ST8 - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
537800.9588Genome-Wide Analysis of Staphylococcus aureus Sequence Type 72 Isolates Provides Insights Into Resistance Against Antimicrobial Agents and Virulence Potential. Staphylococcus aureus sequence type 72 (ST72) is a major community-associated (CA) methicillin-resistant Staphylococcus aureus (MRSA) that has rapidly entered the hospital setting in Korea, causing mild superficial skin wounds to severe bloodstream infections. In this study, we sequenced and analyzed the genomes of one methicillin-resistant human isolate and one methicillin-sensitive human isolate of ST72 from Korea, K07-204 and K07-561, respectively. We used a subtractive genomics approach to compare these two isolates to other 27 ST72 isolates to investigate antimicrobial resistance (AMR) and virulence potential. Furthermore, we validated genotypic differences by phenotypic characteristics analysis. Comparative and subtractive genomics analysis revealed that K07-204 contains methicillin (mecA), ampicillin (blaZ), erythromycin (ermC), aminoglycoside (aadD), and tetracycline (tet38, tetracycline efflux pump) resistance genes while K07-561 has ampicillin (blaZ) and tetracycline (tet38) resistance genes. In addition to antibiotics, K07-204 was reported to show resistance to lysostaphin treatment. K07-204 also has additional virulence genes (adsA, aur, hysA, icaABCDR, lip, lukD, sdrC, and sdrE) compared to K07-561, which may explain the differential virulence potential of these human isolates of ST72. Unexpectedly, the virulence potential of K07-561 was higher in an in vivo wax-worm infection model than that of K07-204, putatively due to the presence of a 20-fold higher staphyloxanthin concentration than K07-204. Comprehensive genomic analysis of these two human isolates, with 27 ST72 isolates, and S. aureus USA300 (ST8) suggested that acquisition of both virulence and antibiotics resistance genes by ST72 isolates might have facilitated their adaptation from a community to a hospital setting where the selective pressure imposed by antibiotics selects for more resistant and virulent isolates. Taken together, the results of the current study provide insight into the genotypic and phenotypic features of various ST72 clones across the globe, delivering more options for developing therapeutics and rapid molecular diagnostic tools to detect resistant bacteria.202033552024
226910.9534Genomic detection of Panton-Valentine Leucocidins encoding genes, virulence factors and distribution of antiseptic resistance determinants among Methicillin-resistant S. aureus isolates from patients attending regional referral hospitals in Tanzania. BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) is a formidable public scourge causing worldwide mild to severe life-threatening infections. The ability of this strain to swiftly spread, evolve, and acquire resistance genes and virulence factors such as pvl genes has further rendered this strain difficult to treat. Of concern, is a recently recognized ability to resist antiseptic/disinfectant agents used as an essential part of treatment and infection control practices. This study aimed at detecting the presence of pvl genes and determining the distribution of antiseptic resistance genes in Methicillin-resistant Staphylococcus aureus isolates through whole genome sequencing technology. MATERIALS AND METHODS: A descriptive cross-sectional study was conducted across six regional referral hospitals-Dodoma, Songea, Kitete-Kigoma, Morogoro, and Tabora on the mainland, and Mnazi Mmoja from Zanzibar islands counterparts using the archived isolates of Staphylococcus aureus bacteria. The isolates were collected from Inpatients and Outpatients who attended these hospitals from January 2020 to Dec 2021. Bacterial analysis was carried out using classical microbiological techniques and whole genome sequencing (WGS) using the Illumina Nextseq 550 sequencer platform. Several bioinformatic tools were used, KmerFinder 3.2 was used for species identification, MLST 2.0 tool was used for Multilocus Sequence Typing and SCCmecFinder 1.2 was used for SCCmec typing. Virulence genes were detected using virulenceFinder 2.0, while resistance genes were detected by ResFinder 4.1, and phylogenetic relatedness was determined by CSI Phylogeny 1.4 tools. RESULTS: Out of the 80 MRSA isolates analyzed, 11 (14%) were found to harbor LukS-PV and LukF-PV, pvl-encoding genes in their genome; therefore pvl-positive MRSA. The majority (82%) of the MRSA isolates bearing pvl genes were also found to exhibit the antiseptic/disinfectant genes in their genome. Moreover, all (80) sequenced MRSA isolates were found to harbor SCCmec type IV subtype 2B&5. The isolates exhibited 4 different sequence types, ST8, ST88, ST789 and ST121. Notably, the predominant sequence type among the isolates was ST8 72 (90%). CONCLUSION: The notably high rate of antiseptic resistance particularly in the Methicillin-resistant S. aureus strains poses a significant challenge to infection control measures. The fact that some of these virulent strains harbor the LukS-PV and LukF-PV, the pvl encoding genes, highlight the importance of developing effective interventions to combat the spreading of these pathogenic bacterial strains. Certainly, strengthening antimicrobial resistance surveillance and stewardship will ultimately reduce the selection pressure, improve the patient's treatment outcome and public health in Tanzania.202539833938
517120.9526Adaptive laboratory-evolved MRSA with PPEF manifests cross-susceptibility to oxacillin and hypersensitivity to ciprofloxacin. Emerging resistance to current antibiotics is a global threat to human health. Therefore, comprehending the mechanism behind antibiotic resistance holds paramount importance. In the pursuit of finding new antibacterial agents, our group has developed a small molecule, PPEF (2'-(4-ethoxyphenyl)-5-(4-propylpiperazin-1-yl)-1H,1'H-2,5'-bibenzo(d)imidazole), having bisbenzimidazole as a pharmacophore, targeting bacterial type IA topoisomerase, a novel drug target in bacteria. We examined the emergence of mutations leading to PPEF resistance in laboratory-evolved Staphylococcus aureus strains. The growth curve revealed that S. aureus 25923 PPEF-resistant (SA-PR) and methicillin-resistant S. aureus 43300 PPEF-resistant (MRSA-PR) attained stationary phase earlier than their respective reference strains. RNA sequencing analysis revealed that atpD (ATP synthase gene) was downregulated by 2 log(2)-fold in both SA-PR and MRSA-PR strains, whereas there was 10 to 13 log(2)-fold downregulation of mecR1 (methicillin resistance-inducing gene), ble (bleomycin resistance-inducing gene), blaZ (beta-lactamase), pbp (penicillin-binding protein gene), ermA (rRNA adenine methyltransferase gene), and kdpB (potassium-transporting ATPase) in the MRSA-PR strain. Quantitative reverse-transcriptase PCR data confirmed these results. Additionally, MRSA-PR showed a 5 log(2)-fold upregulation of comG and a 9 log(2)-fold downregulation of topB, indicating increased genomic variability and stress adaptation contributing to resistance. Genomic sequencing revealed deletions of resistance genes, including aac(6')-aph(2''), aadD, mecA, and blaZ in MRSA-PR, resulting in a gain in resistance and a diminishing returns epistasis pattern in PPEF-evolved S. aureus strains. This led to the development of an evolved MRSA-PR strain susceptible to oxacillin, ciprofloxacin, gentamicin, and imipenem. Our findings indicate that adaptation to PPEF has increased antibiotic susceptibility, thereby changing the clinical outcomes of infections.IMPORTANCEThis study investigates how Staphylococcus aureus bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) strain, develop resistance to a new candidate antibacterial compound, PPEF (2'-(4-ethoxyphenyl)-5-(4-propylpiperazin-1-yl)-1H,1'H-2,5'-bibenzo(d)imidazole). The research found that resistant strains grew slower and showed significant changes in the activity of genes related to antibiotic resistance. Some resistance genes were deleted in the resistant MRSA strain, making it more sensitive to other antibiotics like oxacillin and ciprofloxacin. These findings highlight how resistance to PPEF leads to increased sensitivity to conventional antibiotics. This suggests that developing combination therapies of PPEF with other antibiotics could optimize treatment regimens and slow resistance evolution. This study also indicates that the antibiotic regimens could be designed to force resistant bacteria into evolutionary trade-offs, where they lose resistance to widely used antibiotics while gaining resistance to a new compound like PPEF.202540662666
537630.9526In vitro Activity of Contezolid Against Methicillin-Resistant Staphylococcus aureus, Vancomycin-Resistant Enterococcus, and Strains With Linezolid Resistance Genes From China. Contezolid is a novel oxazolidinone, which exhibits potent activity against gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), and penicillin-resistant Streptococcus pneumoniae (PRSP). In this study, the in vitro activity of contezolid was compared with linezolid (LZD), tigecycline (TGC), teicoplanin (TEC), vancomycin (VA), daptomycin (DAP), and florfenicol (FFC) against MRSA and VRE strains isolated from China. Contezolid revealed considerable activity against MRSA and VRE isolates with MIC(90) values of 0.5 and 1.0 μg/mL, respectively. For VRE strains with different resistance genotypes, including vanA- and vanM-type strains, contezolid did not exhibit significantly differential antibacterial activity. Furthermore, the antimicrobial activity of contezolid is similar to or slightly better than that of linezolid against MRSA and VRE strains. Subsequently, the activity of contezolid was tested against strains carrying linezolid resistance genes, including Staphylococcus capitis carrying cfr gene and Enterococcus faecalis carrying optrA gene. The results showed that contezolid exhibited similar antimicrobial efficacy to linezolid against strains with linezolid resistance genes. In general, contezolid may have potential benefits to treat the infections caused by MRSA and VRE pathogens.202134489919
580740.9523ST8-t008-SCC (mec) IV methicillin-resistant Staphylococcus aureus in retail fresh cheese. This study reports the finding of 3 ST8-t008-SCC (mec) IVa (2B) methicillin-resistant Staphylococcus aureus (MRSA) strains in fresh cheese purchased within a single market in Costa Rica. In line with the finding of the resistance genes mecA, blaZ, mph(C), and msr(A) in their genomes, these bacteria showed phenotypic resistance to multiple β-lactams and erythromycin. In addition, they carry genes for acquired resistance to aminoglycosides (aph(3')-III) and fosfomycin (fosD), and genes for a myriad of virulence factors, including adhesins, hemolysins, and exotoxins. Our strains share multiple genomic features with MRSA from the USA300 lineage, which is a widely distributed and highly virulent strain implicated in community infections. As a result, consuming these or similar products could lead to multidrug infections in susceptible individuals. These results highlight safety deficiencies in cheese production practices and emphasize the risk of foodborne transmission of hard-to-treat ST8 MRSA strains.202439650008
125850.9514Occurrence of antimicrobial resistance and antimicrobial resistance genes in methicillin-resistant Staphylococcus aureus isolated from healthy rabbits. BACKGROUND AND AIM: Methicillin-resistant globally, Staphylococcus aureus (MRSA) is a major cause of disease in both humans and animals. Several studies have documented the presence of MRSA in healthy and infected animals. However, there is less information on MRSA occurrence in exotic pets, especially healthy rabbits. This study aimed to look into the antimicrobial resistance profile, hidden antimicrobial-resistant genes in isolated bacteria, and to estimate prevalence of MRSA in healthy rabbits. MATERIALS AND METHODS: Two-hundreds and eighteen samples, including 42 eyes, 44 ears, 44 oral, 44 ventral thoracic, and 44 perineal swabs, were taken from 44 healthy rabbits that visited the Prasu-Arthorn Animal Hospital, in Nakornpathom, Thailand, from January 2015 to March 2016. The traditional methods of Gram stain, mannitol fermentation, hemolysis on blood agar, catalase test, and coagulase production were used to confirm the presence of Staphylococcus aureus in all specimens. All bacterial isolates were determined by antimicrobial susceptibility test by the disk diffusion method. The polymerase chain reaction was used to identify the antimicrobial-resistant genes (blaZ, mecA, aacA-aphD, msrA, tetK, gyrA, grlA, and dfrG) in isolates of MRSA with a cefoxitin-resistant phenotype. RESULTS: From 218 specimens, 185 S. aureus were isolated, with the majority of these being found in the oral cavity (29.73%) and ventral thoracic area (22.7%), respectively. Forty-seven (25.41%) MRSAs were found in S. aureus isolates, with the majority of these being found in the perineum (16, 34.04%) and ventral thoracic area (13, 27.66%) specimens. Among MRSAs, 29 (61.7%) isolates were multidrug-resistant (MDR) strains. Most of MRSA isolates were resistant to penicillin (100%), followed by ceftriaxone (44.68%) and azithromycin (44.68%). In addition, these bacteria contained the most drug-resistance genes, blaZ (47.83%), followed by gyrA (36.17%) and tetK (23.4%). CONCLUSION: This study revealed that MRSA could be found even in healthy rabbits. Some MRSAs strains were MDR-MRSA, which means that when an infection occurs, the available antibiotics were not effective in treating it. To prevent the spread of MDR-MRSA from pets to owners, it may be helpful to educate owners about effective prevention and hygiene measures.202236590129
125560.9513Emergence of quinupristin/dalfopristin resistance among livestock-associated Staphylococcus aureus ST9 clinical isolates. Quinupristin/dalfopristin (Q/D) is a valuable alternative to vancomycin for the treatment of meticillin-resistant Staphylococcus aureus (MRSA) infections. However, not long after Q/D was approved, bacteria with resistance to this newer antimicrobial agent were reported. To investigate the prevalence of Q/D resistance, a total of 1476 non-duplicate S. aureus isolates, including 775 MRSA, from a Chinese tertiary hospital were selected randomly from 2003 to 2013. Of the 775 MRSA, 3 (0.4%) were resistant to Q/D. All meticillin-susceptible S. aureus were susceptible to Q/D. The prevalence of Q/D resistance among S. aureus was 0.2% (3/1476). The three isolates with Q/D resistance had the same antimicrobial resistance profile, except for cefaclor and chloramphenicol. All three Q/D-resistant MRSA were positive for five streptogramin B resistance genes (ermA, ermB, ermC, msrA and msrB) and two streptogramin A resistance genes (vatC and vgaA) as determined by PCR and DNA sequencing. MRSA WZ1031 belonged to ST9-MRSA-SCCmecV-t899, whilst MRSA WZ414 and WZ480 belonged to ST9-MRSA-SCCmecNT(non-typeable)-t899. ST9 has been reported predominantly in livestock-associated (LA) MRSA in some Asian countries. The three patients with these MRSA isolates were not livestock handlers and did not keep close contact with livestock. The origin of these important LA-MRSA isolates causing human infections is not known. Taken together, Q/D resistance, which was caused by a combination of ermA-ermB-ermC-msrA-msrB-vatC-vgaA, was first found among S. aureus clinical isolates in China. The present study is the first report of the emergence of human infections caused by ST9 LA-MRSA isolates with Q/D resistance.201425218154
537770.9512Synthetic lincosamides iboxamycin and cresomycin are active against ocular multidrug-resistant methicillin-resistant Staphylococcus aureus carrying erm genes. OBJECTIVE: Antimicrobial resistance is a global pandemic that poses a major threat to vision health as ocular bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA), are becoming increasingly resistant to first-line therapies. Here we evaluated the antimicrobial activity of new synthetic lincosamides in comparison to currently used antibiotics against clinical ocular MRSA isolates. METHODS: Antimicrobial susceptibility testing was performed by broth microdilution for two novel synthetic lincosamides (iboxamycin and cresomycin) and eight comparator antibiotics against a collection of 50 genomically characterised ocular MRSA isolates, including isolates harbouring erm genes (n = 25). RESULTS: Both drugs were active against widespread MRSA clonal complexes CC8 and CC5. The MIC(50) and MIC(90) of iboxamycin were 0.06 and 2 mg/L, respectively. Cresomycin (MIC(50) = 0.06 mg/L) also displayed good activity with an in vitro potency four-fold higher (MIC(90) = 0.5 mg/L) than iboxamycin. In isolates harbouring erm genes, MIC(90) were >16, 2, and 0.5 mg/L for clindamycin, iboxamycin, and cresomycin, respectively. The in vitro potencies of iboxamycin and cresomycin were similar or higher than that of comparator agents and were not impacted by multidrug-resistance phenotypes or by the presence of erm genes when compared with clindamycin. CONCLUSIONS: Our results demonstrate that iboxamycin and cresomycin display potent in vitro activity against ocular MRSA isolates, including multidrug-resistant isolates harbouring erm genes.202439293511
125780.9510Antimicrobial Susceptibility Pattern in the Bacteria Isolated from Surgical Site Infection: Emphasis on Staphylococcus Aureus; Yasuj City, Southwest Iran. BACKGROUND: Surgical site infections (SSIs) in surgical wards remains the most common cause of postoperative complications and realistically is the third most common origin of healthcare-related conditions. Staphylococcus aureus is undoubtedly the most common bacteria causing SSIs. The current study aimed at investigating the antimicrobial susceptibility pattern in bacteria isolated from SSIs, evaluation of tetracycline resistance genes, and SCCmec typing in S. aureus isolates isolated from patients with SSIs from 2018 to 2019 in Yasuj, Kohgiluyeh, and Boyer-Ahmad Province, Iran. METHODS: This study diligently investigated 240 potential patients. Antimicrobial susceptibility testing was performed properly by the disk diffusion method. For the final confirmation of isolated bacteria, PCR was used. The presence of tet genes and SCCmec typing was carried out by multiplex PCR. RESULTS: The results showed that the most common isolated pathogens included S. aureus, E. coli, P. aeruginosa, Coagulase-negative Staphylococci, and K. pneumonia in 58.8%, 19.8%, 9.2%, 6.8% and 5.4% of cases, respectively. The majority of the Gram positive isolates were resistant against penicillin (86%) and Gram negative were resistant against ciprofloxacin (75.6%). In isolates of Staphylococcus aureus, the mecA gene was detected in 63.6% of isolates. The predominant SCCmec types were type III (59.1%) and type I (18.4%). The tetK and tetM genes were detected in 80.7% and 71.9% of the S. aureus isolates, respectively. There was a statistically significant difference between tet genes (tetK and tetM) from the viewpoint of resistance to tetracycline (p = 0.024). CONCLUSIONS: According to the results of the current study, it is recommended to administer vancomycin, amikacin, and imipenem in Yasuj to treat SSIs.202133616327
543890.9508Genomic Insights into Staphylococcus aureus Isolates Exhibiting Diminished Daptomycin Susceptibility. Daptomycin is one of the last therapeutic resources for multidrug-resistant gram-positive bacteria. Despite its structural similarities with glycopeptides, its mechanisms of action and resistance are different and in some respects are not completely understood. Mutations in several genes have been associated with daptomycin resistance, especially in mprF, walkR, rpoB and rpoC, but their role and importance remain to be elucidated. We have studied mutations in 11 genes, which have been previously associated with daptomycin non-susceptibility, in nine daptomycin-non-susceptible Staphylococcus aureus clinical isolates (daptomycin MIC: >1 mg/L). Susceptibility to daptomycin, vancomycin, linezolid, oxacillin, telavancin and dalbavancin was studied. walkR, agrA, cls1, cls2, fakA, pnpA, clpP, prs, rpoB, rpoC and mprF were amplified by PCR and sequenced. The sequences were compared with the S. aureus ATCC 25923 complete genome (GenBank gi: 685631213) by using BLAST(®) software. We did not find any changes in walkR, pnpA, prs and clpP. All isolates excepting isolate MSa5 showed a high number of significant mutations (between 13 and 25 amino acid changes) in mprF. Most isolates also showed mutations in the rpo genes, the cls genes and fakA. Daptomycin non-susceptibility in S. aureus clinical isolates seems to be reached through different mutation combinations when compared to S. aureus ATCC 25293. Especially mprF and cls1 showed very high polymorphism in most isolates. Meanwhile, one isolate, MSa5, showed only single mutation in mprF (P314T).202438535549
2382100.9508Molecular characteristics of antimicrobial resistance and virulence determinants of Staphylococcus aureus isolates derived from clinical infection and food. BACKGROUND: Staphylococcus aureus (S. aureus) is an important human etiologic agent. An investigation of the characteristics of common genotypes of S. aureus relating to pathogenicity and antibiotic resistance may provide a foundation to prevent infection. METHODS: This study collected 275 S. aureus isolates from Zhengzhou city in China, including 148 isolates from patient samples and 127 isolates from ready-to-eat food samples. Antimicrobial susceptibility testing was performed using the broth dilution method. Molecular characteristics of antimicrobial resistance, virulence, and genotypes were identified by polymerase chain reaction (PCR). RESULTS: In total, 34.18% (94/275) of S. aureus isolates were MRSA. Compared with food isolates, clinical isolates had significantly higher antibiotic resistance rates, carrying resistance genes such as acc(6')/aph(2'), aph(3')-III, ermA, and ermB and virulence genes such as tetM, sea, seb, pvl, and etb. MRSA-t030-agrI-SCCmecIII and MSSA-t002-agrII were the most common strain types among clinical strains, and MRSA-t002-agrII-SCCmecIII and MSSA-t002-agrII were the most common strain types among food strains. Additionally, some strains in the agr group were also spa type-specific, suggesting that there may be phenotypic consistency. CONCLUSION: Clinical isolates contained higher numbers of resistance genes and demonstrated higher antibiotic resistance, while 2 source strains exhibited high toxicity. These results indicate that bacteria with different origins may have undergone different evolutionary processes. As resistance and virulence factors in food bacteria can be transmitted to humans, food handlers should strictly follow hygienic measures during food production to ensure the safety of human consumers.201829676483
2352110.9504Phenotypic and Molecular Detection of Biofilm Formation in Methicillin-Resistant Staphylococcus Aureus Isolated from Different Clinical Sources in Erbil City. BACKGROUND: Staphylococcus aureus is an important causative pathogen. The production of biofilms is an important factor and makes these bacteria resistant to antimicrobial therapy. OBJECTIVES: the current study aimed to assess the prevalence of resistance to antibacterial agents and to evaluate the phenotypic and genotypic characterization of biofilm formation among S. aureus strains. METHODS: This study included 50 isolates of Methicillin-resistant S. aureus (MRSA) and Methicillin-Susceptible S. aureus (MSSA). S. aureus was identified by molecular and conventional methods, and antimicrobial resistance was tested with a disc diffusion method. The biofilm formation was performed through the Microtiter plate method. Strains were subjected to PCR to determine the presence of nuc, mecA, icaA, icaB, icaC, and icaD genes. RESULTS: Of the 50 S. aureus isolates, 32(64%) and 18(36%) were MRSA and MSSA, respectively. A large number of MRSA and MSSA isolates showed resistance to Penicillin and Azithromycin, and a lower number of MRSA and MSSA isolates showed resistance to Amikacin Gentamicin. None of the isolates was resistant to Vancomycin. The MRSA strains had significantly higher resistance against antibiotics than MSSA strains (P = 0.0154). All isolates (MRSA and MSSA) were able to produce biofilm with levels ranging from strong (31.25 %), (16.6%) to moderate (53.12%), (50%) to weak (15.6%), (33.3%) respectively. The MRSA strains had a significantly higher biofilm formation ability than the MSSA strains (P = 0.0079). The biofilm-encoding genes were detected among isolates with different frequencies. The majority of S. aureus isolates, 42 (84%), were positive for the icaA. The prevalence rates of the icaB, icaC and icaD genes were found to be 37 (74%), 40 (80%) and 41 (82%), respectively. CONCLUSIONS: The prevalence of biofilm encoding genes associated with multidrug resistance in S. aureus strains is high. Therefore, identifying epidemiology, molecular characteristics, and biofilm management of S. aureus infection would be helpful.202336908866
2365120.9504Vancomycin-resistant enterococci isolates colonizing and infecting haematology patients: clonality, and virulence and resistance profile. BACKGROUND: Vancomycin-resistant enterococci (VRE) are an important agent of colonization and infection in haematology patients. However, the role of virulence on VRE colonization and infection is controversial. AIM: To characterize the lineage, virulence and resistance profile of VRE infection and colonization isolates; as well as their impact on outcome of haematology patients using a regression logistic model. METHODS: Eighty-six isolates (80 Enterococcus faecium and six E. faecalis) from 76 patients were evaluated. Polymerase chain reaction for resistance and virulence genes, and pulsed-field gel electrophoresis and whole genome sequencing of the major clusters, were performed. Bivariate and multivariate analyses were carried out to evaluate the role of virulence genes on outcome. FINDINGS: All isolates harboured the vanA gene. Regarding the virulence genes, 96.5% of isolates were positive for esp, 69.8% for gelE and asa1 genes. VRE infection isolates were more virulent than colonization isolates and harboured more often the gelE gene (P = 0.008). Infections caused by VRE carrying asa1 gene resulted more frequently in death (P = 0.004), but only the predominant clone remained as protector in the multivariate model. The E. faecium strains were assigned to seven STs (ST78, ST412, ST478, ST792, ST896, ST987, ST963) that belonged to CC17. The E. faecalis sequenced belonged to ST9 (CC9). CONCLUSION: E. faecium was predominant, and infection isolates were more virulent than colonization isolates and harboured more often the gene gelE. Infections caused by VRE carrying the asa1 gene appeared to be associated with a fatal outcome.201829066140
1254130.9503Genetic diversity and antimicrobial resistance of Staphylococcus aureus from recurrent tonsillitis in children. The aim of this study was to analyze the prevalence of Staphylococcus aureus in the tonsils of children subjected tonsillectomy due to recurrent tonsilitis and to determine the spa types of the pathogens, carriage of virulence genes and antimicrobial resistance profiles. The study included 73 tonsillectomized children. Bacteria, including S. aureus were isolated from tonsillar surface prior to tonsillectomy, recovered from tonsillar core at the time of the surgery, and from posterior pharynx 2-4 weeks after the procedure. Staphylococcus aureus isolates were compared by spa typing, tested for antimicrobial susceptibility and for the presence of superantigenic toxin genes (sea-seu, eta, etb, tst, lukS/lukF-PV) by multiplex polymerase chain reaction. Seventy-three patients (mean 7.1 ± 4.1 years, 61.6% male) were assessed. The most commonly isolated bacteria were S. aureus. The largest proportion of staphylococcal isolates originated from tonsillar core (63%), followed by tonsillar surface (45.1%) and posterior pharynx in tonsillectomized children (18.2%, p = 0.007). Five (6.3%) isolates were identified as MRSA (mecA-positive). Up to 67.5% of the isolates synthesized penicillinases (blaZ-positive isolates), and 8.8% displayed MLS(B) resistance. The superantigenic toxin genes were detected in more than half of examined isolates (56.3%). spa types t091, t084, and t002, and clonal complexes (CCs) CC7, CC45, and CC30 turned out to be most common. Staphylococcus aureus associated with RT in children showed pathogenicity potential and considerable genetic diversity, and no clones were found to be specific for this condition although further studies are needed.202031692060
1348140.9501Prevalence and transmission of antimicrobial-resistant Staphylococci and Enterococci from shared bicycles in Chengdu, China. Shared bicycles are prevailing in China but the extent to which they contribute to maintaining and transmitting pathogens and antibiotic-resistant bacteria remain largely unknown. To fill the knowledge gap, herein, swab samples (n = 963) were collected from handlebars of shared bicycles in areas of hospital, school, metro station (n = 887) and riders (n = 76) in Chengdu, China. Staphylococci (n = 241) and Enterococci (n = 69) were widely distributed across sampling locations at a frequency of 2.3%-12.9%, and 0.08%-5.5%, respectively. Bicycle or rider-borne Gram-positive bacteria were frequently resistant to clinically important antibiotics including linezolid, fosfomycin, and vancomycin, and a significant portion of these isolates (3.4%-16.6% for Staphylococci and 0.1%-13.8% for Enterococci) indicated multidrug resistance. Nineteen Staphylococcus aureus isolates were identified in this collection and 52.6% of which were considered as methicillin-resistant S. aureus. Whole genome sequencing further characterized 26 antimicrobial resistance genes (ARGs) including fosB, fusB, and lnu(G) in S. aureus and 21 ARGs including optrA in Enterococci. Leveraging a complementary approach with conventional MLST, whole genome SNP and MLST analyses, we present that genetically closely-related bacteria were found in bicycles and riders across geographical-distinct locations suggesting bacterial transmission. Further, five new ST types 5697-5701 were firstly characterized in S. aureus. ST 942 and ST 1640 are new ST types observed in E. faecalis, and E. faecium, respectively. Our results highlighted the risk of shared bicycle system in disseminating pathogens and antibiotic resistance which warrants effective disinfections.202032531590
828150.9501Screening for Resistant Bacteria, Antimicrobial Resistance Genes, Sexually Transmitted Infections and Schistosoma spp. in Tissue Samples from Predominantly Vaginally Delivered Placentae in Ivory Coast and Ghana. Medical complications during pregnancy have been frequently reported from Western Africa with a particular importance of infectious complications. Placental tissue can either become the target of infectious agents itself, such as, e.g., in the case of urogenital schistosomiasis, or be subjected to contamination with colonizing or infection-associated microorganisms of the cervix or the vagina during vaginal delivery. In the retrospective cross-sectional assessment presented here, the quantitative dimension of infection or colonization with selected resistant or pathogenic bacteria and parasites was regionally assessed. To do so, 274 collected placental tissues from Ivory Coastal and Ghanaian women were subjected to selective growth of resistant bacteria, as well as to molecular screening for beta-lactamase genes, Schistosoma spp. and selected bacterial causative agents of sexually transmitted infections (STI). Panton-Valentine-negative methicillin-resistant Staphylococcus aureus (MRSA) was grown from 1.8% of the tissue samples, comprising the spa types t008 and t688, as well as the newly detected ones, t12101 (n = 2) and t12102. While the culture-based recovery of resistant Enterobacterales and nonfermentative rod-shaped Gram-negative bacteria failed, molecular assessments confirmed beta-lactamase genes in 31.0% of the samples with multiple detections of up to four resistance genes per sample and bla(CTX-M), bla(IMP), bla(GES), bla(VIM), bla(OXA-58)-like, bla(NDM), bla(OXA-23)-like, bla(OXA-48)-like and bla(KPC) occurring in descending order of frequency. The beta-lactamase genes bla(OXA-40/24)-like, bla(NMC_A/IMI), bla(BIC), bla(SME), bla(GIM) and bla(DIM) were not detected. DNA of the urogenital schistosomiasis-associated Schistosoma haematobium complex was recorded in 18.6% of the samples, but only a single positive signal for S. mansoni with a high cycle-threshold value in real-time PCR was found. Of note, higher rates of schistosomiasis were observed in Ghana (54.9% vs. 10.3% in Ivory Coast) and Cesarean section was much more frequent in schistosomiasis patients (61.9% vs. 14.8% in women without Schistosoma spp. DNA in the placenta). Nucleic acid sequences of nonlymphogranuloma-venereum-associated Chlamydia trachomatis and of Neisseria gonorrhoeae were recorded in 1.1% and 1.9% of the samples, respectively, while molecular attempts to diagnose Treponema pallidum and Mycoplasma genitalium did not lead to positive results. Molecular detection of Schistosoma spp. or STI-associated pathogens was only exceptionally associated with multiple resistance gene detections in the same sample, suggesting epidemiological distinctness. In conclusion, the assessment confirmed considerable prevalence of urogenital schistosomiasis and resistant bacterial colonization, as well as a regionally expected abundance of STI-associated pathogens. Continuous screening offers seem advisable to minimize the risks for the pregnant women and their newborns.202337623959
2376160.9501Molecular characterization and antimicrobial susceptibility of methicillin-resistant staphylococcus aureus isolates from clinical samples and asymptomatic nasal carriers in Istanbul (Turkey). BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) has been a widespread problem in Turkish hospitals. AIMS: The aim of this study was to investigate the staphylococcal toxin genes of the clinical and nasal MRSA isolates, and their antibiotic resistance profiles. MATERIALS AND METHODS: Isolation of nasal and clinical bacteria was done following standard microbiological methods. The presence of antimicrobial resistance genes (mec A, pvl, tsst-1, and SEs genes) was determined using the real-time polymerase chain reaction (PCR) assay. RESULTS: Among nasal MRSA isolates, 66.7% were toxigenic. The distribution of genes was as follows: pvl 26.7%, tsst-1 3.3%, and SEs 36.7%. Therefore, the nasal MRSA isolates had a rate of 23.3% multidrug resistance (MDR) pattern to the non-beta-lactams antibiotics. All (100%) clinical MRSA isolates were found to be toxigenic. The distribution of genes was as follows; pvl 10%, tsst-1 6.7%, and SEs 100%. The clinical MRSA isolates had a rate of 60% MDR. CONCLUSIONS: Following detection of pvl, tsst-1, and SEs among nasal and clinical MRSA isolates, and the presence of high antimicrobial resistance, the spread of these strains may be an additional factor contributing to the emergence of community-acquired (CA)-MRSA and hospital-acquired (HA)-MRSA. This study is the first to determine the resistance to linezolid and tigecycline in both nasal and clinical MRSA isolates, for the first time in Turkey. All nasal and clinical MRSA isolates were uniformly susceptible to vancomycin and quinupristin-dalfopristin. Our findings show that MRSA infections in Turkey can be empirically treated with vancomycin and quinupristin-dalfopristin based on the lack of demonstrable resistance to these drugs.202134290175
2381170.9499Potential of Natural Phenolic Compounds as Antimicrobial Agents against Multidrug-Resistant Staphylococcus aureus in Chicken Meat. Staphylococcus aureus is one of the most widespread foodborne bacteria that cause high morbidity, mortality, and economic loss, primarily if foodborne diseases are caused by pathogenic and multidrug-resistant (MDR) strains. This study aimed to determine the prevalence of S. aureus in chicken meat in Egyptian markets. Thus, this study might be the first to assess the efficiency of different natural phenolic compounds as novel antibacterial agents against MDR S. aureus pathogens isolated from raw chicken meat in the Egyptian market. The incidence and quantification of pathogenic S. aureus were detected in retail raw chicken meat parts (breast, thigh, fillet, and giblets). In total, 73 out of 80 (91.3%) of the chicken meat parts were contaminated, with S. aureus as the only species isolated. Of the 192 identified S. aureus isolates, 143 were coagulase-positive S. aureus and 117 isolates were MDR (81.8%, 117/143). Twenty-two antibiotic resistance profile patterns were detected. One strain was randomly selected from each pattern to further analyze virulence and resistance genes. Extracted DNA was assessed for the presence of antibiotic-resistance genes, i.e., vancomycin-resistance (vanA), aminoglycosides-resistance (aacA-aphD), apramycin-resistance (apmA), and methicillin-resistance (mecA), penicillin-resistance (blaZ), and virulence genes staphylococcal enterotoxins (sea and seb), Panton-Valentine leucocidin (pvl), clumping factor A (clfA), and toxic shock syndrome toxin (tst). Clustering analyses revealed that six S. aureus strains harbored the most virulence and resistance genes. The activity of hydroquinone was significantly higher than thymol, carvacrol, eugenol, and protocatechuic acid. Therefore, phenolic compounds, particularly hydroquinone, could potentially alternate with conventional antibiotics against the pathogenic MDR S. aureus inhabiting raw chicken meat. Hence, this study indicates that urgent interventions are necessary to improve hygiene for safer meat in Egyptian markets. Moreover, hydroquinone could be a natural phenolic compound for inhibiting foodborne pathogens.202337764518
2373180.9498Antimicrobial Resistance Profiles, Virulence Determinants, and Biofilm Formation in Enterococci Isolated from Rhesus Macaques (Macaca mulatta): A Potential Threat for Wildlife in Bangladesh? Enterococci are commensal bacteria that inhabit the digestive tracts of animals and humans. The transmission of antibiotic-resistant genes through human-animal contact poses a potential public health risk worldwide, as zoonoses from wildlife reservoirs can occur on every continent. The purpose of this study was to detect Enterococcus spp. in rhesus macaques (Macaca mulatta) and to investigate their resistance patterns, virulence profiles, and biofilm-forming ability. Conventional screening of rectal swabs (n = 67) from macaques was followed by polymerase chain reaction (PCR). The biofilm-forming enterococci were determined using the Congo red agar plate assay. Using the disk diffusion test (DDT), antibiogram profiles were determined, followed by resistance and virulence genes identification by PCR. PCR for bacterial species confirmation revealed that 65.7% (44/67) and 22.4% (15/67) of the samples tested positive for E. faecalis and E. faecium, respectively. All the isolated enterococci were biofilm formers. In the DDT, enterococcal isolates exhibited high to moderate resistance to penicillin, rifampin, ampicillin, erythromycin, vancomycin, and linezolid. In the PCR assays, the resistance gene bla(TEM) was detected in 61.4% (27/44) of E. faecalis and 60% (9/15) of E. faecium isolates. Interestingly, 88.63 % (39/44) of E. faecalis and 100% (15/15) of E. faecium isolates were phenotypically multidrug-resistant. Virulence genes (agg, fsrA, fsrB, fsrC, gelE, sprE, pil, and ace) were more frequent in E. faecalis compared to E. faecium; however, isolates of both Enterococcus spp. were found negative for the cyl gene. As far as we know, the present study has detected, for the first time in Bangladesh, the presence of virulence genes in MDR biofilm-forming enterococci isolated from rhesus macaques. The findings of this study suggest employing epidemiological surveillance along with the one-health approach to monitor these pathogens in wild animals in Bangladesh, which will aid in preventing their potential transmission to humans.202337508046
5196190.9498Phenomics and genomic features of Enterococcus avium IRMC1622a isolated from a clinical sample of hospitalized patient. BACKGROUND: Enterococcus avium (E. avium) is a Gram-positive nosocomial pathogen that is commonly isolated from the alimentary tract. The objective of this functional genomics study was to identify the resistant genes by analyzing the genome of E. avium IRMC1622a, a type of bacteria found in feces collected from a patient at a Saudi Arabian tertiary hospital. METHODS: The bacterial strain IRMC1622a was identified by 16 S rRNA sequencing as Enterococcus sp. The resistance phenomics were performed using VITEK® 2, and morphological analysis was achieved using a scanning electron microscope (SEM). Finally, the whole bacterial genome of the bacterial strain IRMC1622a was subjected to sequencing during October 2023 using Oxford Nanopore long-read sequencing technology, and mining for resistant genes. RESULTS: The results of antimicrobial resistant phenomics indicated that the IRMC1622a strain was sensitive to all tested antimicrobial agents except for erythromycin, and the same result was confirmed by genomic analysis in addition to other classes of antibiotics. SEM showed E. avium IRMC1622a is ovoid shape, in single cells (L 1.2797 ± 0.1490 µm), in pairs (L 1.7333 ± 0.1054 µm), and in chains (L 2.44033 ± 0.1978 µm). The E. avium IRMC1622a genome has 14 (in CARD) antimicrobial resistance genes that were identified with several mechanisms of antimicrobial resistance, such as the efflux pump and conferring antibiotic resistance. The present study revealed that the E. avium IRMC1622a genome contains a high number of genes associated with virulence factors, and 14 matched pathogenic protein families and predicted as human pathogen (probability score 0.855). We report two (ISEnfa4 and ISEfa5) mobile genetic elements for the first time in the E. avium genome. CONCLUSIONS: The study concludes that E. avium IRMC1622a is susceptible to all tested antibacterials except erythromycin. The IRMC1622a has 14 genes encoding antimicrobial resistance mechanisms, including the efflux pump and conferring antibiotic resistance. This could indicate a potential rise in E. avium resistance in healthcare facilities. These observations may raise concerns regarding E. avium resistance in healthcare. We need more research to understand the pathophysiology of E. avium, which leads to hospital-acquired infections.202438833914