# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 4655 | 0 | 0.9296 | Antibiotic Resistance in Vibrio Bacteria Associated with Red Spotting Disease in Sea Urchin Tripneustes gratilla (Echinodermata). The red spotting disease harms sea urchins to the extent of mass mortality in the ocean and echinocultures, accompanied by environmental damage and economic losses. The current study emphasizes the antimicrobial resistance of three isolated bacteria, closely related to Vibrio harveyi, Vibrio owensii, and Vibrio fortis, associated with red spotting in the cultured sea urchin Tripneustes gratilla. In vitro trials examined the susceptibility of these bacterial isolates to various antibiotics. In addition, using an in silico examination, we revealed the arsenal of antimicrobial resistance genes in available genomes of various pathogenic Vibrio associated with diseases in sea urchins, fish, shellfish, and corals. These two approaches enabled the discussion of the similarities and differences between aquatic pathogenic Vibrio and their antibiotic resistance. Among them, we revealed a core resistance to tetracyclines and penams by the in vitro examined strains. At the same time, the in silico study also supported this core resistance by the presence of the adeF and CRP genes in the bacterial genomes. Nevertheless, variability and specific resistance were evident at the species and strain levels in the Vibrio bacteria and genomes. The in vitro trials highlighted the diverse resistance of the Vibrio harveyi-like isolate to all examined antibiotics, while the other two isolates were found susceptible to nitrofurantoin and sulfamethoxazole. The resistance of the Vibrio harveyi-like isolate could not have been obtained in the genome of the proposed relative of Vibrio harveyi VHJR7 that lacks the oqxA and oqxB genes, which enables such a resistance. A unique sensitivity of the Vibrio fortis-like isolate to erythromycin is proposed when compared to other isolated Vibrio and Vibrio genomes that seem capable of resisting this drug. According to the results, we propose nitrofurantoin or sulfamethoxazole for treating two of the red-spotting-associated isolates (Vibrio fortis and Vibrio owensii-like), but not Vibrio harveyi-like. We assume that a shared resistance to some antibiotics by Vibrios is gained by a horizontal gene transfer while previous exposures of a bacterial strain to a specific drug may induce the development of a unique resistance. Finally, we discuss the novel knowledge on antibiotic resistance in Vibrio from the current research in light of the potential risks when using drugs for disease control in aquaculture. | 2024 | 39770663 |
| 3061 | 1 | 0.9293 | Tetracycline-resistance encoding plasmids from Paenibacillus larvae, the causal agent of American foulbrood disease, isolated from commercial honeys. Paenibacillus larvae, the causal agent of American foulbrood disease in honeybees, acquires tetracycline-resistance via native plasmids carrying known tetracycline-resistance determinants. From three P. larvae tetracycline-resistant strains isolated from honeys, 5-kb-circular plasmids with almost identical sequences, designated pPL373 in strain PL373, pPL374 in strain PL374, and pPL395 in strain PL395, were isolated. These plasmids were highly similar (99%) to small tetracycline-encoding plasmids (pMA67, pBHS24, pBSDMV46A, pDMV2, pSU1, pAST4, and pLS55) that replicate by the rolling circle mechanism. Nucleotide sequences comparisons showed that pPL373, pPL374, and pPL395 mainly differed from the previously reported P. larvae plasmid pMA67 in the oriT region and mob genes. These differences suggest alternative mobilization and/or conjugation capacities. Plasmids pPL373, pPL374, and pPL395 were individually transferred by electroporation and stably maintained in tetracycline-susceptible P. larvae NRRL B-14154, in which they autonomously replicated. The presence of nearly identical plasmids in five different genera of gram-positive bacteria, i.e., Bhargavaea, Bacillus, Lactobacillus, Paenibacillus, and Sporosarcina, inhabiting diverse ecological niches provides further evidence of the genetic transfer of tetracycline resistance among environmental bacteria from soils, food, and marine habitats and from pathogenic bacteria such as P. larvae. | 2014 | 25296446 |
| 195 | 2 | 0.9282 | Comparative Genomics of Acetic Acid Bacteria within the Genus Bombella in Light of Beehive Habitat Adaptation. It is known that the bacterial microbiota in beehives is essential for keeping bees healthy. Acetic acid bacteria of the genus Bombella colonize several niches in beehives and are associated with larvae protection against microbial pathogens. We have analyzed the genomes of 22 Bombella strains of different species isolated in eight different countries for taxonomic affiliation, central metabolism, prophages, bacteriocins and tetracycline resistance to further elucidate the symbiotic lifestyle and to identify typical traits of acetic acid bacteria. The genomes can be assigned to four different species. Three genomes show ANIb values and DDH values below species demarcation values to any validly described species, which identifies them as two potentially new species. All Bombella spp. lack genes in the Embden-Meyerhof-Parnas pathway and the tricarboxylic acid cycle, indicating a focus of intracellular carbohydrate metabolism on the pentose phosphate pathway or the Entner-Doudoroff pathway for which all genes were identified within the genomes. Five membrane-bound dehydrogenases were identified that catalyze oxidative fermentation reactions in the periplasm, yielding oxidative energy. Several complete prophages, but no bacteriocins, were identified. Resistance to tetracycline, used to prevent bacterial infections in beehives, was only found in Bombella apis MRM1(T). Bombella strains exhibit increased osmotolerance in high glucose concentrations compared to Gluconobacter oxydans, indicating adaption to high sugar environments such as beehives. | 2022 | 35630502 |
| 5129 | 3 | 0.9269 | Complete genome sequences of Vibrio parahaemolyticus strains L2171 and L2181 associated with AHPND in Penaeus vannamei postlarvae by hybrid sequencing. Vibrio parahaemolyticus strains L2171 and L2181 were isolated from a Penaeus vannamei shrimp hatchery. Both strains carry the pVA plasmid harboring the PirAB genes encoding the binary PirAB toxins that cause the acute hepatopancreatic necrosis disease (AHPND) in cultured shrimp. The strains also harbor multidrug resistance (MDR) and a repertoire of virulence factor genes. Our goal was to determine their complete genome sequences and perform a comprehensive analysis of their genetic characteristics. Therefore, the genomes of two strains, which are highly virulent to shrimp were sequenced by Illumina and the PacBio platforms. These data contribute to a better understanding of V. parahaemolyticus and its role as a pathogen in commercially important species such as farmed shrimp, providing valuable insights for disease management in aquaculture. | 2025 | 40677256 |
| 6048 | 4 | 0.9268 | Safety Evaluation of Oral Care Probiotics Weissella cibaria CMU and CMS1 by Phenotypic |and Genotypic Analysis. Weissella cibaria CMU and CMS1 are known to exert beneficial effects on the oral cavity but have not yet been determined to be generally recognized as safe (GRAS), although they are used as commercial strains in Korea. We aimed to verify the safety of W. cibaria CMU and CMS1 strains through phenotypic and genotypic analyses. Their safety was evaluated by a minimum inhibitory concentration assay for 14 antibiotics, DNA analysis for 28 antibiotic resistance genes (ARGs) and one conjugative element, antibiotic resistance gene transferability, virulence gene analysis, hemolysis, mucin degradation, toxic metabolite production, and platelet aggregation reaction. W. cibaria CMU showed higher kanamycin resistance than the European Food Safety Authority (EFSA) cut-off, but this resistance was not transferred to the recipient strain. W. cibaria CMU and CMS1 lacked ARGs in chromosomes and plasmids, and genetic analysis confirmed that antibiotic resistance of kanamycin was an intrinsic characteristic of W. cibaria. Additionally, these strains did not harbor virulence genes associated with pathogenic bacteria and lacked toxic metabolite production, β-hemolysis, mucin degradation, bile salt deconjugation, β-glucuronidase, nitroreductase activity, gelatin liquefaction, phenylalanine degradation, and platelet aggregation. Our findings demonstrate that W. cibaria CMU and CMS1 can achieve the GRAS status in future. | 2019 | 31159278 |
| 9868 | 5 | 0.9266 | The mosaic architecture of Aeromonas salmonicida subsp. salmonicida pAsa4 plasmid and its consequences on antibiotic resistance. Aeromonas salmonicida subsp. salmonicida, the causative agent of furunculosis in salmonids, is an issue especially because many isolates of this bacterium display antibiotic resistances, which limit treatments against the disease. Recent results suggested the possible existence of alternative forms of pAsa4, a large plasmid found in A. salmonicida subsp. salmonicida and bearing multiple antibiotic resistance genes. The present study reveals the existence of two newly detected pAsa4 variants, pAsa4b and pAsa4c. We present the extensive characterization of the genomic architecture, the mobile genetic elements and the antimicrobial resistance genes of these plasmids in addition to the reference pAsa4 from the strain A449. The analysis showed differences between the three architectures with consequences on the content of resistance genes. The genomic plasticity of the three pAsa4 variants could be partially explained by the action of mobile genetic elements like insertion sequences. Eight additional isolates from Canada and Europe that bore similar antibiotic resistance patterns as pAsa4-bearing strains were genotyped and specific pAsa4 variants could be attributed to phenotypic profiles. pAsa4 and pAsa4c were found in Europe, while pAsa4b was found in Canada. In accordance with their content in conjugative transfer genes, only pAsa4b and pAsa4c can be transferred by conjugation in Escherichia coli. The plasticity of pAsa4 variants related to the acquisition of antibiotic resistance indicates that these plasmids may pose a threat in terms of the dissemination of antimicrobial-resistant A. salmonicida subsp. salmonicida bacteria. | 2016 | 27812409 |
| 6128 | 6 | 0.9265 | Isolation and molecular identification of planctomycete bacteria from postlarvae of the giant tiger prawn, Penaeus monodon. Bacteria phenotypically resembling members of the phylogenetically distinct planctomycete group of the domain Bacteria were isolated from postlarvae of the giant tiger prawn, Penaeus monodon. A selective medium designed in the light of planctomycete antibiotic resistance characteristics was used for this isolation. Planctomycetes were isolated from both healthy and monodon baculovirus-infected prawn postlarvae. The predominant colony type recovered from postlarvae regardless of viral infection status was nonpigmented. Other, less commonly observed types were pink or orange pigmented. A planctomycete-specific 16S rRNA-directed probe was designed and used to screen the isolates for their identity as planctomycetes prior to molecular phylogenetic characterization. 16S rRNA genes from nine prawn isolates together with two planctomycete reference strains (Planctomyces brasiliensis and Gemmata obscuriglobus) were sequenced and compared with reference sequences from the planctomycetes and other members of the domain Bacteria. Phylogenetic analyses and sequence signatures of the 16S rRNA genes demonstrated that the prawn isolates were members of the planctomycete group. Five representatives of the predominant nonpigmented colony type were members of the Pirellula group within the planctomycetes, as were three pink-pigmented colony type representatives. Homology values and tree topology indicated that representatives of the nonpigmented and pink-pigmented colony types formed two discrete clusters within the Pirellula group, not identical to any known Pirellula species. A sole representative of the orange colony type was a member of the Planctomyces group, virtually identical in 16S rDNA sequence to P. brasiliensis, and exhibited distinctive morphology. | 1997 | 8979353 |
| 370 | 7 | 0.9261 | A new series of yeast shuttle vectors for the recovery and identification of multiple plasmids from Saccharomyces cerevisiae. The availability of Saccharomyces cerevisiae yeast strains with multiple auxotrophic markers allows the stable introduction and selection of more than one yeast shuttle vector containing marker genes that complement the auxotrophic markers. In certain experimental situations there is a need to recover more than one shuttle vector from yeast. To facilitate the recovery and identification of multiple plasmids from S. cerevisiae, we have constructed a series of plasmids based on the pRS series of yeast shuttle vectors. Bacterial antibiotic resistance genes to chloramphenicol, kanamycin and zeocin have been combined with the yeast centromere sequence (CEN6), the autonomously replicating sequence (ARSH4) and one of the four yeast selectable marker genes (HIS3, TRP1, LEU2 or URA3) from the pRS series of vectors. The 12 plasmids produced differ in antibiotic resistance and yeast marker gene within the backbone of the multipurpose plasmid pBluescript II. The newly constructed vectors show similar mitotic stability to the original pRS vectors. In combination with the ampicillin-resistant pRS series of yeast shuttle vectors, these plasmids now allow the recovery and identification in bacteria of up to four different vectors from S. cerevisiae. | 2007 | 17597491 |
| 3017 | 8 | 0.9260 | The ancient small mobilizable plasmid pALWED1.8 harboring a new variant of the non-cassette streptomycin/spectinomycin resistance gene aadA27. The small mobilizable plasmid pALWED1.8 containing a novel variant of the streptomycin/spectinomycin resistance gene aadA27 was isolated from the permafrost strains of Acinetobacter lwoffii. The 4135bp plasmid carries mobА and mobC genes that mediate its mobilization by conjugative plasmids. The nucleotide sequences of mobА and mobC are similar to those of mobilization genes of the modern plasmid pRAY* and its variants, which contain aadB gene, and are widespread among the pathogenic strains of Acinetobacter baumannii. Almost identical pALWED1.8 variants were detected in modern environmental Аcinetobacter strains. A highly similar plasmid was revealed in a strain of Acinetobacter parvus isolated from mouse intestine. Furthermore, we discovered six previously unidentified variants of plasmids related to pALWED1.8 and pRAY* in public databases. In contrast to most known variants of aadA which are cassette genes associated with integrons, the aadA27 variant harbored by pALWED1.8 is a non-cassette, autonomously transcribed gene. Non-cassette aadA genes with 96% sequence identity to aadA27 were detected in the chromosomes of Acinetobacter gyllenbergii and several uncharacterized strains of Аcinetobacter sp. Moreover, we revealed that the autonomous aadA-like genes are present in the chromosomes of many gram-positive and gram-negative bacteria. The phylogenetic analysis of amino acid sequences of all identified AadA proteins showed the following: (i) cassette aadA genes form a separate monophyletic group and mainly reside on plasmids and (ii) chromosomal non-cassette aadA genes are extremely diverse and can be inherited both vertical and via horizontal gene transfer. | 2016 | 26896789 |
| 6140 | 9 | 0.9259 | Complete genome sequence of bacteriocin-producing Lactobacillus plantarum KLDS1.0391, a probiotic strain with gastrointestinal tract resistance and adhesion to the intestinal epithelial cells. Lactobacillus plantarum KLDS1.0391 is a probiotic strain isolated from the traditional fermented dairy products and identified to produce bacteriocin against Gram-positive and Gram-negative bacteria. Previous studies showed that the strain has a high resistance to gastrointestinal stress and has a high adhesion ability to the intestinal epithelial cells (Caco-2). We reported the entire genome sequence of this strain, which contains a circular 2,886,607-bp chromosome and three circular plasmids. Genes, which are related to the biosynthesis of bacteriocins, the stress resistance to gastrointestinal tract environment and adhesive performance, were identified. Whole genome sequence of Lactobacillus plantarum KLDS1.0391 will be helpful for its applications in food industry. | 2017 | 28676278 |
| 5131 | 10 | 0.9259 | Conjugative Transfer of the pVA1-Type Plasmid Carrying the pirAB(vp) Genes Results in the Formation of New AHPND-Causing Vibrio. Acute hepatopancreatic necrosis disease (AHPND) has caused sharp declines in aquaculture industries of whiteleg shrimp Penaeus vannamei in Asia and the Americas since 2010. Vibrio parahaemolyticus, V. campbellii, V. owensii, and V. punensis have been proved to cause AHPND. However, the mechanisms underlying the burgeoning number of Vibrio species that cause AHPND is not known. All of AHPND-causing Vibrio bacteria (V(AHPND)) harbor a highly homologous plasmid (designated as pVA1-type) carrying pirAB(vp) toxin genes. In this study, we demonstrate conclusively that the pVA1-type plasmid can be transferred from V(AHPND) to non-pathogenic bacteria. We constructed a pVPGX1-Cm(r) plasmid (a pVA1-type plasmid) by adding a chloramphenicol resistance gene as a marker in a donor AHPND-causing V. parahaemolyticus 20130629002S01 (Vp2S01). Horizontal transfer of this plasmid was successfully performed from the AHPND-Vp2S01 to a non-pathogenic strain of V. campbellii at the transfer efficiency of 2.6×10(-8) transconjugant/recipient, and DNase I treatment did not eliminate the transfer. The recipient V. campbellii acquired the pVA1-type plasmid and was shown to produce pirAB(vp) RNA and proteins. Challenge studies using the transconjugant caused 100% mortality in exposed groups of P. vannamei. The challenged shrimp, infected with the transconjugant bacteria, showed typical gross signs and histological lesions of AHPND. These results demonstrated the conjugative transfer of an AHPND pVA1-type plasmid. It provides timely information for explaining the increased species of AHPND-causing Vibrio bacteria and will be useful in the development of management strategies leading to the prevention and control of AHPND. | 2019 | 31231618 |
| 3007 | 11 | 0.9258 | Analysis of the complete nucleotide sequence of an Actinobacillus pleuropneumoniae streptomycin-sulfonamide resistance plasmid, pMS260. pMS260 is an 8.1-kb non-conjugative but mobilizable plasmid that was isolated from Actinobacillus pleuropneumoniae and encodes streptomycin (SM) and sulfonamide (SA) resistances. The analysis of the complete nucleotide sequence of the plasmid revealed a high degree of similarity between pMS260 and the broad-host-range IncQ family plasmids. pMS260 had a single copy of an origin of vegetative replication (oriV). This sequence was identical to a functional oriV of the IncQ-like plasmid pIE1130 that had been exogenously isolated from piggery manure. However, pMS260 did not carry the second IncQ plasmid RSF1010-like oriV region present in pIE1130. A pIE1130-identical transfer origin was also found in pMS260. In addition, the deduced amino acid sequences from 10 open reading frames identified in pMS260 were entirely or nearly identical to those from genes for the replication, mobilization, and SM-SA resistance of pIE1130, indicating that pMS260 belongs to the IncQ-1 gamma subgroup. pMS260 is physically indistinguishable from pIE1130 apart from two DNA regions that contain the chloramphenicol and kanamycin resistance genes (catIII and aphI, respectively) and the second oriV-like region of pIE1130. The codon bias analysis of each gene of pIE1130 and the presence of potential recombination sites in the sulII-strA intergenic regions suggest that pIE1130 seems to have acquired the catIII and aphI genes more recently than the other genes of pIE1130. Therefore, pMS260 may be the ancestor of pIE1130. Information regarding the broad-host-range replicon of pMS260 will be useful in the development of genetic systems for a wide range of bacteria including A. pleuropneumoniae. | 2004 | 14711528 |
| 8365 | 12 | 0.9258 | Comparative genomic analysis of Acinetobacter strains isolated from murine colonic crypts. BACKGROUND: A restricted set of aerobic bacteria dominated by the Acinetobacter genus was identified in murine intestinal colonic crypts. The vicinity of such bacteria with intestinal stem cells could indicate that they protect the crypt against cytotoxic and genotoxic signals. Genome analyses of these bacteria were performed to better appreciate their biodegradative capacities. RESULTS: Two taxonomically different clusters of Acinetobacter were isolated from murine proximal colonic crypts, one was identified as A. modestus and the other as A. radioresistens. Their identification was performed through biochemical parameters and housekeeping gene sequencing. After selection of one strain of each cluster (A. modestus CM11G and A. radioresistens CM38.2), comparative genomic analysis was performed on whole-genome sequencing data. The antibiotic resistance pattern of these two strains is different, in line with the many genes involved in resistance to heavy metals identified in both genomes. Moreover whereas the operon benABCDE involved in benzoate metabolism is encoded by the two genomes, the operon antABC encoding the anthranilate dioxygenase, and the phenol hydroxylase gene cluster are absent in the A. modestus genomic sequence, indicating that the two strains have different capacities to metabolize xenobiotics. A common feature of the two strains is the presence of a type IV pili system, and the presence of genes encoding proteins pertaining to secretion systems such as Type I and Type II secretion systems. CONCLUSIONS: Our comparative genomic analysis revealed that different Acinetobacter isolated from the same biological niche, even if they share a large majority of genes, possess unique features that could play a specific role in the protection of the intestinal crypt. | 2017 | 28697749 |
| 6388 | 13 | 0.9258 | A Metagenome from a Steam Vent in Los Azufres Geothermal Field Shows an Abundance of Thermoplasmatales archaea and Bacteria from the Phyla Actinomycetota and Pseudomonadota. Los Azufres National Park is a geothermal field that has a wide number of thermal manifestations; nevertheless, the microbial communities in many of these environments remain unknown. In this study, a metagenome from a sediment sample from Los Azufres National Park was sequenced. In this metagenome, we found that the microbial diversity corresponds to bacteria (Actinomycetota, Pseudomonadota), archaea (Thermoplasmatales and Candidatus Micrarchaeota and Candidatus Parvarchaeota), eukarya (Cyanidiaceae), and viruses (Fussellovirus and Caudoviricetes). The functional annotation showed genes related to the carbon fixation pathway, sulfur metabolism, genes involved in heat and cold shock, and heavy-metal resistance. From the sediment, it was possible to recover two metagenome-assembled genomes from Ferrimicrobium and Cuniculiplasma. Our results showed that there are a large number of microorganisms in Los Azufres that deserve to be studied. | 2023 | 37504286 |
| 3670 | 14 | 0.9257 | Quantification of tetracycline and chloramphenicol resistance in digestive tracts of bulls and piglets fed with Toyocerin®, a feed additive containing Bacillus toyonensis spores. The complete genome sequencing of Bacillus toyonensis, the active ingredient of the feed additive Toyocerin(®), has revealed the presence of tetM and cat genes, a tetracycline and a chloramphenicol resistance gene, respectively. The aim of this study was to determine whether the use of Toyocerin(®) (viable spores of B. toyonensis) as a probiotic in feedstuff increased the abundance of tetracycline and chloramphenicol resistant bacteria in the intestinal tracts of piglets and Holstein bulls. To this end, qPCRs were designed to quantify the abundances of tetM and cat genes and B. toyonensis in the intestinal content of animals treated and non-treated with Toyocerin(®). Additionally, the culturable bacterial populations resistant to tetracycline or chloramphenicol were enumerated by plate counting. No statistical significances were detected between the concentrations of tetracycline or chloramphenicol resistant bacterial populations in treated and non-treated animals. The concentrations of tetM and cat in most of the treated animals were similar to those of B. toyonensis. Furthermore, tetM and cat genes were also detected in some non-treated animals, although in low concentrations. These results suggest that tetM and cat genes are already circulating among the commensal microbiota regardless of the use of Toyocerin(®). The use of Toyocerin(®) as a supplement in feedstuff does not increase the abundances of tetracycline and chloramphenicol resistant bacteria in the intestinal tracts of piglets and Holstein bulls beyond the contribution directly associated to the introduction of B. toyonensis spores through diet. | 2014 | 25085518 |
| 196 | 15 | 0.9257 | A specialized citric acid cycle requiring succinyl-coenzyme A (CoA):acetate CoA-transferase (AarC) confers acetic acid resistance on the acidophile Acetobacter aceti. Microbes tailor macromolecules and metabolism to overcome specific environmental challenges. Acetic acid bacteria perform the aerobic oxidation of ethanol to acetic acid and are generally resistant to high levels of these two membrane-permeable poisons. The citric acid cycle (CAC) is linked to acetic acid resistance in Acetobacter aceti by several observations, among them the oxidation of acetate to CO2 by highly resistant acetic acid bacteria and the previously unexplained role of A. aceti citrate synthase (AarA) in acetic acid resistance at a low pH. Here we assign specific biochemical roles to the other components of the A. aceti strain 1023 aarABC region. AarC is succinyl-coenzyme A (CoA):acetate CoA-transferase, which replaces succinyl-CoA synthetase in a variant CAC. This new bypass appears to reduce metabolic demand for free CoA, reliance upon nucleotide pools, and the likely effect of variable cytoplasmic pH upon CAC flux. The putative aarB gene is reassigned to SixA, a known activator of CAC flux. Carbon overflow pathways are triggered in many bacteria during metabolic limitation, which typically leads to the production and diffusive loss of acetate. Since acetate overflow is not feasible for A. aceti, a CO(2) loss strategy that allows acetic acid removal without substrate-level (de)phosphorylation may instead be employed. All three aar genes, therefore, support flux through a complete but unorthodox CAC that is needed to lower cytoplasmic acetate levels. | 2008 | 18502856 |
| 279 | 16 | 0.9257 | In situ transfer of antibiotic resistance genes from transgenic (transplastomic) tobacco plants to bacteria. Interkingdom gene transfer is limited by a combination of physical, biological, and genetic barriers. The results of greenhouse experiments involving transplastomic plants (genetically engineered chloroplast genomes) cocolonized by pathogenic and opportunistic soil bacteria demonstrated that these barriers could be eliminated. The Acinetobacter sp. strain BD413, which is outfitted with homologous sequences to chloroplastic genes, coinfected a transplastomic tobacco plant with Ralstonia solanacearum and was transformed by the plant's transgene (aadA) containing resistance to spectinomycin and streptomycin. However, no transformants were observed when the homologous sequences were omitted from the Acinetobacter sp. strain. Detectable gene transfer from these transgenic plants to bacteria were dependent on gene copy number, bacterial competence, and the presence of homologous sequences. Our data suggest that by selecting plant transgene sequences that are nonhomologous to bacterial sequences, plant biotechnologists could restore the genetic barrier to transgene transfer to bacteria. | 2002 | 12089013 |
| 9976 | 17 | 0.9256 | New ΦBT1 site-specific integrative vectors with neutral phenotype in Streptomyces. Integrative plasmids are one of the best options to introduce genes in low copy and in a stable form into bacteria. The ΦC31-derived plasmids constitute the most common integrative vectors used in Streptomyces. They integrate at different positions (attB and pseudo-attB sites) generating different mutations. The less common ΦBT1-derived vectors integrate at the unique attB site localized in the SCO4848 gene (S. coelicolor genome) or their orthologues in other streptomycetes. This work demonstrates that disruption of SCO4848 generates a delay in spore germination. SCO4848 is co-transcribed with SCO4849, and the spore germination phenotype is complemented by SCO4849. Plasmids pNG1-4 were created by modifying the ΦBT1 integrative vector pMS82 by introducing a copy of SCO4849 under the control of the promoter region of SCO4848. pNG2 and pNG4 also included a copy of the P ermE * in order to facilitate gene overexpression. pNG3 and pNG4 harboured a copy of the bla gene (ampicillin resistance) to facilitate selection in E. coli. pNG1-4 are the only integrative vectors designed to produce a neutral phenotype when they are integrated into the Streptomyces genome. The experimental approach developed in this work can be applied to create phenotypically neutral integrative plasmids in other bacteria. | 2016 | 26758297 |
| 9738 | 18 | 0.9255 | Detection and Quantification of Antimicrobial-Resistant Cells in Aquatic Environments by Bioorthogonal Noncanonical Amino Acid Tagging. Aquatic environments are important reservoirs of antibiotic wastes, antibiotic resistance genes, and bacteria, enabling the persistence and proliferation of antibiotic resistance in different bacterial populations. To prevent the spread of antibiotic resistance, effective approaches to detect antimicrobial susceptibility in aquatic environments are highly desired. In this work, we adopt a metabolism-based bioorthogonal noncanonical amino acid tagging (BONCAT) method to detect, visualize, and quantify active antimicrobial-resistant bacteria in water samples by exploiting the differences in bacterial metabolic responses to antibiotics. The BONCAT approach can be applied to rapidly detect bacterial resistance to multiple antibiotics within 20 min of incubation, regardless of whether they act on proteins or DNA. In addition, the combination of BONCAT with the microscope enables the intuitive characterization of antibiotic-resistant bacteria in mixed systems at single-cell resolution. Furthermore, BONCAT coupled with flow cytometry exhibits good performance in determining bacterial resistance ratios to chloramphenicol and population heterogeneity in hospital wastewater samples. In addition, this approach is also effective in detecting antibiotic-resistant bacteria in natural water samples. Therefore, such a simple, fast, and efficient BONCAT-based approach will be valuable in monitoring the increase and spread of antibiotic resistance within natural and engineered aquatic environments. | 2022 | 36251006 |
| 502 | 19 | 0.9255 | A highly specialized flavin mononucleotide riboswitch responds differently to similar ligands and confers roseoflavin resistance to Streptomyces davawensis. Streptomyces davawensis is the only organism known to synthesize the antibiotic roseoflavin, a riboflavin (vitamin B2) analog. Roseoflavin is converted to roseoflavin mononucleotide (RoFMN) and roseoflavin adenine dinucleotide in the cytoplasm of target cells. (Ribo-)Flavin mononucleotide (FMN) riboswitches are genetic elements, which in many bacteria control genes responsible for the biosynthesis and transport of riboflavin. Streptomyces davawensis is roseoflavin resistant, and the closely related bacterium Streptomyces coelicolor is roseoflavin sensitive. The two bacteria served as models to investigate roseoflavin resistance of S. davawensis and to analyze the mode of action of roseoflavin in S. coelicolor. Our experiments demonstrate that the ribB FMN riboswitch of S. davawensis (in contrast to the corresponding riboswitch of S. coelicolor) is able to discriminate between the two very similar flavins FMN and RoFMN and shows opposite responses to the latter ligands. | 2012 | 22740651 |