# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3547 | 0 | 0.9761 | Occurrence of 40 sanitary indicators in French digestates derived from different anaerobic digestion processes and raw organic wastes from agricultural and urban origin. This study investigated the sanitary quality of digestates resulting from the mesophilic anaerobic digestion (AD) of urban and agricultural organic wastes (OWs). 40 sanitary indicators, including pathogenic bacteria, antimicrobial resistance genes, virulence factor genes, and mobile genetic elements were evaluated using real-time PCR and/or droplet digital PCR. 13 polycyclic aromatic hydrocarbons (PAHs) and 13 pharmaceutical products (PHPs) were also measured. We assessed agricultural OWs from three treatment plants to study the effect of different AD processes (feeding mode, number of stages, pH), and used three laboratory-scale reactors to study the effect of different feed-supplies (inputs). The lab-scale reactors included: Lab1 fed with 97% activated sludge (urban waste) and 3% cow manure; Lab2 fed with 85% sludge-manure mixture supplemented with 15% wheat straw (WS); and Lab3 fed with 81% sludge-manure mixture, 15% WS, and 4% zeolite powder. Activated sludge favored the survival of the food-borne pathogens Clostridium perfringens and Bacillus cereus, carrying the toxin-encoding genes cpe and ces, respectively. Globally, the reactors fed with fecal matter supplemented with straw (Lab2) or with straw and zeolite (Lab3) had a higher hygienization efficiency than the reactor fed uniquely with fecal matter (Lab1). Three pathogenic bacteria (Enterococcus faecalis, Enterococcus faecium, and Mycobacterium tuberculosis complex), a beta-lactam resistance gene (bla (TEM)), and three mobile genetic elements (intI1, intI2, and IS26) were significantly decreased in Lab2 and Lab3. Moreover, the concentrations of 11 PAHs and 11 PHPs were significantly lower in Lab2 and Lab3 samples than in Lab1 samples. The high concentrations of micropollutants, such as triclosan, found in Lab1, could explain the lower hygienization efficiency of this reactor. Furthermore, the batch-fed reactor had a more efficient hygienization effect than the semi-continuous reactors, with complete removal of the ybtA gene, which is involved in the production of the siderophore yersiniabactin, and significant reduction of intI2 and tetO. These data suggest that it is essential to control the level of chemical pollutants in raw OWs to optimize the sanitary quality of digestates, and that adding co-substrate, such as WS, may overcome the harmful effect of pollutants. | 2024 | 39165575 |
| 6080 | 1 | 0.9761 | Metagenomic Insights into the Taxonomic and Functional Features of Traditional Fermented Milk Products from Russia. Fermented milk products (FMPs) contain probiotics that are live bacteria considered to be beneficial to human health due to the production of various bioactive molecules. In this study, nine artisanal FMPs (kefir, ayran, khurunga, shubat, two cottage cheeses, bryndza, khuruud and suluguni-like cheese) from different regions of Russia were characterized using metagenomics. A metagenomic sequencing of ayran, khurunga, shubat, khuruud and suluguni-like cheese was performed for the first time. The taxonomic profiling of metagenomic reads revealed that Lactococcus species, such as Lc. lactis and Lc. cremoris prevailed in khuruud, bryndza, one sample of cottage cheese and khurunga. The latter one together with suluguni-like cheese microbiome was dominated by bacteria, affiliated to Lactobacillus helveticus (32-35%). In addition, a high proportion of sequences belonging to the genera Lactobacillus, Lactococcus and Streptococcus but not classified at the species level were found in the suluguni-like cheese. Lactobacillus delbrueckii, as well as Streptococcus thermophilus constituted the majority in another cottage cheese, kefir and ayran metagenomes. The microbiome of shubat, produced from camel's milk, was significantly distinctive, and Lentilactobacillus kefiri, Lactobacillus kefiranofaciens and Bifidobacterium mongoliense represented the dominant components (42, 7.4 and 5.6%, respectively). In total, 78 metagenome-assembled genomes with a completeness ≥ 50.2% and a contamination ≤ 8.5% were recovered: 61 genomes were assigned to the Enterococcaceae, Lactobacillaceae and Streptococcaceae families (the Lactobacillales order within Firmicutes), 4 to Bifidobacteriaceae (the Actinobacteriota phylum) and 2 to Acetobacteraceae (the Proteobacteria phylum). A metagenomic analysis revealed numerous genes, from 161 to 1301 in different products, encoding glycoside hydrolases and glycosyltransferases predicted to participate in lactose, alpha-glucans and peptidoglycan hydrolysis as well as exopolysaccharides synthesis. A large number of secondary metabolite biosynthetic gene clusters, such as lanthipeptides, unclassified bacteriocins, nonribosomal peptides and polyketide synthases were also detected. Finally, the genes involved in the synthesis of bioactive compounds like β-lactones, terpenes and furans, nontypical for fermented milk products, were also found. The metagenomes of kefir, ayran and shubat was shown to contain either no or a very low count of antibiotic resistance genes. Altogether, our results show that traditional indigenous fermented products are a promising source of novel probiotic bacteria with beneficial properties for medical and food industries. | 2023 | 38276185 |
| 6795 | 2 | 0.9761 | Interplay of xenobiotic-degrading and antibiotic-resistant microorganisms among the microbiome found in the air, handrail, and floor of the subway station. Investigating the quality of the subway environment, especially regarding antibiotic resistance genes (ARGs) and xenobiotics, conveys ecological and health impacts. In this study, compositions and relations of microorganisms harboring ARGs and xenobiotic degradation and metabolism genes (XDGs) in the Sukhumvit subway station (MRT-SKV) in Bangkok was assessed by analyzing the taxonomic and genetic diversity of the microbiome in the air and on the surfaces of floor and handrail. The major bacteria in the MRT-SKV (including Moraxella, which was abundant in the bioaerosol and handrail samples, and Staphylococcus, which was abundant in the bioaerosol samples) were found to contain both ARGs and XDGs. The co-abundance correlation network revealed notable relationships among bacteria harboring antibiotic resistance genes (ARGs) and xenobiotic degradation genes (XDGs). Significant associations were observed between ARGs linked to glycopeptide and fluoroquinolone resistance and genes associated with benzoate, styrene, and atrazine degradation pathways, as well as between ARGs related to cephamycin, cephalosporin, and MLS resistance and XDGs associated with the cytochrome P450-dependent drug metabolism pathway. These correlations suggested that selective pressure exerted by certain xenobiotics and antibiotics can simultaneously affect both ARGs and XDGs in the environment and should favor correlations and co-survival among ARG- and XDG-containing bacteria in the environments. The correlations may occur via shared mechanisms of resistance to both xenobiotics and antibiotics. Finally, different correlation pairs were seen in different niches (air, handrail, floor) of the subway environment or different geolocations. Thus, the relationship between ARG and XDG pairs most likely depends on the unique characteristics of the niches and on the prominent types of xenobiotics and antibiotics in the subway environment. The results indicated that interactions and connections between microbial communities can impact how they function. These microorganisms can have profound effects on accumulation of xenobiotics and ARGs in the MRT-SKV. | 2024 | 38246293 |
| 3078 | 3 | 0.9761 | Microbiome of Dipteran vectors associated with integron and antibiotic resistance genes in South Korea. The spread of antibiotic resistance genes (ARGs) across the environment and the role that organisms that interact with humans play as reservoirs of resistant bacteria pose important threats to public health. Flies are two-winged insects composing the order Diptera, which includes synanthropic species with significant ecological roles as pollinators, vectors, and decomposers. Here, we used iSeq100 metabarcoding to characterize the microbiome of six dipteran species in South Korea: Lucilia sericata, Lucilia illustris, Culex pipiens, Aedes vexans, Psychoda alternata and Clogmia albipunctata. We profiled a panel of common ARGs and performed correlation network analysis of the microbiome and resistome to identify co-occurrence patterns of bacterial amplicon sequence variants (ASVs) and resistance genes. We detected blaTEM, ermB, tetB, tetC, aac(6')-Ib-cr, cat2, sul1, qepA, int1 and int2, but no blaSHV, mecA, tetA or cat1. Notably, co-occurrence analysis showed highly mobile genes such as qepA, ermB and sul1 were associated with integron of class 1 integrase presence. These, along with aac(6')-Ib-cr were detected at higher rates across multiple species. Microbiome composition was distinct across species. Amplicon sequence variants (ASVs) of Pseudomonas, Corynebacterium, Clostridium, Ignatzschineria, Bacteroides, Streptococcus, Treponema and Dietzia showed strong co-occurrence with multiple ARGs. This study contributes to the understanding of the role of dipterans as reservoirs of antibiotic resistance. | 2025 | 41046045 |
| 3624 | 4 | 0.9760 | Occurrence of multi-antibiotic resistant Pseudomonas spp. in drinking water produced from karstic hydrosystems. Aquatic environments could play a role in the spread of antibiotic resistance genes by enabling antibiotic-resistant bacteria transferred through wastewater inputs to connect with autochthonous bacteria. Consequently, drinking water could be a potential pathway to humans and animals for antibiotic resistance genes. The aim of this study was to investigate occurrences of Escherichia coli and Pseudomonas spp. in drinking water produced from a karst, a vulnerable aquifer with frequent increases in water turbidity after rainfall events and run-offs. Water samples were collected throughout the system from the karstic springs to the drinking water tap during three non-turbid periods and two turbid events. E. coli densities in the springs were 10- to 1000-fold higher during the turbid events than during the non-turbid periods, indicating that, with increased turbidity, surface water had entered the karstic system and contaminated the spring water. However, no E. coli were isolated in the drinking water. In contrast, Pseudomonas spp. were isolated from the drinking water only during turbid events, while the densities in the springs were from 10- to 100-fold higher than in the non-turbid periods. All the 580 Pseudomonas spp. isolates obtained from the sampling periods were resistant (to between 1 and 10 antibiotics), with similar resistance patterns. Among all the Pseudomonas isolated throughout the drinking water production system, between 32% and 86% carried the major resistance pattern: ticarcillin, ticarcillin-clavulanic acid, cefsulodin, and/or aztreonam, and/or sulfamethoxazol-trimethoprim, and/or fosfomycin. Finally, 8 Pseudomonas spp. isolates, related to the Pseudomonas putida and Pseudomonas fluorescens species, were isolated from the drinking water. Thus, Pseudomonas could be involved in the dissemination of antibiotic resistance via drinking water during critical periods. | 2014 | 24875257 |
| 6380 | 5 | 0.9757 | Seasonal dynamics of anammox bacteria in estuarial sediment of the Mai Po Nature Reserve revealed by analyzing the 16S rRNA and hydrazine oxidoreductase (hzo) genes. The community and population dynamics of anammox bacteria in summer (wet) and winter (dry) seasons in estuarial mudflat sediment of the Mai Po Nature Reserve were investigated by 16S rRNA and hydrazine oxidoreductase (hzo) genes. 16S rRNA phylogenetic diversity showed that sequences related to 'Kuenenia' anammox bacteria were presented in summer but not winter while 'Scalindua' anammox bacteria occurred in both seasons and could be divided into six different clusters. Compared to the 16S rRNA genes, the hzo genes revealed a relatively uniform seasonal diversity, with sequences relating to 'Scalindua', 'Anammoxoglobus', and planctomycete KSU-1 found in both seasons. The seasonal specific bacterial groups and diversity based on the 16S rRNA and hzo genes indicated strong seasonal community structures in estuary sediment of this site. Furthermore, the higher abundance of hzo genes in summer than winter indicates clear seasonal population dynamics. Combining the physicochemical characteristics of estuary sediment in the two seasons and their correlations with anammox bacteria community structure, we proposed the strong seasonal dynamics in estuary sediment of Mai Po to be due to the anthropogenic and terrestrial inputs, especially in summer, which brings in freshwater anammox bacteria, such as 'Kuenenia', interacting with the coastal marine anammox bacteria 'Scalindua'. | 2011 | 21487198 |
| 7748 | 6 | 0.9756 | Bacillus subtilis reduces antibiotic resistance genes of animal sludge in vermicomposting by improving heat stress tolerance of Eisenia foetida and bacterial community adjustment. Antibiotic resistance genes (ARGs) in livestock industry have been recognized as a kind of pollutant. The effect of Bacillus subtilis (B. subtilis) as an additive for the reduction of ARGs in animal sludge from livestock and poultry wastewater treatment plant during vermicomposting was investigated. We also evaluated the oxidative stress level and growth of earthworms, Eisenia foetida, bacterial community succession, and the quality of the end products. Two treatments were conducted using B. subtilis, one at 18 °C and another at 28 °C. Controls were setup without the bacteria. The results showed that inoculation of B. subtilis promoted the degradation of organics at 28 °C and increased the germination index to 236%. The increased activities of the superoxide dismutase (1.69 U/mg pr) and catalase (8.05 U/mg pr) and the decreased activity of malondialdehyde (0.02 nmol/mg pr) by B. subtilis at 28 °C showed that the earthworms were relieved of heat stress. The addition of B. subtilis reduced the abundance of 32 target ARGs, including integron (intI-1), transposase (IS613) and resistant genes, such as sulfonamide (sul2), quinolone (oprJ), macrolide-lincosamide-streptogramin group B (ermF, ermB), tetracycline (tetL-02, tetX), β-lactama (blaOXA10-01) and aminoglycoside [strB, aac(6')-Ib(aka aacA4)-01, aac(6')-Ib(aka aacA4)-02]. Organic matter degrading Membranicola, Paludisphaera, Sphingorhabdus and uncultured bacterium belonging to the order Chitinophagales, nitrifying and nitrogen-fixing Singulisphaera and Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, soil remediating Achromobacter, and plant growth promoting Kaistia, Galbibacter and Ilumatobacter were increased significantly (P < 0.05). However, the growth of harmful bacteria such as Burkholderiaceae was inhibited in the vermicompost. In earthworm guts, the probiotic Mesorhizobium was promoted, while the pathogenic uncultured bacterium belonging to the family Enterobacteriaceae was reduced. Besides, B. subtilis enhanced the host relationships between bacteria and ARGs. These findings might be helpful in the removal of ARGs in animal wastes and in understanding the synergy between earthworms and microorganisms. | 2023 | 36529325 |
| 7723 | 7 | 0.9756 | Karst spring microbiome: Diversity, core taxa, and community response to pathogens and antibiotic resistance gene contamination. Karst aquifers are important water resources for drinking water supplies worldwide. Although they are susceptible to anthropogenic contamination due to their high permeability, there is a lack of detailed knowledge on the stable core microbiome and how contamination may affect these communities. In this study, eight karst springs (distributed across three different regions in Romania) were sampled seasonally for one year. The core microbiota was analysed by 16S rRNA gene amplicon sequencing. To identify bacteria carrying antibiotic resistance genes and mobile genetic elements, an innovative method was applied, consisting of high-throughput antibiotic resistance gene quantification performed on potential pathogen colonies cultivated on Compact Dry™ plates. A taxonomically stable bacterial community consisting of Pseudomonadota, Bacteroidota, and Actinomycetota was revealed. Core analysis reaffirmed these results and revealed primarily freshwater-dwelling, psychrophilic/psychrotolerant species affiliated to Rhodoferax, Flavobacterium, and Pseudomonas genera. Both sequencing and cultivation methods indicated that more than half of the springs were contaminated with faecal bacteria and pathogens. These samples contained high levels of sulfonamide, macrolide, lincosamide and streptogramins B, and trimethoprim resistance genes spread primarily by transposase and insertion sequences. Differential abundance analysis found Synergistota, Mycoplasmatota, and Chlamydiota as suitable candidates for pollution monitoring in karst springs. This is the first study highlighting the applicability of a combined approach based on high-throughput SmartChip™ antibiotic resistance gene quantification and Compact Dry™ pathogen cultivation for estimating microbial contaminants in karst springs and other challenging low biomass environments. | 2023 | 37364839 |
| 7081 | 8 | 0.9755 | Seasonal variations in export of antibiotic resistance genes and bacteria in runoff from an agricultural watershed in Iowa. Seasonal variations of antimicrobial resistance (AMR) indicators in runoff water can help improve our understanding of AMR sources and transport within an agricultural watershed. This study aimed to monitor multiple areas throughout the Black Hawk Lake (BHL) watershed (5324 ha) in central Iowa during 2017 and 2018 that consists of both swine and cattle feeding operations as well as known areas with manure application. The measured indicators included plate counts for fecal indicator bacteria (FIB) E. coli, Enterococcus, antibiotic resistant fecal indicator bacteria (ARBs) tylosin resistant Enterococcus, tetracycline resistant Enterococcus, and antibiotic resistance genes (ARGs): ermB, ermF (macrolide), tetA, tetM, tetO, tetW (tetracycline), sul1, sul2 (sulfonamide), aadA2 (aminoglycoside), vgaA, and vgaB (pleuromutilin). Both the plate count and the ARG analyses showed seasonal trends. Plate counts were significantly greater during the growing season, while the ARGs were greater in the pre-planting and post-harvest seasons (Wilcoxon Rank-Sum Test p < 0.05). The ermB gene concentration was significantly correlated (p < 0.05) with E. coli and Enterococcus concentrations in 2017, suggesting a potential use of this ARG as an indicator of environmental AMR and human health risk. Flow rate was not a significant contributor to annual variations in bacteria and AMR indicators. Based on observed seasonal patterns, we concluded that manure application was the likely contributor to elevated ARG indicators observed in the BHL watershed, while the driver of elevated ARB indictors in the growing season can only be speculated. Understanding AMR export patterns in agricultural watersheds provides public health officials knowledge of seasonal periods of higher AMR load to recreational waters. | 2020 | 32806354 |
| 7757 | 9 | 0.9754 | Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: Effect of flow configuration and plant species. This study aims to investigate the removal of antibiotics and antibiotic resistance genes (ARGs) in raw domestic wastewater by various mesocosm-scale constructed wetlands (CWs) with different flow configurations or plant species including the constructed wetland with or without plant. Six mesocosm-scale CWs with three flow types (surface flow, horizontal subsurface flow and vertical subsurface flow) and two plant species (Thaliadealbata Fraser and Iris tectorum Maxim) were set up in the outdoor. 8 antibiotics including erythromycin-H2O (ETM-H2O), monensin (MON), clarithromycin (CTM), leucomycin (LCM), sulfamethoxazole (SMX), trimethoprim (TMP), sulfamethazine (SMZ) and sulfapyridine (SPD) and 12 genes including three sulfonamide resistance genes (sul1, sul2 and sul3), four tetracycline resistance genes (tetG, tetM, tetO and tetX), two macrolide resistance genes (ermB and ermC), two chloramphenicol resistance genes (cmlA and floR) and 16S rRNA (bacteria) were determined in different matrices (water, particle, substrate and plant phases) from the mesocosm-scale systems. The aqueous removal efficiencies of total antibiotics ranged from 75.8 to 98.6%, while those of total ARGs varied between 63.9 and 84.0% by the mesocosm-scale CWs. The presence of plants was beneficial to the removal of pollutants, and the subsurface flow CWs had higher pollutant removal than the surface flow CWs, especially for antibiotics. According to the mass balance analysis, the masses of all detected antibiotics during the operation period were 247,000, 4920-10,600, 0.05-0.41 and 3500-60,000μg in influent, substrate, plant and effluent of the mesocosm-scale CWs. In the CWs, biodegradation, substrate adsorption and plant uptake all played certain roles in reducing the loadings of nutrients, antibiotics and ARGs, but biodegradation was the most important process in the removal of these pollutants. | 2016 | 27443461 |
| 3500 | 10 | 0.9754 | Shifts in bacterial communities and antibiotic resistance genes in surface water and gut microbiota of guppies (Poecilia reticulata) in the upper Rio Uberabinha, Brazil. Anthropogenic activities especially water pollution can affect the diversity and composition of microbial communities and promote the spread of antibiotic resistance genes (ARGs). In this study, water samples and guppies (Poecilia reticulata) were sampled from six sampling sites along the Uberabinha River in southeastern Brazil, both microbial communities and ARGs of surface waters and intestinal microbiota of guppies (Poecilia reticulata) were detected. According to the results of 16S rRNA amplicon sequencing, Proteobacteria, Bacteroidetes, Firmicutes and Actinobacteria were dominant phyla in both water and intestinal microbiota, but the abundance of putative pathogens was higher at heavily polluted sites. Up to 83% of bacteria in intestinal microbiota originated from water microbiota; this proportion was relatively higher in less polluted compared to polluted environments. ARGs providing resistance of tetracyclines and quinolones were dominant in both water and gut microbiota. The relative abundances of class I integrons and ARGs were as high as 1.74 × 10(-1)/16S rRNA copies and 3.61 × 10(-1)/16S rRNA copies, respectively, at heavily polluted sites. Correlation analysis suggests that integrons and bacteria play key roles in explaining the widespread occurrence of ARGs in the surface, but not in intestinal microbiota. We could rule out the class I integrons a potential intermediary bridge for ARGs between both types of microbiomes. Our results highlight the tight link in microbial communities and ARGs between ambient microbiota of stream ecosystems and intestinal microbiota of fish. Our study could have far-reaching consequences for fisheries and consumer safety and calls for investigations of gut microbiota of target species of both commercial fisheries and recreational (hobby) angling. | 2021 | 33497859 |
| 3626 | 11 | 0.9754 | Multiple antibiotic resistance and herbicide catabolic profiles of bacteria isolated from Lake Villarrica surface sediments (Chile). Antibiotics and herbicides are contaminants of emerging concern in aquatic environments. Lake Villarrica is a relevant freshwater body in Chile and was recently designated a 'saturated nutrient zone'. Here, we investigated the occurrence of multiple antibiotic resistance (MAR) and herbicide catabolic profiles among bacteria present in the surface sediments of Lake Villarrica. The occurrence of antibiotic-resistant genes (ARGs; blaTEM, catA and tetM) and herbicide-catabolic genes (HCGs; phnJ and atzA) was investigated by qPCR. Subsequently, the presence of culturable bacteria with multiple resistance to amoxicillin (AMX), chloramphenicol (CHL) and oxytetracycline (OXT) was studied. Forty-six culturable MAR (AMX + CHL + OXT) strains were isolated and characterized with respect to their resistance to 11 antibiotics by using a disc diffusion assay and testing their ability to use herbicides as a nutrient source. qPCR analyses revealed that ARGs and HCGs were present in all sediment samples (10(1) to 10(3) gene copies g(-1)), with significant (P ≤ 0.05) higher values in sites near Villarrica city and cattle pastures. The plate method was used to recover MAR isolates from sediment (10(3)-10(6) CFU g(-1)), and most of the 46 isolates also showed resistance to oxacillin (100%), cefotaxime (83%), erythromycin (96%) and vancomycin (93%). Additionally, 54 and 57% of the MAR isolates were able to grow on agar supplemented (50 mg L(-1)) with atrazine and glyphosate as nutrient sources, respectively. Most of the MAR isolates were taxonomically close to Pseudomonas (76.1%) and Pantoea (17.4%), particularly those isolated from urbanized sites (Pucón city). This study shows the presence of MAR bacteria with herbicide catabolic activity in sediments, which is valuable for conservation strategies and risk assessments of Lake Villarrica. However, major integrative studies on sediments as reservoirs or on the fate of MAR strains and traces of antibiotics and herbicides as a result of anthropic pressure are still needed. | 2024 | 39002747 |
| 7152 | 12 | 0.9754 | Aerosolization behavior of antimicrobial resistance in animal farms: a field study from feces to fine particulate matter. Antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in animal feces can be released into the atmosphere via aerosolization, posing a high health risk to farm workers. So far, little attention has been paid to the characterization of the aerosolization process. In this study, fecal and fine particulate matter (PM2.5) samples were collected from 20 animal farms involving swine, cattle, layers, and broilers, and the ARGs, ARB, and human pathogenic bacteria (HPB) were loaded in these two media. The results showed that approximately 70% of ARGs, 60% of ARBs, and 43% of HPBs were found to be preferential aerosolization. The bioaerosolization index (BI) of target 30 ARGs varied from 0.04 to 460.07, and the highest value was detected from tetW. The highest BI values of erythromycin- and tetracycline-resistant bacteria were for Kocuria (13119) and Staphylococcus (24746), respectively, and the distribution of BI in the two types of dominant ARB was similar. Regarding the bioaerosolization behavior of HPB, Clostridium saccharolyticum WM1 was the most easily aerosolized pathogen in swine and broiler farms, and Brucella abortus strain CNM 20040339 had the highest value in cattle and layer farms. Notably, the highest BI values for ARGs, ARB, and HPB were universally detected on chicken farms. Most ARGs, ARB, and HPB positively correlated with animal age, stocking density, and breeding area. Temperature and relative humidity have significant effects on the aerosolization behavior of targets, and the effects of these two parameters on the same target are usually opposite. The results of this study provide a basis for a better understanding of the contribution of animal feces to airborne ARGs and HPBs in farms, as well as for controlling the transport of the fecal microbiome to the environment through the aerosolization pathway. | 2023 | 37152737 |
| 6384 | 13 | 0.9754 | Tidal flat aquaculture pollution governs sedimentary antibiotic resistance gene profiles but not bacterial community based on metagenomic data. Coastal tidal flats are intersection zones between terrestrial and marine environments and are considered repositories of pollutants from anthropogenic activities (e.g., fishery and aquaculture). Specifically, the prevalence of antibiotics and antibiotic resistance genes (ARGs) in coastal aquaculture environments pose critical threats to estuarine ecosystems. However, the contribution of aquaculture to the occurrence and abundance of ARGs and community assemblies has not been fully explored in tidal flat zones. Thus, we investigated ARGs profiles, ARG-carrying host bacteria, and their associate microbial community in the Dongtai and Sheyang tidal flat aquaculture regions of Jiangsu, China using metagenomic assembly methods. The antibiotic concentrations in the sediment samples ranged from nd to 35.50 ng/g dw, and the antibiotic pollution in the Dongtai tidal flat was more severe than in the Sheyang tidal flats. Metagenomic assembly indicated that a total of 247 ARG subtypes associated with ARG 33 types were characterized across all samples and their abundance in the Dongtai region exceeded that in the Sheyang region. Meanwhile, 21 bacteria in the tidal flat aquaculture were identified as ARG-carrying pathogens, including Escherichia coli, Vibrio fluvialis, and Staphylococcus aureus. Using neutral and null modeling analysis to determine the community ecological processes, the results revealed bacterial and ARG communities were generally dominated by stochastic and deterministic processes, respectively. The above results suggested that aquaculture pollution was contributed to shape ARG profiles in tidal flats. The observed deterministic processes affecting the ARG community in tidal flat aquaculture also provides an effective foundation to control the risks of environmental antibiotic resistance through reducing aquaculture antibiotic usage. | 2022 | 35421458 |
| 3076 | 14 | 0.9752 | Antimicrobial resistance genes (ARGs) in sea surface aerosols over the Atlantic Ocean. The large-scale abundance and distribution of antibiotic resistance genes (ARGs) within the atmosphere remains poorly documented, particularly over oceans. This study explores bacterial loads, diversity, and associated antimicrobial resistance genes in aerosols over the North Atlantic Ocean. Aerosol samples were collected from a ship during a cruise from Brest (France) to Woods Hole (USA) for 24-h periods using a mast-mounted system, with additional one-hour spot samples taken daily and nightly using high-flow rates samplers. The airborne concentrations of bacteria along with 21 ARG subtypes as indicators of key resistance families were monitored using qPCR. These were related to the bacterial diversity obtained from same samples through ribosomal gene amplicon sequencing, and to the geographical origin of the air masses estimated using atmospheric dynamics models. Total ARG concentrations ranged from background concentrations of a few copies to >10(5) copies/m(3) of air. Near coasts, macrolide and tetracycline resistance genes were dominant (up to 93 % and 38 % of the total ARG monitored here, respectively). While sulfonamide resistance genes were also detected further offshore, those related to transposases and β-lactamases were detected only sporadically. The multiple observed correlations between the aforementioned gene concentrations in the air and potential soil-derived microorganisms may be indicative of continental inputs. Conversely, the prevalence of quinolone resistance (qepA) in the air over the open ocean points toward a contribution from marine surfaces, supported by associations between several ARGs and marine microorganisms including cyanobacteria. These may thus act as environmental reservoirs of ARGs, and sources for further environmental spread notably by air means. | 2025 | 41106010 |
| 7161 | 15 | 0.9752 | Mitigating the risk of antibiotic resistance and pathogenic bacteria in swine waste: The role of ectopic fermentation beds. The ectopic fermentation bed (EFB) is used to recycle animal waste, but the fate and dynamic change of antibiotic resistance genes (ARGs) with biocide or heavy metal resistance genes (B/MRGs) and pathogens remain unclear. We performed metagenomic sequencing on 129 samples to study the resistome and bacteriome in pig feces from 24 farms, comparing these profiles with EFBs from five farms, and one farm's EFB was monitored for 154 days. Results showed pig feces from different cities (Chengdu, Meishan, and Chongqing) shared 284 of 311 ARG subtypes, with over 70 % being high-risk ARGs, and 106 of 114 pathogenic bacteria. Swine farms were heavily contaminated with co-occurrences of risky ARGs, B/MRGs, and pathogenic hosts, particularly Escherichia coli and Streptococcus suis being hosts of multidrug ARGs. The application of EFBs markedly mitigated these risks in feces, showing a 3.09-fold decrease in high-risk ARGs, a 72.22 % reduction in B/MRGs, a 3.95-fold drop in prioritized pathogens, an 89.09 % decline in the relative abundance of pig pathogens, and a simplification of their correlation networks and co-occurrence patterns. A mantel analysis revealed that metal contents (Fe, Mn, and Cu) and time influenced pathogen and ARG profiles. Pathogens, ARGs, and risk ARGs exhibited periodic variations, peaking at days 14, 84, and 154, with 70-day intervals. This study provides a comprehensive assessment of the risks associated with pig feces and EFBs and demonstrates that EFBs reduce ARG risks by inhibiting their associations with B/MRGs and pathogens. These findings can help guide and improve the management of antimicrobial resistance and pathogenic contaminants in EFB applications to reduce environmental pollution. | 2025 | 40220395 |
| 7154 | 16 | 0.9751 | Deciphering the natural and anthropogenic drivers on the fate and risk of antibiotics and antibiotic resistance genes (ARGs) in a typical river-estuary system, China. This study conducts an in-depth assessment of the spatial distribution, ecological risks, and correlations among 12 antibiotics, antibiotic resistance genes (ARGs), and dominant microorganisms in a representative river-estuary system, classified by land use and hydrodynamic conditions. Sulfonamides and quinolones were identified as the major contaminants in surface waters, with aquaculture and healthcare wastewater responsible for over 80 % of the antibiotic load. Contrasting seasonal patterns were observed between freshwater (wet season: 215 ng/L, dry season: 99.9 ng/L) and tidal estuaries (wet season: 45.9 ng/L, dry season: 121 ng/L), attributed to antibiotic transport from terrestrial sources or coastal aquaculture areas. The estimated annual antibiotic influx into Jiaozhou Bay was 70.4 kg/year, posing a considerable threat to aquatic algae and disrupting the stability of aquatic food chain. BugBase predictions suggested that antibiotics in the environment suppressed bacteria characterized by biofilm formation (FB) and the presence of mobile elements (CME). However, ARG transmission was likely to drive the spread of CME, FB, and stress-tolerant (OST) bacteria within microbial communities. The significant positive correlations observed between sulfamethoxazole and 63 microbial genera indicate a broad distribution of microbial resistance, which exacerbates the potential for ARG accumulation and dissemination across both the bay and the Yellow Sea. | 2024 | 39357363 |
| 3084 | 17 | 0.9751 | Antibiotic resistance profile of facultative deep-sea psychro-piezophile bacteria from the Arabian Sea and their relation with physicochemical factors. Antibiotic resistance (ABR) is a significant global challenge, with antibiotics from various sources ending up in the ocean and affecting marine life. Profiling ABR in deep-sea bacteria is crucial for understanding the spread of ABR from environmental microbes to clinical pathogen and vice-versa. We evaluated facultative psychro-piezophile deep-sea bacteria from different depths of the Arabian Sea for their resistance to 20 commercial antibiotics. Bacteria from Zone 5 (2000-3000 m) exhibited the highest multiple antibiotic resistance (MAR) index (0.90), identifying it as a significant reservoir of ABR. Zone 1 (5-100 m) isolates (average 20 %) showed the highest resistance to synthetic antibiotics. Zone 3 (500-1000 m) isolates were highly resistant to diverse classes of antibiotics, separating upper (zone 1 and 2 (100-500 m) and deeper sea zones (zone 4 (1000-2000 m) and 5). The identified isolates belong to Bacillus, Niallia, Escherichia, Cytobacillus, and Pseudomonas genera. Additionally, antibiotic resistance genes (ARGs) such as StrB (2 isolates) and SXT integrase (1 isolate) were detected only in Zone 5 isolates. The SulII gene (19 isolates) was present across all zones. PCA analysis revealed a negative correlation between resistance and physicochemical factors (macronutrients like phosphate (PO(4)(3-)), nitrate (NO(3)(-)), nitrite (NO(2)(-)), and ammonia (NH(3)); micronutrient and heavy metals like (iron (Fe), manganese (Mn), zinc (Zn), copper (Cu), nickel (Ni)), aluminium (Al), cadmium (Cd), and chromium (Cr)), except for Phosphate (0.65). Overall, this study is the first to provide valuable insights into the prevalence of ABR using culture-dependent methods and its correlation with physicochemical factors in the deep-sea environments of the Arabian Sea. | 2025 | 40088632 |
| 7080 | 18 | 0.9750 | Antibiotics, bacteria, and antibiotic resistance genes: aerial transport from cattle feed yards via particulate matter. BACKGROUND: Emergence and spread of antibiotic resistance has become a global health threat and is often linked with overuse and misuse of clinical and veterinary chemotherapeutic agents. Modern industrial-scale animal feeding operations rely extensively on veterinary pharmaceuticals, including antibiotics, to augment animal growth. Following excretion, antibiotics are transported through the environment via runoff, leaching, and land application of manure; however, airborne transport from feed yards has not been characterized. OBJECTIVES: The goal of this study was to determine the extent to which antibiotics, antibiotic resistance genes (ARG), and ruminant-associated microbes are aerially dispersed via particulate matter (PM) derived from large-scale beef cattle feed yards. METHODS: PM was collected downwind and upwind of 10 beef cattle feed yards. After extraction from PM, five veterinary antibiotics were quantified via high-performance liquid chromatography with tandem mass spectrometry, ARG were quantified via targeted quantitative polymerase chain reaction, and microbial community diversity was analyzed via 16S rRNA amplification and sequencing. RESULTS: Airborne PM derived from feed yards facilitated dispersal of several veterinary antibiotics, as well as microbial communities containing ARG. Concentrations of several antibiotics in airborne PM immediately downwind of feed yards ranged from 0.5 to 4.6 μg/g of PM. Microbial communities of PM collected downwind of feed yards were enriched with ruminant-associated taxa and were distinct when compared to upwind PM assemblages. Furthermore, genes encoding resistance to tetracycline antibiotics were significantly more abundant in PM collected downwind of feed yards as compared to upwind. CONCLUSIONS: Wind-dispersed PM from feed yards harbors antibiotics, bacteria, and ARGs. | 2015 | 25633846 |
| 6835 | 19 | 0.9750 | Metagenomic profiling of antibiotic resistance genes and their associations with the bacterial community along the Kanda River, an urban river in Japan. Antibiotic resistance genes (ARGs) present in urban rivers have the potential to disseminate antibiotic-resistant bacteria into other environments, posing significant threats to both ecological and public health. Although metagenomic analyses have been widely employed to detect ARGs in rivers, our understanding of their dynamics across different seasons in diverse watersheds remains limited. In this study, we performed a comprehensive genomic analysis of the Kanda River in Japan at 11 sites from upstream to estuary throughout the year to assess the spread of ARGs and their associations with bacterial communities. Analysis of 110 water samples using the 16S rRNA gene revealed variations in bacterial composition corresponding to seasonal changes in environmental parameters along the river. Shotgun metagenomics-based profiling of ARGs in 44 water samples indicated higher ARG abundance downstream, particularly during the summer. Weighted gene co-expression network analysis (WGCNA) linking bacterial lineages and ARGs revealed that 12 ARG subtypes co-occurred with 128 amplicon sequence variants (ASVs). WGCNA suggested potential hosts for ErmB, ErmF, ErmG, tetQ, tet (W/N/W), aadA2, and adeF, including gut-associated bacteria (e.g., Prevotella, Bacteroides, Arcobacter) and indigenous aquatic microbes (e.g., Limnohabitans and C39). In addition, Pseudarcobacter (a later synonym of Arcobater) was identified as a host for adeF, which was also confirmed by single cell genomics. This study shows that ARG distribution in urban rivers is affected by seasonal and geographical factors and demonstrates the importance of monitoring rivers using multiple types of genome sequencing, including 16S rRNA gene sequencing, metagenomics, and single cell genomics. | 2025 | 39488451 |