SNUB - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
307100.8792Human Disturbance Increases Health Risks to Golden Snub-Nosed Monkeys and the Transfer Risk of Pathogenic Antibiotic-Resistant Bacteria from Golden Snub-Nosed Monkeys to Humans. From the perspective of interactions in the human-animal-ecosystem, the study and control of pathogenic bacteria that can cause disease in animals and humans is the core content of "One Health". In order to test the effect of human disturbance (HD) on the health risk of pathogenic antibiotic-resistant bacteria (PARBs) to wild animals and transfer risk of the PARBs from wild animals to humans, golden snub-nosed monkeys (Rhinopithecus roxellana) were used as sentinel animals. Metagenomic analysis was used to analyze the characteristics of PARBs in the gut microbiota of golden snub-nosed monkeys. Then, the total contribution of antibiotic resistance genes (ARGs) and virulence factors (VFs) of the PARBs were used to assess the health risk of PARBs to golden snub-nosed monkeys, and the antimicrobial drug resistance and bacterial infectious disease of PARBs were determined to assess the transfer risk of PARBs from golden snub-nosed monkeys to humans. There were 18 and 5 kinds of PARBs in the gut microbiota of golden snub-nosed monkeys under HD (HD group) and wild habitat environments (W group), respectively. The total health risks of PARBs to the W group and the HD group were -28.5 × 10(-3) and 125.8 × 10(-3), respectively. There were 12 and 16 kinds of KEGG pathways of human diseases in the PARBs of the W group and the HD group, respectively, and the gene numbers of KEGG pathways in the HD group were higher than those in the W group. HD increased the pathogenicity of PARBs to golden snub-nosed monkeys, and the PARBs in golden snub-nosed monkeys exhibited resistance to lincosamide, aminoglycoside, and streptogramin antibiotics. If these PARBs transfer from golden snub-nosed monkeys to humans, then humans may acquire symptoms of pathogens including Tubercle bacillus, Staphylococcus, Streptococcus, Yersinia, Pertussis, and Vibrio cholera.202337835689
524010.8635Dynamics of Antimicrobial Resistance Carriage in Koalas (Phascolarctos Cinereus) and Pteropid Bats (Pteropus Poliocephalus) Before, During and After Wildfires. In the 2019-2020 summer, wildfires decimated the Australian bush environment and impacted wildlife species, including koalas (Phascolarctos cinereus) and grey headed flying fox pups (Pteropid bats, Pteropus poliocephalus). Consequently, hundreds of koalas and thousands of bat pups entered wildlife hospitals with fire-related injuries/illness, where some individuals received antimicrobial therapy. This study investigated the dynamics of antimicrobial resistance (AMR) in pre-fire, fire-affected and post-fire koalas and Pteropid bat pups. PCR and DNA sequencing were used to screen DNA samples extracted from faeces (koalas and bats) and cloacal swabs (koalas) for class 1 integrons, a genetic determinant of AMR, and to identify integron-associated antibiotic resistance genes. Class 1 integrons were detected in 25.5% of koalas (68 of 267) and 59.4% of bats (92 of 155). Integrons contained genes conferring resistance to aminoglycosides, trimethoprim and beta-lactams. Samples were also screened for blaTEM (beta-lactam) resistance genes, which were detected in 2.6% of koalas (7 of 267) and 25.2% of bats (39 of 155). Integron occurrence was significantly higher in fire-affected koalas in-care compared to wild pre-fire koalas (P < 0.0001). Integron and blaTEM occurrence were not significantly different in fire-affected bats compared to pre-fire bats (P > 0.05), however, their occurrence was significantly higher in fire-affected bats in-care compared to wild fire-affected bats (P < 0.0001 and P = 0.0488 respectively). The observed shifts of AMR dynamics in wildfire-impacted species flags the need for judicious antibiotic use when treating fire-affected wildlife to minimise unwanted selective pressure and negative treatment outcomes associated with carriage of resistance genes and antibiotic resistant bacteria.202438332161
80820.8633Exposure of Legionella pneumophila to low-shear modeled microgravity: impact on stress response, membrane lipid composition, pathogenicity to macrophages and interrelated genes expression. Here, we studied the effect of low-shear modeled microgravity (LSMMG) on cross stress resistance (heat, acid, and oxidative), fatty acid content, and pathogenicity along with alteration in expression of stress-/virulence-associated genes in Legionella pneumophila. The stress resistance analysis result indicated that bacteria cultivated under LSMMG environments showed higher resistance with elevated D-values at 55 °C and in 1 mM of hydrogen peroxide (H(2)O(2)) conditions compared to normal gravity (NG)-grown bacteria. On the other hand, there was no significant difference in tolerance (p < 0.05) toward simulated gastric fluid (pH-2.5) acid conditions. In fatty acid analysis, our result showed that a total amount of saturated and cyclic fatty acids was increased in LSMMG-grown cells; as a consequence, they might possess low membrane fluidity. An upregulated expression level was noticed for stress-related genes (hslV, htrA, grpE, groL, htpG, clpB, clpX, dnaJ, dnaK, rpoH, rpoE, rpoS, kaiB, kaiC, lpp1114, ahpC1, ahpC2, ahpD, grlA, and gst) under LSMMG conditions. The reduced virulence (less intracellular bacteria and less % of induce apoptosis in RAW 264.7 macrophages) of L. pneumophila under LSMMG conditions may be because of downregulation related genes (dotA, dotB, dotC, dotD, dotG, dotH, dotL, dotM, dotN, icmK, icmB, icmS, icmT, icmW, ladC, rtxA, letA, rpoN, fleQ, fleR, and fliA). In the LSMMG group, the expression of inflammation-related factors, such as IL-1α, TNF-α, IL-6, and IL-8, was observed to be reduced in infected macrophages. Also, scanning electron microscopy (SEM) analysis showed less number of LSMMG-cultivated bacteria attached to the host macrophages compared to NG. Thus, our study provides understandings about the changes in lipid composition and different genes expression due to LSMMG conditions, which apparently influence the alterations of L. pneumophila' stress/virulence response.202438305908
139330.8616Prevalence, antimicrobial resistance and detection of virulence genes of Escherichia coli and Salmonella spp. isolated from white-lipped peccaries and collared peccaries. Salmonella spp. and Escherichia coli are implicated in human and animal infections and require antimicrobial treatment in many situations. Faecal samples of healthy white-lipped peccaries (Pecari tajacu) (n = 30) and collared peccaries (Tayassu pecari ) (n = 60) obtained in three farms located in the Midwest Brazil. The antimicrobial profiles of commensal E. coli from P. tajacu and T. pecari from commercial herds in Brazil were isolated and analyzed and virulence genes were detected. Among 90 healthy animals, no Salmonella spp. were isolated. However, 30 samples (27%) tested positive for E. coli, with 18 isolates from P. tajacu and 12 from T. pecari, representing frequencies of 58.0% and 38.7%, respectively. Additionally, other Enterobacteriaceae family bacteria were detected but not included in this analysis. However, individual samples from 30 animals tested positive for E. coli, of which 16 were isolated from P. tajacu presenting multidrug resistance and six were isolated from T. pecari presenting a similar pattern. The E. coli virulence genes detected were papC (pilus-associated pyelonephritis) in five isolates, tsh (temperature-sensitive hemagglutinin) in one isolate, and eae (enteric attachment and effacement) in one isolate. The serum resistance gene, iss (increased serum survival), was detected in four isolates. An association between these genes and the presence of hemolysin was also observed in one isolate. Thus, T. pecari and P. tajacu are potential reservoirs of pathogenic and multidrug-resistant and E. coli. Faecal E. coli of healthy P. tajacu and T. pecari could act as a possible reservoir of antimicrobial resistance genes in environment.202438713279
538140.8611Draft genome sequence of Staphylococcus urealyticus strain MUWRP0921, isolated from the urine of an adult female Ugandan. Staphylococcus urealyticus bacteria are pathogenic among immune-compromised individuals. A strain (MUWRP0921) of Staphylococcus urealyticus with a genome of 2,708,354 bp was isolated from Uganda and carries genes that are associated with antibiotic resistance, including resistance to macrolides (erm(C) and mph(C')), aminoglycosides (aac(6")-aph(2")), tetracyclines (tet(K)), and trimethoprim (dfrG).202438078696
134550.8610Toxigenic potential and antimicrobial susceptibility of Bacillus cereus group bacteria isolated from Tunisian foodstuffs. BACKGROUND: Despite the importance of the B. cereus group as major foodborne pathogens that may cause diarrheal and/or emetic syndrome(s), no study in Tunisia has been conducted in order to characterize the pathogenic potential of the B. cereus group. The aim of this study was to assess the sanitary potential risks of 174 B. cereus group strains isolated from different foodstuffs by detecting and profiling virulence genes (hblA, hblB, hblC, hblD, nheA, nheB, nheC, cytK, bceT and ces), testing the isolates cytotoxic activity on Caco-2 cells and antimicrobial susceptibility towards 11 antibiotics. RESULTS: The entertoxin genes detected among B. cereus isolates were, in decreasing order, nheA (98.9%), nheC (97.7%) and nheB (86.8%) versus hblC (54.6%), hblD (54.6%), hblA (29.9%) and hblB (14.9%), respectively encoding for Non-hemolytic enterotoxin (NHE) and Hemolysin BL (HBL). The isolates are multi-toxigenic, harbouring at least one gene of each NHE and HBL complexes associated or not to bceT, cytK-2 and ces genes. Based on the incidence of virulence genes, the strains were separated into 12 toxigenic groups. Isolates positive for cytK (37,9%) harbored the cytK-2 variant. The detection rates of bceT and ces genes were 50.6 and 4%, respectively. When bacteria were incubated in BHI-YE at 30 °C for 18 h and for 5 d, 70.7 and 35% of the strains were shown to be cytotoxic to Caco-2 cells, respectively. The cytotoxicity of B. cereus strains depended on the food source of isolation. The presence of virulence factors is not always consistent with cytotoxicity. However, different combinations of enterotoxin genetic determinants are significantly associated to the cytotoxic potential of the bacteria. All strains were fully sensitive to rifampicin, chloramphenicol, ciprofloxacin, and gentamycin. The majority of the isolates were susceptible to streptomycin, kanamycin, erythromycin, vancomycin and tetracycline but showed resistance to ampicillin and novobiocin. CONCLUSION: Our results contribute data that are primary to facilitate risk assessments in order to prevent food poisoning due to B. cereus group.201931445510
543760.8594Analysis of antibiotics resistant genes in different strains of Staphylococcus aureus. The control of Staphylococcus aureus infection is being hampered by methicillin and other resistant strains. The identification of the unique antibiotic resistant genes from the genomes of various strains of S. aureus is of interest. We analyzed 11 S. aureus genomes sequences for Antibiotics Resistance Genes (ARGs) using CARD 2017 platform. We identified 32 ARGs across 11 S. aureus strains. Tet(38), norB, lmrB, mepA and mepR were present across genomes except for S. aureus strain UTSW MRSA 55. The mepA and mepR were found across 11 different genomes. However, FosB3, vgaALC, mphC and SAT-4 were found in UTSW MRSA 55, S.a. strain ISU935 and S.a. strain FDAARGOS_159. The prevalent mode of mechanism of antibiotics resistant was efflux pump complex or subunit conferring antibiotic resistance as well as protein(s). Analysis of norB, ImrB, norA, ImrB, tet (38), sav1866 and mecA have 12 to 14 TMHs. The results help in the understanding of Staphylococcus aureus pathogenesis in the context of antibiotic resistance.201829785070
10170.8593The encapsulated strain TIGR4 of Streptococcus pneumoniae is phagocytosed but is resistant to intracellular killing by mouse microglia. The polysaccharide capsule is a major virulence factor of Streptococcus pneumoniae as it confers resistance to phagocytosis. The encapsulated serotype 4 TIGR4 strain was shown to be efficiently phagocytosed by the mouse microglial cell line BV2, whereas the type 3 HB565 strain resisted phagocytosis. Comparing survival after uptake of TIGR4 or its unencapsulated derivative FP23 in gentamicin protection and phagolysosome maturation assays, it was shown that TIGR4 was protected from intracellular killing. Pneumococcal capsular genes were up-regulated in intracellular TIGR4 bacteria recovered from microglial cells. Actual presence of bacteria inside BV2 cells was confirmed by transmission electron microscopy (TEM) for both TIGR4 and FP23 strains, but typical phagosomes/phagolysosomes were detected only in cells infected with the unencapsulated strain. In a mouse model of meningitis based on intracranic inoculation of pneumococci, TIGR4 caused lethal meningitis with an LD(50) of 2 × 10² CFU, whereas the LD(50) for the unencapsulated FP23 was greater than 10⁷ CFU. Phagocytosis of TIGR4 by microglia was also demonstrated by TEM and immunohistochemistry on brain samples from infected mice. The results indicate that encapsulation does not protect the TIGR4 strain from phagocytosis by microglia, while it affords resistance to intracellular killing.201020615478
122480.8589Prevalence, antibiotic resistance patterns and molecular characterization of Escherichia coli from Austrian sandpits. The aim was to determine the prevalence of E. coli and coliform bacteria in playground sand of all public children's sandpits in Graz (n = 45), Austria, and to assess the frequency of antimicrobial resistance in E. coli. Molecular characterization included the discrimination of O-serotypes and H-antigens and the determination of virulence and resistance genes, using a microarray technology. E. coli isolates were tested for susceptibility to a set of antibiotics by VITEK2 system and disk diffusion method. In total, 22 (49%) and 44 (98%) sandpits were positive for E. coli and coliform bacteria. Median concentrations of E. coli and coliform bacteria in the sand samples were: 2.6 × 10(4) CFU/100 g and 3.0 × 10(5) CFU/100 g. Resistance rates were: ampicillin, 12.5%; piperacillin, 10.4%; amoxicillin/clavulanic acid, 9.4%; cotrimoxazole, 6.3%; tetracycline, 6.3%; piperacillin/tazobactam, 5.2%. No ESBL- or carbapenemase-producing isolates were found. The most prevalent serogroups were O15, O6 and O4. Isolates harbored 0 up to 16 different virulence genes.201425089889
128390.8587Antimicrobial Resistance Profiles of Staphylococcus Isolated from Cows with Subclinical Mastitis: Do Strains from the Environment and from Humans Contribute to the Dissemination of Resistance among Bacteria on Dairy Farms in Colombia? Staphylococcus is a very prevalent etiologic agent of bovine mastitis, and antibiotic resistance contributes to the successful colonization and dissemination of these bacteria in different environments and hosts on dairy farms. This study aimed to identify the antimicrobial resistance (AMR) genotypes and phenotypes of Staphylococcus spp. isolates from different sources on dairy farms and their relationship with the use of antibiotics. An antimicrobial susceptibility test was performed on 349 Staphylococcus strains (S. aureus, n = 152; non-aureus staphylococci (NAS), n = 197) isolated from quarter milk samples (QMSs) from cows with subclinical mastitis (176), the teats of cows (116), the milking parlor environment (32), and the nasal cavities of milk workers (25). Resistance and multidrug resistance percentages found for S. aureus and NAS were (S. aureus = 63.2%, NAS = 55.8%) and (S. aureus = 4.6%, NAS = 11.7%), respectively. S. aureus and NAS isolates showed resistance mainly to penicillin (10 IU) (54.1% and 32.4%) and ampicillin (10 mg) (50.3% and 27.0%) drugs. The prevalence of AMR Staphylococcus was higher in environmental samples (81.3%) compared to other sources (52.6-76.0%). In S. aureus isolates, the identification of the blaZ (83.9%), aacAaphD (48.6%), ermC (23.5%), tetK (12.9%), and mecA (12.1%) genes did not entirely agree with the AMR phenotype. We conclude that the use of β-lactam antibiotics influences the expression of AMR in Staphylococcus circulating on dairy farms and that S. aureus isolates from the environment and humans may be reservoirs of AMR for other bacteria on dairy farms.202337998777
5186100.8586Occurrence of Antimicrobial Resistance Genes in the Oral Cavity of Cats with Chronic Gingivostomatitis. Feline chronic gingivostomatitis (FCGS) is a severe immune-mediated inflammatory disease with concurrent oral dysbiosis (bacterial and fungal). Broad-spectrum antibiotics are used empirically in FCGS. Still, neither the occurrence of antimicrobial-resistant (AMR) bacteria nor potential patterns of co-occurrence between AMR genes and fungi have been documented in FCGS. This study explored the differential occurrence of AMR genes and the co-occurrence of AMR genes with oral fungal species. Briefly, 14 clinically healthy (CH) cats and 14 cats with FCGS were included. Using a sterile swab, oral tissue surfaces were sampled and submitted for 16S rRNA and ITS-2 next-generation DNA sequencing. Microbial DNA was analyzed using a proprietary curated database targeting AMR genes found in bacterial pathogens. The co-occurrence of AMR genes and fungi was tested using point biserial correlation. A total of 21 and 23 different AMR genes were detected in CH and FCGS cats, respectively. A comparison of AMR-gene frequencies between groups revealed statistically significant differences in the occurrence of genes conferring resistance to aminoglycosides (ant4Ib), beta-lactam (mecA), and macrolides (mphD and mphC). Two AMR genes (mecA and mphD) showed statistically significant co-occurrence with Malassezia restricta. In conclusion, resistance to clinically relevant antibiotics, such as beta-lactams and macrolides, is a significant cause for concern in the context of both feline and human medicine.202134944364
6005110.8585Antimicrobial activity of Pediococcus pentosaceus strains against diarrheal pathogens isolated from pigs and effect on paracellular permeability of HT-29 cells. This study aimed to investigate lactic acid bacteria with antimicrobial activities against infectious diarrheal pathogens in pigs and their genetic characteristics. Acid-resistant lactic acid bacteria were examined for bile resistance, pancreatic enzyme resistance, gelatinase and urease activities, and antibiotic resistance. Subsequently, selected isolates were examined for antimicrobial activities against Campylobacter coli, Clostridium perfringens, Escherichia coli, and Salmonella Typhimurium, and their effects on paracellular permeability and the expression of tight junction protein-encoding genes in HT-29 cells were assessed. Whole genome sequencing was performed to identify the genes related to safety and antibacterial activity. Of the 51 isolates examined, 12 were resistant to bile and pancreatin and did not produce gelatinase and urease. Of these 12, isolates 19, 20, 30, 36, and 67 showed tetracycline resistance and isolates 15, 19, and 38W showed antimicrobial activity against infectious diarrheal bacteria. Treatment with isolate 38W significantly reduced the paracellular permeability induced by E. coli in HT-29 cells and alleviated the expression of tight junction protein-encoding genes (claudin-1, occludin, and ZO-1) induced by E. coli inoculation. Isolates 15, 19, and 38W were named as Pediococcus pentosaceus SMFM2016-NK1, SMFM2016-YK1, and SMFM2016-WK1, respectively. Bacteriocin-related genes were YheH, ytrF, BceA, BceB, and MccF in SMFM2016-NK1; YheH, ytrF, BceA, BceB, entK, lcnA, MccF, and skgD in SMFM2016-YK1; and YheH, ytrF, BceA, BceB, and MccF in SMFM2016-WK1. SMFM2016-YK1 harbored the tetM gene. These results indicate that P. pentosaceus SMFM2016-WK1 might control diarrheal pathogens isolated from pigs. However, a further study is necessary because the results were obtained only from in vitro experiment.202540873998
2097120.8585Effective Photodynamic Therapy with Ir(III) for Virulent Clinical Isolates of Extended-Spectrum Beta-Lactamase Klebsiella pneumoniae. BACKGROUND: The extended-spectrum beta-lactamase (ESBL) Klebsiella pneumoniae is one of the leading causes of health-associated infections (HAIs), whose antibiotic treatments have been severely reduced. Moreover, HAI bacteria may harbor pathogenic factors such as siderophores, enzymes, or capsules, which increase the virulence of these strains. Thus, new therapies, such as antimicrobial photodynamic inactivation (aPDI), are needed. METHOD: A collection of 118 clinical isolates of K. pneumoniae was characterized by susceptibility and virulence through the determination of the minimum inhibitory concentration (MIC) of amikacin (Amk), cefotaxime (Cfx), ceftazidime (Cfz), imipenem (Imp), meropenem (Mer), and piperacillin-tazobactam (Pip-Taz); and, by PCR, the frequency of the virulence genes K2, magA, rmpA, entB, ybtS, and allS. Susceptibility to innate immunity, such as human serum, macrophages, and polymorphonuclear cells, was tested. All the strains were tested for sensitivity to the photosensitizer PSIR-3 (4 µg/mL) in a 17 µW/cm(2) for 30 min aPDI. RESULTS: A significantly higher frequency of virulence genes in ESBL than non-ESBL bacteria was observed. The isolates of the genotype K2+, ybtS+, and allS+ display enhanced virulence, since they showed higher resistance to human serum, as well as to phagocytosis. All strains are susceptible to the aPDI with PSIR-3 decreasing viability in 3log10. The combined treatment with Cfx improved the aPDI to 6log10 for the ESBL strains. The combined treatment is synergistic, as it showed a fractional inhibitory concentration (FIC) index value of 0.15. CONCLUSIONS: The aPDI effectively inhibits clinical isolates of K. pneumoniae, including the riskier strains of ESBL-producing bacteria and the K2+, ybtS+, and allS+ genotype. The aPDI with PSIR-3 is synergistic with Cfx.202133922077
811130.8585Genomic analysis of five antibiotic-resistant bacteria isolated from the environment. Our study presents the whole-genome sequences and annotation of five bacteria isolates, each demonstrating distinct antibiotic resistance. These isolates include Bacillus paranthracis RIT 841, Atlantibacter hermanii RIT 842, Pantoea leporis RIT 844, Enterococcus casseliflavus RIT 845, and Pseudomonas alkylphenolica RIT 846, underscoring the importance of understanding antimicrobial resistance.202439189722
8107140.8585Effects of micron-scale zero valent iron on behaviors of antibiotic resistance genes and pathogens in thermophilic anaerobic digestion of waste activated sludge. This work investigated the metagenomics-based behavior and risk of antibiotic resistance genes (ARGs), and their potential hosts during thermophilic anaerobic digestion (TAD) of waste activated sludge, enhanced by micron-scale zero valent iron (mZVI). Tests were conducted with 0, 25, 100, and 250 mg mZVI/g total solids (TS). Results showed that up to 7.3% and 4.8% decrease in ARGs' abundance and diversity, respectively, were achieved with 100 mg mZVI/g TS. At these conditions, ARGs with health risk in abundance and human pathogenic bacteria (HPB) diversity were also decreased by 8.3% and 3.6%, respectively. Additionally, mZVI reduced abundance of 72 potential pathogenic supercarriers for ARGs with high health risk by 2.5%, 5.0%, and 6.1%, as its dosage increased. Overall, mZVI, especially at 100 mg/g TS, can mitigate antibiotic resistance risk in TAD. These findings are important for better understanding risks of ARGs and their pathogenic hosts in ZVI-enhanced TAD of solid wastes.202336931448
1398150.8584Association of Phylogenomic Relatedness among Neisseria gonorrhoeae Strains with Antimicrobial Resistance, Austria, 2016-2020. We investigated genomic determinants of antimicrobial resistance in 1,318 Neisseria gonorrhoeae strains isolated in Austria during 2016-2020. Sequence type (ST) 9363 and ST11422 isolates had high rates of azithromycin resistance, and ST7363 isolates correlated with cephalosporin resistance. These results underline the benefit of genomic surveillance for antimicrobial resistance monitoring.202235876744
1331160.8583Serotypes, antibiotic resistance, and virulence genes of Salmonella in children with diarrhea. BACKGROUND: Salmonella is an important foodborne pathogen that causes acute diarrhea in humans worldwide. This study analyzed the relationships of serotypes and antibiotic resistance with virulence genes of Salmonella isolated from children with salmonellosis. METHODS: Serological typing was performed using the slide-agglutination method. The Kirby-Bauer disk diffusion method was used to test antibiotic susceptibility. Twenty virulence genes were detected by PCR. RESULTS: Salmonella Typhimurium (21 isolates, 34.43%) and S Enteritidis (12 isolates, 19.67%) were the predominant species among the 61 isolates. Ampicillin resistance was most common (63.93%), and among the cephalosporins, resistance was most often found to cefotaxime, a third-generation cephalosporin (19.67%). Among the 20 virulence genes, prgH, ssrB, and pagC were detected in all Salmonella isolates. In S Typhimurium, the detection rates of hilA, sipB, marT, mgtC, sopB, pagN, nlpI, bapA, oafA, and tolC were high. In S Enteritidis, the detection rates of icmF, spvB, spvR, and pefA were high. Nitrofurantoin resistance was negatively correlated with the virulence gene bapA (P = .005) and was positively correlated with icmF, spvB, spvR, and pefA (P = .012, .008, .002, and .005, respectively), The P values between all other virulence genes and antibiotic resistance were >.05. CONCLUSION: Salmonella Typhimurium and S Enteritidis were the main serotypes in children with diarrhea in Hangzhou, China. Salmonella exhibited a high level of resistance to common antibiotics, and a high rate of bacteria carrying virulence genes was observed. However, no significant correlation was found between virulence genes and resistance to common antibiotics.202032797660
5384170.8582Characterization of drug resistance and virulotypes of Salmonella strains isolated from food and humans. The virulence of bacteria can be evaluated through both phenotypic and molecular assays. We applied these techniques to 114 strains of Salmonella enterica subsp. enterica collected from July 2010 to June 2012. Salmonella strains were of human origin (71/114) or isolated from food (43/114). The strain set included only the three predominant Salmonella serovars isolated in Italy from humans (S. Enteritidis, S. Typhimurium, S. 4,[5],12:i:-). These strains were screened via polymerase chain reaction for 12 virulence factors (gipA, gtgB, sopE, sspH1, sspH2, sodC1, gtgE, spvC, pefA, mig5, rck, srgA), while antimicrobial sensitivity was evaluated through the Kirby-Bauer assay. Fifty-nine different virulence profiles were highlighted; the genes showing the highest homology were those related to the presence of prophages (gipA, gtgB, sopE, sspH1, sspH2, sodC1, gtgE), while the genes related to the presence of plasmids were less frequently detected (spvC, pefA, mig5, rck, srgA). The Salmonella serovars Typhimurium and 4,[5],12:i:- were closely related in terms of both virulotyping and antibiotic resistance. S. Enteritidis showed higher antibiotic sensitivity and a higher prevalence of genes related to plasmids.201324102078
5383180.8581Draft genome sequence of Acinetobacter haemolyticus strain MUWRP1017 isolated from the pus of a female inpatient at Bwera General Hospital in Uganda. The bacterium Acinetobacter haemolyticus, with a genome size of 3.4 Mb, was isolated from a pus swab of a wound on the left lower limb above the ankle joint of a female patient. This strain carries the antimicrobial resistance genes cephalosporinase blaADC-25, oxallinase blaOXA-264, floR, and sul2 and other resistance and virulence genes.202439162454
1325190.8580Antimicrobial Resistance Profiles of Bacteria Isolated from the Nasal Cavity of Camels in Samburu, Nakuru, and Isiolo Counties of Kenya. This study was designed to determine antimicrobial resistance profiles of bacteria isolated from the nasal cavity of healthy camels. A total of 255 nasal samples (swabs) were collected in Isiolo, Samburu, and Nakuru counties, Kenya, from which 404 bacterial isolates belonging to various genera and species were recovered. The bacterial isolates included Bacillus (39.60%), coagulase-negative Staphylococcus (29.95%), Streptococcus species other than Streptococcus agalactiae (25.74%), coagulase-positive Staphylococcus (3.96%), and Streptococcus agalactiae (0.74%). Isolates were most susceptible to Gentamicin (95.8%), followed by Tetracycline (90.5%), Kanamycin and Chloramphenicol (each at 85.3%), Sulphamethoxazole (84.2%), Co-trimoxazole (82.1%), Ampicillin (78.9%), and finally Streptomycin (76.8%). This translated to low resistance levels. Multidrug resistance was also reported in 30.5% of the isolates tested. Even though the antibiotic resistance demonstrated in this study is low, the observation is significant, since the few resistant normal flora could be harboring resistance genes which can be transferred to pathogenic bacteria within the animal, to other animals' bacteria and, most seriously, to human pathogens.201729147677