SOILS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
692100.9939Impacts of Chemical and Organic Fertilizers on the Bacterial Communities, Sulfonamides and Sulfonamide Resistance Genes in Paddy Soil Under Rice-Wheat Rotation. The responses of sulfonamides, sulfonamide-resistance genes (sul) and soil bacterial communities to different fertilization regimes were investigated by performing a field experiment using paddy soil with no fertilizer applied, chemical fertilizer applied, organic fertilizer applied, and combination of chemical and organic fertilizer applied. Applying organic fertilizer increased the bacterial community diversity and affected the bacterial community composition. Eutrophic bacteria (Bacteroidetes, Gemmatimonadetes, and Proteobacteria) were significantly enriched by applying organic fertilizer. It was also found organic fertilizer application increased sulfamethazine content and the relative abundances of sul1 and sul2 in the soil. In contrast, applying chemical fertilizer significantly increased the abundance of Nitrospirae, Parcubacteria, and Verrucomicrobia and caused no obvious changes on sul. Correlation analysis indicated that sul enrichment was associated with the increases in sulfamethazine content and potential hosts (e.g., Novosphingobium and Rhodoplanes) population. The potential ecological risks of antibiotics in paddy soil with organic fertilizer applied cannot be ignored.202236547725
692610.9938Insights into the driving factors of vertical distribution of antibiotic resistance genes in long-term fertilized soils. The prevalence of antibiotic resistance genes (ARGs) in soils has aroused wide attention. However, the influence of long-term fertilization on the distribution of ARGs in different soil layers and its dominant drivers remain largely unknown. In this study, a total of 203 ARGs were analyzed in greenhouse vegetable soils (0-100 cm from a 13-year field experiment applied with different fertilizers (control, chemical fertilizer, organic manure, and mixed fertilizer). Compared with unfertilized and chemically fertilized soils, manure application significantly increased the abundance and alpha diversity of soil ARGs, where the assembly of ARG communities was strongly driven by stochastic processes. The distribution of ARGs was significantly driven by manure application within 60 cm, while it was insignificantly changed in soil below 60 cm under different fertilization regimes. The inter-correlations of ARGs with mobile genetic elements (MGEs) and microbiota were strengthened in manured soil, indicating manure application posed a higher risk for ARGs diffusion in subsurface soil. Bacteria abundance and MGEs directly influenced ARG abundance and composition, whereas soil depth and manure application indirectly influenced ARG abundance and composition by affecting antibiotics. These results strengthen our understanding of the long-term anthropogenic influence on the vertical distribution of soil ARGs and highlight the ecological risk of ARGs in subsurface soil induced by long-term manure application.202337247491
812320.9936The effect of bulk-biochar and nano-biochar amendment on the removal of antibiotic resistance genes in microplastic contaminated soil. Biochar amendment has significant benefits in removing antibiotic resistance genes (ARGs) in the soil. Nevertheless, there is little information on ARGs removal in microplastic contaminated soil. Herein, a 42-day soil microcosm experiment were carried out to study how two coconut shell biochars (bulk- and nano-size) eliminate soil ARGs with/without microplastic presence. The results showed that microplastic increased significantly the numbers and abundances of ARGs in soil at 14d of cultivation. And, two biochars amendment effectively inhibited soil ARGs spread whether or not microplastic was present, especially for nano-biochar which had more effective removal compared to bulk-biochar. However, microplastic weakened soil ARGs removal after applying same biochar. Two biochars removed ARGs through decreasing horizontal gene transfer (HGT) of ARGs, potential host-bacteria abundances, some bacteria crowding the eco-niche of hosts and promoting soil properties. The adverse effect of microplastic on ARGs removal was mainly caused by weakening mobile genetic elements (MGEs) removal, and by changing soil properties. Structural equation modeling (SEM) analysis indicated that biochar's effect on ARGs profile was changed by its size and microplastic presence through altering MGEs abundances. These results highlight that biochar amendment is still an effective method for ARGs removal in microplastic contaminated soil.202437907163
812030.9934Insight into the fate of antibiotic resistance genes and bacterial community in co-composting green tea residues with swine manure. Green tea residues (GTRs) are byproducts of tea production and processing, and this type of agricultural waste retains nutritious components. This study investigated the co-composting of GTRs with swine manure, as well as the effects of GTRs on antibiotic resistance genes (ARGs) and the bacterial community during co-composting. The temperature and C/N ratio indicate compost was mature after processing. The addition of GTRs effectively promoted the reduction in the abundances of most targeted ARGs (tet and sul genes), mobile genetic element (MGE; intI1), and metal resistance genes (MRGs; pcoA and tcrB). Redundancy analysis (RDA) showed that GTRs can reduce the abundance of MRGs and ARGs by reducing the bioavailability of heavy metals. Network analysis shows that Firmicutes and Actinobacteria were the main hosts of ARGs and ARGs, MGEs, and MRGs shared the same potential host bacteria. Adding GTRs during composting may reduce ARGs transmission through horizontal gene transfer (HGT). GTRs affected the bacterial community, thereby influencing the variations in the ARG profiles and reducing the potential risk associated with the compost product.202032310121
693540.9933Effects of soil protists on the antibiotic resistome under long term fertilization. Soil protists are key in regulating soil microbial communities. However, our understanding on the role of soil protists in shaping antibiotic resistome is limited. Here, we considered the diversity and composition of bacteria, fungi and protists in arable soils collected from a long-term field experiment with multiple fertilization treatments. We explored the effects of soil protists on antibiotic resistome using high-throughput qPCR. Our results showed that long term fertilization had stronger effect on the composition of protists than those of bacteria and fungi. The detected number and relative abundance of antibiotic resistance genes (ARGs) were elevated in soils amended with organic fertilizer. Co-occurrence network analysis revealed that changes in protists may contribute to the changes in ARGs composition, and the application of different fertilizers altered the communities of protistan consumers, suggesting that effects of protistan communities on ARGs might be altered by the top-down impact on bacterial composition. This study demonstrates soil protists as promising agents in monitoring and regulating ecological risk of antibiotic resistome associated with organic fertilizers.202235609845
692450.9932Diversity of antibiotic resistance genes in soils with four different fertilization treatments. Although the enrichment of resistance genes in soil has been explored in recent years, there are still some key questions to be addressed regarding the variation of ARG composition in soil with different fertilization treatments, such as the core ARGs in soil after different fertilization treatments, the correlation between ARGs and bacterial taxa, etc. For soils after different fertilization treatments, the distribution and combination of ARG in three typical fertilization methods (organic fertilizer alone, chemical fertilizer alone, and conventional fertilizer) and non-fertilized soils were investigated in this study using high-throughput fluorescence quantitative PCR (HT-qPCR) technique. The application of organic fertilizers significantly increased the abundance and quantity of ARGs and their subtypes in the soil compared to the non-fertilized soil, where sul1 was the ARGs specific to organic fertilizers alone and in higher abundance. The conventional fertilizer application also showed significant enrichment of ARGs, which indicated that manure addition often had a more decisive effect on ARGs in soil than chemical fertilizers, and three bacteria, Pseudonocardia, Irregularibacter, and Castllaniella, were the key bacteria affecting ARG changes in soil after fertilization. In addition, nutrient factors and heavy metals also affect the distribution of ARGs in soil and are positively correlated. This paper reveals the possible reasons for the increase in the number of total soil ARGs and their relative abundance under different fertilization treatments, which has positive implications for controlling the transmission of ARGs through the soil-human pathway.202337928655
693260.9931Distribution of antibiotic resistance genes in soil amended using Azolla imbricata and its driving mechanisms. The floating aquatic plant of Azolla imbricata has an outstanding purification capability for polluted river water, and it is also employed to improve soil fertility. However, the occurrence and distribution of antibiotic resistance genes (ARGs) in soil amended using A.imbricata remain unclear. In the soil amendment with A. imbricata, heavy metals, antibiotics, transposase genes, ARGs, and bacterial communities in the soil were determined in this study. The results indicated that the diversity of bacteria and ARGs increased, while the diversity of ARGs decreased under the amendment using an appropriate amount of A. imbricata. The Firmicutes, Chloroflexi, Actinobacteria, and Cyanobacteria were the main host bacteria of ARGs. The vertical gene transfer of ARGs was weak, and the horizontal gene transfer became the dominant transfer pathway of ARGs. The amendment with A. imbricata altered the distribution of heavy metals, antibiotics, transposase genes, ARGs, and dominant bacteria. The amendment using A. imbricata promoted the degradation of antibiotics, decreased the concentrations of available heavy metals, and eliminated the abundance of ARGs and transposase genes. Our findings suggested a comprehensive effect of multiple stresses on the fate of ARGs in soil amended with A. imbricata, providing an insight into the distribution and propagation of ARGs in soil amended using plant residues.201931351286
692370.9930Soil types influence the fate of antibiotic-resistant bacteria and antibiotic resistance genes following the land application of sludge composts. Sewage sludge was generally considered a significant reservoir of antibiotic resistance genes (ARGs) and could enter agricultural systems as fertilizer after composting. Soil types and the discrepancy of sludge composts could have influenced the fate of antibiotic-resistant bacteria (ARB) following the land application of sludge composts, which deserved to be clarified. Thus, the fate of ARB and ARGs following the land application of three types of sludge composts (A, B, and C) to three different soils (red soil, loess, and black soil) was investigated. The results showed that tetX, which was enriched the most during composting, did not affect the soil resistome, whereas tetG did. Soil types influenced the dynamics of ARB and ARGs significantly, whereas no significant difference was observed among compost types. The advantage of reducing ARGs during the composting process in compost B did not extend to land application. Land application of composts influenced the microbial community significantly at the early stage, but the microbial community returned to the control pattern gradually. Changes in the microbial community contributed more to the dynamics of ARGs in red and black soil compared with other factors, including co-selection from heavy metals, horizontal gene transfer, biomass and environmental factors, whereas horizontal gene transfer, reflected by intI1 levels, contributed the most in loess.201829793114
700080.9930Animal manures application increases the abundances of antibiotic resistance genes in soil-lettuce system associated with shared bacterial distributions. An increasing amount of animal manures is being used in agriculture, and the effect of animal manures application on the abundance of antibiotics resistance genes (ARGs) in soil-plant system has attracted widespread attention. However, the impacts of animal manures application on the various types of bacterial distribution that occur in soil-lettuce system are unclear. To address this topic, the effects of poultry manure, swine manure or chemical fertilizer application on ARG abundance and the distribution of shared bacteria were investigated in this study. In a lettuce pot experiment, 13 ARGs and 2 MGEs were quantified by qPCR, and bacterial communities in the soil, lettuce endosphere and lettuce phyllosphere were analysed by 16S rRNA sequence analysis. The results showed that the application of poultry or swine manure significantly increased ARG abundance in the soil, a result attributed mainly to increases in the abundances of tetG and tetC. The application of poultry manure, swine manure and chemical fertilizer significantly increased ARG abundance in the lettuce endosphere, and tetG abundance was significantly increased in the poultry and swine manure groups. However, animal manures application did not significantly increase ARG abundance in the lettuce phyllosphere. Flavobacteriaceae, Sphingomonadaceae and 11 other bacterial families were the shared bacteria in the soil, lettuce endosphere, and phyllosphere. The Streptomycetaceae and Methylobacteriaceae were significantly positively correlated with intI1 in both the soil and endosphere. Chemical fertilizer application increased both the proportions of Sphingomonadaceae and tetX abundance, which were positively correlated in the endosphere. Comamonadaceae and Flavobacteriaceae were not detected in the lettuce endosphere under swine manure application. Cu was related to Flavobacteriaceae in the lettuce endosphere. Overall, poultry and swine manure application significantly increased ARG abundance in the soil-lettuce system, which might be due to the shared bacterial distribution.202134004530
691790.9930Response characteristics of antibiotic resistance genes and bacterial communities during agricultural waste composting: Focusing on biogas residue combined with biochar amendments. This research investigated biogas residue and biochar addition on antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and changes in bacterial community during agricultural waste composting. Sequencing technique investigated bacterial community structure and ARGs, MGEs changes. Correlations among physicochemical factors, ARGs, MGEs, and bacterial community structure were determined using redundancy analysis. Results confirmed that biochar and biogas residue amendments effectively lowered the contents of ARGs and MGEs. The main ARGs detected was sul1. Proteobacteria and Firmicutes were the main host bacteria strongly associated with the dissemination of ARGs. The dynamic characteristics of the bacterial community were strongly correlated with pile temperature and pH (P < 0.05). Redundancy and network analysis revealed that nitrate, intI1, and Firmicutes mainly affected the in ARGs changes. Therefore, regulating these key variables would effectively suppress the ARGs spread and risk of compost use.202336657587
6925100.9929Multiple driving factors contribute to the variations of typical antibiotic resistance genes in different parts of soil-lettuce system. The application of manure compost may cause the transmission of antibiotic resistance genes (ARGs) in agroecological environment, which poses a global threat to public health. However, the driving factors for the transmission of ARGs from animal manure to agroecological systems remains poorly understood. Here, we explored the spatiotemporal variation in ARG abundance and bacterial community composition as well as relative driving factors in a soil-lettuce system amended with swine manure compost. The results showed that ARGs abundance had different variation trends in soil, lettuce phylloplane and endophyere after the application of swine manure compost. The temporal variations of total ARGs abundance had no significant different in soil and lettuce phylloplane, while lettuce endosphere enriched half of ARGs to the highest level at harvest. There was a significant linear correlation between ARGs and integrase genes (IGs). In contrast to the ARGs variation trend, the alpha diversity of soil and phylloplane bacteria showed increasing trends over planting time, and endosphere bacteria remained stable. Correlation analysis showed no identical ARG-related genera in the three parts, but the shared Proteobacteria, Pseudomonas, Halomonas and Chelativorans, from manure compost dominated ARG profile in the soil-lettuce system. Moreover, redundancy analysis and structural equation modelling showed the variations of ARGs may have resulted from the combination of multiple driving factors in soil-lettuce system. ARGs in soil were more affected by the IGs, antibiotic and heavy metals, and bacterial community structure and IGs were the major influencing factors of ARG profiles in the lettuce. The study provided insight into the multiple driving factors contribute to the variations of typical ARGs in different parts of soil-lettuce system, which was conducive to the risk assessment of ARGs in agroecosystem and the development of effective prevention and control measures for ARGs spread in the environment.202134562788
6911110.9929Linking bacterial life strategies with the distribution pattern of antibiotic resistance genes in soil aggregates after straw addition. Straw addition markedly affects the soil aggregates and microbial community structure. However, its influence on the profile of antibiotic resistance genes (ARGs), which are likely associated with changes in bacterial life strategies, remains unclear. To clarify this issue, a soil microcosm experiment was incubated under aerobic (WS) or anaerobic (AnWS) conditions after straw addition, and metagenomic sequencing was used to characterise ARGs and bacterial communities in soil aggregates. The results showed that straw addition shifted the bacterial life strategies from K- to r-strategists in all aggregates, and the aerobic and anaerobic conditions stimulated the growth of aerobic and anaerobic r-strategist bacteria, respectively. The WS decreased the relative abundances of dominant ARGs such as QnrS5, whereas the AnWS increased their abundance. After straw addition, the macroaggregates consistently exhibited a higher number of significantly altered bacteria and ARGs than the silt+clay fractions. Network analysis revealed that the WS increased the number of aerobic r-strategist bacterial nodes and fostered more interactions between r-and K-strategist bacteria, thus promoting ARGs prevalence, whereas AnWS exhibited an opposite trend. These findings provide a new perspective for understanding the fate of ARGs and their controlling factors in soil ecosystems after straw addition. ENVIRONMENTAL IMPLICATIONS: Straw soil amendment has been recommended to mitigate soil fertility degradation, improve soil structure, and ultimately increase crop yields. However, our findings highlight the importance of the elevated prevalence of ARGs associated with r-strategist bacteria in macroaggregates following the addition of organic matter, particularly fresh substrates. In addition, when assessing the environmental risk posed by ARGs in soil that receives crop straw, it is essential to account for the soil moisture content. This is because the species of r-strategist bacteria that thrive under aerobic and anaerobic conditions play a dominant role in the dissemination and accumulation of ARG.202438643583
7007120.9929Tracking resistomes, virulence genes, and bacterial pathogens in long-term manure-amended greenhouse soils. Organic manure has been implicated as an important source of antibiotic resistance genes (ARGs) in agricultural soils. However, the profiles of biocide resistance genes (BRGs), metal resistance genes (MRGs) and virulence genes (VGs) and their bacterial hosts in manure-amended soils remain largely unknown. Herein, a systematic metagenome-based survey was conducted to comprehensively explore the changes in resistomes, VGs and their bacterial hosts, mobile genetic elements (MGEs), and pathogenic bacteria in manure-amended greenhouse soils. Many manure-borne ARGs, BRGs, MRGs, VGs, and bacterial pathogens could be transferred into soils by applying manures, and their abundance and diversity were markedly positively correlated with greenhouse planting years (manure amendment years). The main ARGs transferred from manures to soils conferred resistance to tetracycline, aminoglycoside, and macrolide-lincosamide-streptogramin. Both statistical analysis and gene arrangements showed a good positive co-occurrence pattern of ARGs/BRGs/MRGs/VGs and MGEs. Furthermore, bacterial hosts of resistomes and VGs were significantly changed in the greenhouse soils in comparison with the field soils. Our findings confirmed the migration and dissemination of resistomes, VGs, and bacterial pathogens, and their accumulation and persistence were correlated with the continuous application of manures.202032298867
6930130.9929Effect of fertilizer type on antibiotic resistance genes by reshaping the bacterial community and soil properties. Conventional and bio-organic fertilizers play an important role in maintaining soil health and promoting crop growth. However, the effect of organic fertilizers on the prevalence of antibiotic resistance genes (ARGs) in the vegetable cropping system has been largely overlooked. In this study, we investigated the impacts of soil properties and biotic factors on ARG profiles by analyzing ARG and bacterial communities in vegetable copping soils with a long-term history of manure and bio-organic fertilizer application. The ARG abundance in the soil was significantly increased by 116% with manure application compared to synthetic NPK fertilizer application. This finding was corroborated by our meta-analysis that the longer the duration of manure application, the greater the response of increased soil ARG abundance. However, bio-organic fertilizers containing Trichoderma spp. Significantly reduced ARG contamination by 31% compared to manure application. About half of the ARG variation was explained by changes in bacterial abundance and structure, followed by soil properties. The mitigation of ARG by Trichoderma spp. Is achieved by altering the structure of the bacterial community and weakening the close association between bacteria and ARG prevalence. Taken together, these findings shed light on the contribution of bio-organic fertilizers in mitigating ARG contamination in agricultural soils, which can help manage the ecological risk posed by ARG inputs associated with manure application.202337343633
6999140.9929Different impacts of manure and chemical fertilizers on bacterial community structure and antibiotic resistance genes in arable soils. Both manure and chemical fertilizers are widely used in modern agriculture. However, the impacts of different fertilizers on bacterial community structure and antibiotic resistance genes (ARGs) in arable soils still remain unclear. In this study, high-throughput sequencing and quantitative PCR were employed to investigate the bacterial community structure, ARGs and mobile genetic elements (MGEs) influenced by the application of different fertilizers, including chemical fertilizers, piggery manure and straw ash. The results showed that the application of fertilizers could significantly change the soil bacterial community and the abundance of Gaiella under phylum Actinobacteria was significantly reduced from 12.9% in unfertilized soil to 4.1%-7.4% in fertilized soil (P < 0.05). It was also found that the application of manure could cause a transient effect on soil resistome composition and the relative abundance of ARGs increased from 7.37 ppm to 32.10 ppm. The abundance of aminoglycoside, sulfonamide and tetracycline resistance genes greatly increased after manure fertilization and then gradually returned to normal levels with the decay of some intestinal bacteria carrying ARGs. In contrast, the application of chemical fertilizers and straw ash significantly changed the bacterial community structure but exerted little effect on soil resistome. Overall, the results of this study illustrated the different effects of different fertilizers on the soil resistome and revealed that the changes of soil resistome induced by manure application mainly resulted from alteration of bacteria community rather than the horizontal gene transfer.201728898777
8644150.9929Biotic and abiotic drivers of soil carbon, nitrogen and phosphorus and metal dynamic changes during spontaneous restoration of Pb-Zn mining wastelands. The biotic and abiotic mechanisms that drive important biogeochemical processes (carbon, nitrogen, phosphorus and metals dynamics) in metal mine revegetation remains elusive. Metagenomic sequencing was used to explored vegetation, soil properties, microbial communities, functional genes and their impacts on soil processes during vegetation restoration in a typical Pb-Zn mine. The results showed a clear niche differentiation between bacteria, fungi and archaea. Compared to bacteria and fungi, the archaea richness were more tightly coupled with natural restoration changes. The relative abundances of CAZyme-related, denitrification-related and metal resistance genes reduced, while nitrification, urease, inorganic phosphorus solubilisation, phosphorus transport, and phosphorus regulation -related genes increased. Redundancy analysis, hierarchical partitioning analysis, relative-importance analysis and partial least squares path modelling, indicated that archaea diversity, primarily influenced by available lead, directly impacts carbon dynamics. Functional genes, significantly affected by available cadmium, directly alter nitrogen dynamics. Additionally, pH affects phosphorus dynamics through changes in bacterial diversity, while metal dynamics are directly influenced by vegetation. These insights elucidate natural restoration mechanisms in mine and highlight the importance of archaea in soil processes.202540054196
6915160.9928Industrial-scale aerobic composting of livestock manures with the addition of biochar: Variation of bacterial community and antibiotic resistance genes caused by various composting stages. The presence of large amounts of antibiotic resistance genes (ARGs) in livestock manures poses an impending, tough safety risk to ecosystems. To investigate more comprehensively the mechanisms of ARGs removal from industrial-scale composting of livestock manure based on biochar addition, we tracked the dynamics of bacterial community and ARGs at various stages of aerobic composting of livestock manures with 10% biochar. There were no significant effects of biochar on the bacterial community and the profiles of ARGs. During aerobic composting, the relative abundance of ARGs and mobile genetic elements (MGEs) showed overall trends of decreasing and then increasing. The key factor driving the dynamics of ARGs was bacterial community composition, and the potential hosts of ARGs were Caldicoprobacter, Tepidimicrobium, Ignatzschineria, Pseudogracilibacillus, Actinomadura, Flavobacterium and Planifilum. The retention of the thermophilic bacteria and the repopulation of the initial bacteria were the dominant reasons for the increase in ARGs at maturation stage. Additionally, among the MGEs, the relative abundance of transposon gene was substantially removed, while the integron genes remained at high relative abundance. Our results highlighted that the suitability of biochar addition to industrial-scale aerobic composting needs to be further explored and that effective measures are needed to prevent the increase of ARGs content on maturation stage.202236162559
6920170.9928Dynamics and key drivers of antibiotic resistance genes during aerobic composting amended with plant-derived and animal manure-derived biochars. Plant-derived and animal manure-derived biochars have been used to improve the quality of compost but the differences in their effects on antibiotic resistance genes (ARGs) during composting are unclear. This study selected two types of biochar (RB and PB) produced from abundant agricultural waste to be added to the compost. Adding plant-derived RB performed better in ARGs, mobile genetic elements, and human pathogenic bacteria removal during aerobic composting, whereas adding manure-derived PB even increased ARGs abundance. Vertical gene transfer was possibly the key mechanism for persistent ARGs, and easily removed ARGs were regulated by horizontal and vertical gene transfer. Adding plant-derived RB reduced the abundances of persistent ARG hosts (e.g., Pseudomonas and Longispora) and ARG-related metabolic pathways and genes. The higher nitrogen content of manure-derived PB may have promoted the proliferation of ARG hosts. Overall, adding manure-derived biochar during composting may not be the optimal option for eliminating ARGs.202235487450
6916180.9928Mobile genetic elements in potential host microorganisms are the key hindrance for the removal of antibiotic resistance genes in industrial-scale composting with municipal solid waste. During the municipal solid waste (MSW) composting, antibiotic resistance genes (ARGs) could be one of the concerns to hinder the application of MSW composting. However, the understanding of enrichment and dissemination of ARGs during the industrial-scale composting is still not clear. Hence, this study aimed to investigate the ARG distributions at different stages in an industrial-scale MSW composting plant. Seven target ARGs and four target mobile genetic elements (MGEs) and bacterial communities were investigated. The abundances of ARGs and MGEs increased during two aerobic thermophilic stages, but they decreased in most ARGs and MGEs after composting. Network analysis showed that potential host bacteria of ARGs were mainly Firmicutes and Actinobacteria. The reduction of potential host bacteria was important to remove ARGs. MGEs were an important factor hindering ARG removal. Water-extractable S and pH were two main physicochemical factors in the changes of microbial community and the abundance of ARGs.202031962245
6937190.9928Differential responses of bacterial and archaeal communities to biodegradable and non-biodegradable microplastics in river. Microplastics are widespread environmental pollutants that pose risks to ecosystems, yet their effects on bacterial and archaeal communities in aquatic ecosystems remain understudied. In this study, we performed a 14-day microcosm experiment combined with metagenomic sequencing to compare bacterial and archaeal responses to a biodegradable microplastic (polylactic acid, PLA) and a non-biodegradable microplastic (polyvinyl chloride, PVC). Microplastics selectively enriched distinct microbial assemblages, with Pseudomonadota and Euryarchaeota identified as the dominant bacterial and archaeal phyla, accounting for 67.83 % and 15.95 %, respectively. Archaeal community in surrounding water were more sensitive to colonization time than bacterial community. Compared to the surrounding water, the plastisphere displayed simpler and more loosely connected microbial networks. Notably, co-occurrence networks of both bacteria and archaea in the PVC plastisphere were predominantly shaped by symbiotic interactions. Both bacteria and archaea carried diverse antibiotic resistance genes (ARGs), but PLS-PM indicated that bacteria were the primary drivers of ARG dissemination (path coefficient = 0.952). While the PVC plastisphere showed higher ARG abundance than the PLA plastisphere, elevated intI1 expression in the PLA plastisphere suggests a potentially greater risk of ARG dissemination associated with PLA microplastics. These findings reveal the distinct effects of PLA and PVC microplastics on microbial communities and highlight the role of microplastics in ARG dissemination, emphasizing their ecological risks in aquatic ecosystems.202540712359