade antibiotics mainly through co-metabolism, and more complexity and facilitation/reciprocity between microbes attached to submerged plants compared to bionic plants. Furthermore, environmental factors influenced ARGs mainly by altering the community dynamics of differential bacteria. This study offers new insights into antibiotic removal and regulation of ARGs accumulation in wetlands with submerged macrophyte. | 2024 | 38569335 |
| 7939 | 7 | 0.9893 | Metagenomic insights into the distribution, mobility, and hosts of extracellular antibiotic resistance genes in activated sludge under starvation stress. Extracellular antibiotic resistance genes (eARGs) are important emerging environmental pollutants in wastewater treatment plants (WWTPs). Nutritional substrate deficiency (i.e., starvation) frequently occurs in WWTPs owing to annual maintenance, water quality fluctuation, and sludge storage; and it can greatly alter the antibiotic resistance and extracellular DNA content of bacteria. However, the fate and corresponding transmission risk of eARGs in activated sludge under starvation stress remain largely unknown. Herein, we used metagenomic sequencing to explore the effects of starvation scenarios (carbon, nitrogen, and/or phosphorus deficiency) and environmental conditions (alternating anaerobic-aerobic, anaerobic, anoxic, and aerobic) on the distribution, mobility, and hosts of eARGs in activated sludge. The results showed that 30 days of starvation reduced the absolute abundances of eARGs by 40.9%-88.2%, but high-risk dual and multidrug resistance genes persisted. Starvation, particularly the simultaneous lack of carbon, nitrogen, and phosphorus under aerobic conditions, effectively alleviated eARGs by reducing the abundance of extracellular mobile genetic elements (eMGEs). Starvation also altered the profile of bacterial hosts of eARGs and the bacterial community composition, the latter of which had an indirect positive effect on eARGs via changing eMGEs. Our findings shed light on the response patterns and mechanisms of eARGs in activated sludge under starvation conditions and highlight starvation as a potential strategy to mitigate the risk of previously neglected eARGs in WWTPs. | 2023 | 37060877 |
| 6911 | 8 | 0.9893 | Linking bacterial life strategies with the distribution pattern of antibiotic resistance genes in soil aggregates after straw addition. Straw addition markedly affects the soil aggregates and microbial community structure. However, its influence on the profile of antibiotic resistance genes (ARGs), which are likely associated with changes in bacterial life strategies, remains unclear. To clarify this issue, a soil microcosm experiment was incubated under aerobic (WS) or anaerobic (AnWS) conditions after straw addition, and metagenomic sequencing was used to characterise ARGs and bacterial communities in soil aggregates. The results showed that straw addition shifted the bacterial life strategies from K- to r-strategists in all aggregates, and the aerobic and anaerobic conditions stimulated the growth of aerobic and anaerobic r-strategist bacteria, respectively. The WS decreased the relative abundances of dominant ARGs such as QnrS5, whereas the AnWS increased their abundance. After straw addition, the macroaggregates consistently exhibited a higher number of significantly altered bacteria and ARGs than the silt+clay fractions. Network analysis revealed that the WS increased the number of aerobic r-strategist bacterial nodes and fostered more interactions between r-and K-strategist bacteria, thus promoting ARGs prevalence, whereas AnWS exhibited an opposite trend. These findings provide a new perspective for understanding the fate of ARGs and their controlling factors in soil ecosystems after straw addition. ENVIRONMENTAL IMPLICATIONS: Straw soil amendment has been recommended to mitigate soil fertility degradation, improve soil structure, and ultimately increase crop yields. However, our findings highlight the importance of the elevated prevalence of ARGs associated with r-strategist bacteria in macroaggregates following the addition of organic matter, particularly fresh substrates. In addition, when assessing the environmental risk posed by ARGs in soil that receives crop straw, it is essential to account for the soil moisture content. This is because the species of r-strategist bacteria that thrive under aerobic and anaerobic conditions play a dominant role in the dissemination and accumulation of ARG. | 2024 | 38643583 |
| 7945 | 9 | 0.9892 | Effects of eutrophication on the horizontal transfer of antibiotic resistance genes in microalgal-bacterial symbiotic systems. Overloading of nutrients such as nitrogen causes eutrophication of freshwater bodies. The spread of antibiotic resistance genes (ARGs) poses a threat to ecosystems. However, studies on the enrichment and spread of ARGs from increased nitrogen loading in algal-bacterial symbiotic systems are limited. In this study, the transfer of extracellular kanamycin resistance (KR) genes from large (RP4) small (pEASY-T1) plasmids into the intracellular and extracellular DNA (iDNA, eDNA) of the inter-algal environment of Chlorella pyrenoidosa was investigated, along with the community structure of free-living (FL) and particle-attached (PA) bacteria under different nitrogen source concentrations (0-2.5 g/L KNO(3)). The results showed that KR gene abundance in the eDNA adsorbed on solid particles (D-eDNA) increased initially and then decreased with increasing nitrogen concentration, while the opposite was true for the rest of the free eDNA (E-eDNA). Medium nitrogen concentrations promoted the transfer of extracellular KR genes into the iDNA attached to algal microorganisms (A-iDNA), eDNA attached to algae (B-eDNA), and the iDNA of free microorganisms (C-iDNA); high nitrogen contributed to the transfer of KR genes into C-iDNA. The highest percentage of KR genes was found in B-eDNA with RP4 plasmid treatment (66.2%) and in C-iDNA with pEASY-T1 plasmid treatment (86.88%). In addition, dissolved oxygen (DO) significantly affected the bacterial PA and FL community compositions. Nephelometric turbidity units (NTU) reflected the abundance of ARGs in algae. Proteobacteria, Cyanobacteria, Bacteroidota, and Actinobacteriota were the main potential hosts of ARGs. These findings provide new insights into the distribution and dispersal of ARGs in the phytoplankton inter-algal environment. | 2024 | 38493856 |
| 7856 | 10 | 0.9892 | Boosting Low-Dose Ferrate(VI) Activation by Layered FeOCl for the Efficient Removal of Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes via Enhancing Fe(IV)/Fe(V) Generation. Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in aquatic environments pose threats to ecosystem safety and human health, which could not be efficiently removed by conventional disinfection techniques. Herein, layered FeOCl with coordinatively unsaturated Fe sites were fabricated and used to activate Fe(VI) for the efficient ARB/ARG removal in the present study. We found that highly reactive Fe(IV)/Fe(V) intermediates were generated in the FeOCl/Fe(VI) system, rapidly disinfecting 1 × 10(7) CFU mL(-1) ARB to below the limit of detection within only 6 min. Via the combination of in situ characterization and theoretical calculations, we revealed that Fe(VI) was preferentially adsorbed onto Fe sites on the (010) plane of FeOCl and subsequently activated to produce reactive Fe(IV)/Fe(V) through direct electron transfer. Meanwhile, O(2)(•-) generated from O(2) activation on the FeOCl surface enhanced Fe(VI) conversion to Fe(IV)/Fe(V). During the disinfection process, intracellular/extracellular ARGs and DNA bases were simultaneously degraded, inhibiting the potential horizontal gene transfer process. The FeOCl/Fe(VI) system could effectively disinfect ARB under complex water matrices and in real water samples including tap water, lake water, and groundwater. When integrated into a continuous-flow reactor, the FeOCl/Fe(VI) system with excellent stability successively disinfected ARB. Overall, the FeOCl/Fe(VI) system showed great promise for eliminating ARB/ARGs from water. | 2025 | 40739812 |
| 7928 | 11 | 0.9891 | Insight into the responses of antibiotic resistance genes in microplastic biofilms to zinc oxide nanoparticles and zinc ions pressures in landfill leachate. Microplastic (MP) biofilms are hotspots of antibiotic resistance genes (ARGs) in landfill environment. MP biofilms in landfill leachate coexist with heavy metals and metallic nanoparticles (NPs) that considered to be the selective agents of ARGs. However, the effects of these selective pressures on ARGs in MP biofilms and their differences in MP-surrounding leachate have not been well understood. Herein, the changes of ARG abundances in MP biofilms and corresponding leachate under zinc oxide (ZnO) NPs and zinc ion (Zn(2+)) pressures were comparatively analyzed. The presence of ZnO NPs and Zn(2+) promoted the enrichment of ARGs in MP biofilms, and the enrichment was more pronounced in ZnO NPs groups. ZnO NPs and especially Zn(2+) mainly decreased the abundances of ARGs in leachate. The increase of integron abundances and reactive oxygen species production in MP biofilms implied the enhanced potential for horizontal transfer of ARGs under ZnO NPs and Zn(2+) pressures. Meanwhile, the co-occurrence pattern between ARGs and bacterial genera in MP biofilms with more diverse potential ARG hosts was more complex than in leachate, and the enrichment of ARG-hosting bacteria in MP biofilms under ZnO NPs and Zn(2+) pressures supported the enrichment of ARGs. | 2023 | 37480611 |
| 7935 | 12 | 0.9891 | Removal of antibiotic resistance genes by Cl(2)-UV process: Direct UV damage outweighs free radicals in effectiveness. Antibiotic resistance genes (ARGs) pose significant environmental health problems and have become a major global concern. This study investigated the efficacy and mechanism of the Cl(2)-UV process (chlorine followed by UV irradiation) for removing ARGs in various forms. The Cl(2)-UV process caused irreversible damage to nearly all ARB at typical disinfectant dosages. In solutions containing only extracellular ARGs (eARGs), the Cl₂-UV process achieved over 99.0 % degradation of eARGs. When both eARGs and intracellular ARGs (iARGs) were present, the process reached a 97.2 % removal rate for iARGs. While the abundance of eARGs initially increased due to the release of iARGs from lysed cells during pre-chlorination, subsequent UV irradiation rapidly degraded the released eARGs, restoring their abundance to near-initial levels by the end of the Cl₂-UV process. Analysis of the roles in degrading eARGs and iARGs during the Cl(2)-UV process revealed that UV, rather than free radicals, was the dominant factor causing ARG damage. Pre-chlorination enhanced direct UV damage to eARGs and iARGs by altering plasmid conformation and promoting efficient damage to high UV-absorbing cellular components. Furthermore, no further natural transformation of residual ARGs occurred following the Cl(2)-UV treatment. This study demonstrated strong evidence for the effectiveness of the Cl(2)-UV process in controlling antibiotic resistance. | 2025 | 40048777 |
| 8570 | 13 | 0.9890 | Metagenomic analysis of antibiotic resistance genes (ARGs) during refuse decomposition. Landfill is important reservoirs of residual antibiotics and antibiotic resistance genes (ARGs), but the mechanism of landfill application influence on antibiotic resistance remains unclear. Although refuse decomposition plays a crucial role in landfill stabilization, its impact on the antibiotic resistance has not been well characterized. To better understand the impact, we studied the dynamics of ARGs and the bacterial community composition during refuse decomposition in a bench-scale bioreactor after long term operation (265d) based on metagenomics analysis. The total abundances of ARGs increased from 431.0ppm in the initial aerobic phase (AP) to 643.9ppm in the later methanogenic phase (MP) during refuse decomposition, suggesting that application of landfill for municipal solid waste (MSW) treatment may elevate the level of ARGs. A shift from drug-specific (bacitracin, tetracycline and sulfonamide) resistance to multidrug resistance was observed during the refuse decomposition and was driven by a shift of potential bacteria hosts. The elevated abundance of Pseudomonas mainly contributed to the increasing abundance of multidrug ARGs (mexF and mexW). Accordingly, the percentage of ARGs encoding an efflux pump increased during refuse decomposition, suggesting that potential bacteria hosts developed this mechanism to adapt to the carbon and energy shortage when biodegradable substances were depleted. Overall, our findings indicate that the use of landfill for MSW treatment increased antibiotic resistance, and demonstrate the need for a comprehensive investigation of antibiotic resistance in landfill. | 2018 | 29660875 |
| 7444 | 14 | 0.9890 | Microbiome and Resistome Profiles along a Sewage-Effluent-Reservoir Trajectory Underline the Role of Natural Attenuation in Wastewater Stabilization Reservoirs. Antibiotic-resistant bacteria and antibiotic resistance gene (ARGs) loads dissipate through sewage treatment plants to receiving aquatic environments, but the mechanisms that mitigate the spread of these ARGs are not well understood due to the complexity of full-scale systems and the difficulty of source tracking in downstream environments. To overcome this problem, we targeted a controlled experimental system comprising a semicommercial membrane-aerated bioreactor (MABR), whose effluents fed a 4,500-L polypropylene basin that mimicked effluent stabilization reservoirs and receiving aquatic ecosystems. We analyzed a large set of physicochemical measurements, concomitant with the cultivation of total and cefotaxime-resistant Escherichia coli, microbial community analyses, and quantitative PCR (qPCR)/digital droplet PCR (ddPCR) quantification of selected ARGs and mobile genetic elements (MGEs). The MABR removed most of the sewage-derived organic carbon and nitrogen, and simultaneously, E. coli, ARG, and MGE levels dropped by approximately 1.5- and 1.0-log unit mL(-1), respectively. Similar levels of E. coli, ARGs, and MGEs were removed in the reservoir, but interestingly, unlike in the MABR, the relative abundance (normalized to 16S rRNA gene-inferred total bacterial abundance) of these genes also decreased. Microbial community analyses revealed the substantial shifts in bacterial and eukaryotic community composition in the reservoir relative to the MABR. Collectively, our observations lead us to conclude that the removal of ARGs in the MABR is mainly a consequence of treatment-facilitated biomass removal, whereas in the stabilization reservoir, mitigation is linked to natural attenuation associated with ecosystem functioning, which includes abiotic parameters, and the development of native microbiomes that prevent the establishment of wastewater-derived bacteria and associated ARGs. IMPORTANCE Wastewater treatment plants are sources of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which can contaminate receiving aquatic environments and contribute to antibiotic resistance. We focused on a controlled experimental system comprising a semicommercial membrane-aerated bioreactor (MABR) that treated raw sewage, whose effluents fed a 4,500-L polypropylene basin that mimicked effluent stabilization reservoirs. We evaluated ARB and ARG dynamics across the raw-sewage-MABR-effluent trajectory, concomitant with evaluation of microbial community composition and physicochemical parameters, in an attempt to identify mechanisms associated with ARB and ARG dissipation. We found that removal of ARB and ARGs in the MABR was primarily associated with bacterial death or sludge removal, whereas in the reservoir it was attributed to the inability of ARBs and associated ARGs to colonize the reservoir due to a dynamic and persistent microbial community. The study demonstrates the importance of ecosystem functioning in removing microbial contaminants from wastewater. | 2023 | 37199629 |
| 6905 | 15 | 0.9890 | The hot air circulation ventilation composting system removes antibiotic resistance genes through competitive inhibition by core bacteria. Livestock manure is a significant reservoir of antibiotic resistance genes (ARGs). Aerobic composting technology can produce mature compost while effectively removing ARGs. In this study, we developed an energy-saving and emission-reducing hot air circulating ventilated composting technology (HACV), which had no adverse effects on the composting process or compost maturity. The HACV composting altered bacterial communities, primarily driven by heterogeneous selection among deterministic factors (65 %). Specifically, it increased the complexity of bacterial networks and promoted the colonization of high-temperature-tolerant bacteria, such as Erysipelothrix, Oceanobacillus and unclassified_f_Bacillaceae. Topological analysis revealed that core bacteria primarily functioned as connectors in composting, serving as important ARGs hosts and facilitating their spread in conventional composting. Among these, a core pathogenic bacterium (Corynebacterium) carried and transmitted ARGs with higher risks. In contrast, although the number of core bacteria (Bacillus, Oceanobacillus, Caldicoprobacter, Saccharomonospora, and Lactobacillus) increased during HACV composting, these bacteria were not potential hosts of the target ARGs. This contributed to the removal of aadE by 80.49 %. Consequently, compared to conventional composting, HACV composting was more effective at controlling risky ARGs, particularly aac(6')-Ib-cr and sul1. Furthermore, the ARGs removal mechanism primarily involved inhibiting horizontal gene transfer (HGT) in HACV composting, attributed to competition between core bacteria and ARGs hosts. In summary, HACV composting effectively promotes ARGs removal and reduces the risk of bacterial resistance. ENVIRONMENTAL IMPLICATION: In this study, we developed an energy-saving and emission-reducing hot air circulation ventilation composting technology (HACV), which effectively removes antibiotic resistance genes (ARGs). The HACV system maintained composting efficiency and maturity while driving bacterial community succession through deterministic processes (heterogeneous selection). HACV composting increased the colonization of core bacteria in the microbial network. Acting as connectors, the core bacteria are not hosts of ARGs in the HACV system, inhibiting horizontal gene transfer (HGT) and remove ARGs through competition with host bacteria. | 2025 | 40682888 |
| 7545 | 16 | 0.9890 | Sulfidated nanoscale zero-valent iron is an efficient material for the removal and regrowth inhibition of antibiotic resistance genes. Antibiotic resistance genes (ARGs) and mobile gene elements (MGEs), the emerging genetic contaminants, are regarded as severe risks to public health for impairing the inactivation efficacy of antibiotics. Secondary effluents from wastewater treatment plants are the hotspots for spreading these menaces. Herein, sulfidated nanoscale zero-valent iron (S-nZVI) was occupied to remove ARGs and MGEs in secondary effluents and weaken the regrowth capacity of their bacterial carriers. The effects of S/Fe molar ratios (S/Fe), initial pH and dosages on 16S rRNA and ARGs removal were also investigated. Characterization, mass balance and scavenging experiments were conducted to explore the mechanisms of the gene removal. Quantitative PCR (qPCR) and high throughput fluorescence qPCR showed more than 3 log unit of 16S rRNA and seven out of 10 ARGs existed in secondary effluent could be removed after S-nZVI treatment. The mechanisms might be that DNA accepted the electron provided by the Fe(0) core of S-nZVI after being adsorbed onto S-nZVI surface, causing the decrease of 16S rRNA, ARGs and lost their regrowth capacity, especially for typical MGE (intI1) and further inhibiting the vertical gene transfer (VGT) and intI1-induced horizontal gene transfer (HGT). Fe(0) core was oxidized to iron oxides and hydroxides at the same time. High throughput sequencing, network analysis and variation partitioning analysis revealed the complex correlations between bacteria and ARGs in secondary effluent, S/Fe could directly influence ARGs variations, and bacterial genera made the greatest contribution to ARGs variations, followed by MGEs and operational parameters. As a result, S-nZVI could be an available reductive approach to deal with bacteria and ARGs. | 2020 | 32283399 |
| 8648 | 17 | 0.9889 | Host-specific assembly of phycosphere microbiome and enrichment of the associated antibiotic resistance genes: Integrating species of microalgae hosts, developmental stages and water contamination. Phytoplankton-bacteria interactions profoundly impact ecosystem function and biogeochemical cycling, while their substantial potential to carry and disseminate antibiotic resistance genes (ARGs) poses a significant threat to global One Health. However, the ecological paradigm behind the phycosphere assembly of microbiomes and the carrying antibiotic resistomes remains unclear. Our field investigation across various freshwater ecosystems revealed a substantial enrichment of bacteria and ARGs within microalgal niches. Taking account of the influence for species of microalgae hosts, their developmental stages and the stress of water pollution, we characterized the ecological processes governing phycosphere assembly of bacterial consortia and enrichment of the associated ARGs. By inoculating 6 axenic algal hosts with two distinct bacterial consortia from a natural river and the phycosphere of Scenedesmus acuminatus, we observed distinct phycosphere bacteria recruitment among different algal species, yet consistency within the same species. Notably, a convergent bacterial composition was established for the same algae species for two independent inoculations, demonstrating host specificity in phycosphere microbiome assembly. Host-specific signature was discernible as early as the algal lag phase and more pronounced as the algae developed, indicating species types of algae determined mutualism between the bacterial taxa and hosts. The bacteria community dominated the shaping of ARG profiles within the phycosphere and the host-specific phycosphere ARG enrichment was intensified with the algae development. The polluted water significantly stimulated host's directional selection on phycosphere bacterial consortia and increased the proliferation antibiotic resistome. These consortia manifested heightened beneficial functionality, enhancing microalgal adaptability to contamination stress. | 2025 | 40349825 |
| 8567 | 18 | 0.9889 | System-dependent divergence of microbial community and resistome in two anaerobic niches under sulfamethoxazole selection. The prevalence of sulfamethoxazole (SMX) in high-strength wastewater poses a significant threat to the stability and efficiency of anaerobic biological treatment systems, particularly when deployed as initial treatment units. However, the complex interactions arising from SMX biodegradation and their resultant effects on typical anaerobic digestion (AD) and sulfate-reducing (SR) systems are not thoroughly understood. This study revealed that SMX exposure stimulated methanogenesis in the AD system and sulfate reduction in the SR system, driven primarily by enriched key functional taxa (e.g., methanogens, sulfate-reducing bacteria). Organic matter removal efficiency increased significantly in the AD system under SMX stress, attributed to the enrichment of fermentative bacteria. Notably, the enriched class Actinomycetes was capable of SMX biodegradation, thereby likely mitigating SMX stress for other microorganisms. In contrast, the SR system exhibited significantly diminished organic matter removal despite developing a more functionally specialized community under SMX exposure. This community harbored fewer SMX degraders, perpetuating selective pressure on the microbiota. Increasing SMX concentrations failed to induce significant shifts in overall community structure in either system, while significantly promoted the proliferation of antibiotic resistance genes (ARGs), particularly pronounced in the SR system exhibiting high SMX accumulation. Moreover, mobile genetic elements mediated the horizontal transfer of the sulfonamide resistance gene sul1 and other co-occurring ARGs located on plasmids. This study provides novel insights into the convergent and divergent microbial responses in the AD and SR systems under SMX exposure, highlighting the dual effects (both stimulatory and inhibitory) of SMX on the functionality of these anaerobic systems. | 2025 | 41130171 |
| 7929 | 19 | 0.9889 | Size-dependent effects of microplastics on antibiotic resistance genes fate in wastewater treatment systems: The role of changed surface property and microbial assemblages in a continuous exposure mode. Microplastics (MPs) were continuously transported to wastewater treatment systems and accumulated in sludge constantly, potentially affecting systems function and co-occurrent contaminants fate. However, previous studies were based on acute exposure of MPs, which could not reflect the dynamics of MPs accumulation. Herein, this study firstly raised a more realistic method to evaluate the practical impacts of MPs on systems purification efficiency and antibiotic resistance genes (ARGs) fate. Continuous exposure of MPs did not pose negative effects on nutrients removal, but significantly changed the occurrence patterns of ARGs. ARGs abundances increased by 42.8 % and 54.3 % when exposed to millimeter-size MPs (mm-MPs) polyamide and polyethylene terephthalate, but increased by 31.3 % and 39.4 % to micron-size MPs (μm-MPs), respectively. Thus, mm-MPs posed severer effects on ARGs than μm-MPs. Further, mm-MPs surface properties were obviously altered after long-term exposure (higher specific surface area and O-containing species), which benefited microbes attachment. More importantly, more taxa linkages and changed topological properties (higher average degree and average weight) of co-occurrent network were observed in sludge with mm-MPs than with μm-MPs, as well as totally different potential host bacteria of ARGs. Rough surface of MPs and closer relations between ARGs and bacteria taxa contributed to the propagation of ARGs, which accounted for the observed higher ARGs abundances of mm-MPs. This study demonstrated that long-term accumulation of MPs in wastewater treatment systems affected ARGs fate, and mm-MPs caused severer risk due to their enrichment of ARGs. The results would promote the understanding of MPs real environmental behavior and influences. | 2022 | 36037899 |