# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8112 | 0 | 0.8917 | Fate of antibiotic resistance bacteria and genes during enhanced anaerobic digestion of sewage sludge by microwave pretreatment. The fate of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) were investigated during the sludge anaerobic digestion (AD) with microwave-acid (MW-H), microwave (MW) and microwave-H2O2-alkaline (MW-H2O2) pretreatments. Results showed that combined MW pretreatment especially for the MW-H pretreatment could efficiently reduce the ARB concentration, and most ARG concentrations tended to attenuate during the pretreatment. The subsequent AD showed evident removal of the ARB, but most ARGs were enriched after AD. Only the concentration of tetX kept continuous declination during the whole sludge treatment. The total ARGs concentration showed significant correlation with 16S rRNA during the pretreatment and AD. Compared with unpretreated sludge, the AD of MW and MW-H2O2 pretreated sludge presented slightly better ARB and ARGs reduction efficiency. | 2016 | 26970692 |
| 8807 | 1 | 0.8917 | Dietary watermelon residue influencing the nonspecific immunity of juvenile Pseudorasbora parva. The study explored the improvement of disease resistance, non-specific immunity and anti-oxidation reactions for Pseudorasbora parva (PP) using dietary watermelon residue. The cumulative PP mortality and the pathogenic bacteria number in 15-45% groups reduced relative to those in control group (CK). Under 15-45% groups, AKP, ACP activities and akp, acp genes expression levels were increased markedly in nonspecific immunity system. Similarly, antioxidant response (SOD, CAT activities) and their genes was promoted also at 15-45% groups. Organic matter (vitamin and polyphenols) in watermelon residue improved AKP, ACP, SOD, CAT activities by increasing corresponding gene expressions. Theoretically, they could also function as stimulus signal, active center or composition to modulate enzyme activities and gene expressions. Besides, watermelon residue ameliorated NF-kB, mTOR responses pathway, and consequently suppressed Aeromonas hydrophila which augmented disease resistance. | 2021 | 34534653 |
| 7278 | 2 | 0.8911 | Effects of snowmelt runoff on bacterial communities and antimicrobial resistance gene concentrations in an urban river in a cold climate region. Urban rivers are essential for human activities and ecosystems. Urban runoff is a major source of various pollutants in urban rivers. In this study, we investigated the effect of rainfall and snowmelt subsequently causing urban runoff in a cold climate region on bacterial community structures and antimicrobial resistance gene concentrations in an urban river in Sapporo city, Japan, which has an average snowfall of 4.8 m. Bacterial community structures of the river water were analyzed by next generation sequencing of bacterial 16S rRNA genes. The antimicrobial resistance genes, mphA and bla(IMP), were determined using quantitative polymerase chain reaction. Rainfall and snowmelt increased the effluent discharge rate of treated wastewater, and river water depth. Rainfall and snowmelt also increased Escherichia coli concentrations by 4-20 folds in the river, probably because of combined sewer overflows, urban runoff, or increased effluent discharge rate of treated wastewater to the river. Urban runoff and the subsequent discharge of treated wastewater decreased the bacterial alpha diversity and increased the species evenness of bacteria. Bacterial beta diversity analysis showed that the discharge of treated wastewater caused by rainfall and snowmelt changed the structure and diversity of the bacterial community in the river. The concentrations of the antimicrobial resistance gene mphA were related to the discharge of treated wastewater. In contrast, the antimicrobial resistance gene bla(IMP) appeared to be present in the upstream pristine environment. Results of this study should be informative for challenge to reduce the antimicrobial resistance bacteria due to combined sewer overflows by wastewater management authorities. | 2025 | 40042701 |
| 8109 | 3 | 0.8900 | The fate of antibiotic resistance genes and their influential factors in swine manure composting with sepiolite as additive. Manures are storages for antibiotic resistance genes (ARGs) entering the environment. This study investigated the effects of adding sepiolite at 0%, 2.5%, 5%, and 7.5% (CK, T1, T2, and T3, respectively) on the fates of ARGs during composting. The relative abundances (RAs) of the total ARGs in CK and T3 decreased by 0.23 and 0.46 logs, respectively, after composting. The RAs of 10/11 ARGs decreased in CK, whereas they all decreased in T3. The reduction in the RA of the total mobile genetic elements (MGEs) was 1.26 times higher in T3 compared with CK after composting. The bacterial community accounted for 47.93% of the variation in the abundances of ARGs. Network analysis indicated that ARGs and MGEs shared potential host bacteria (PHB), and T3 controlled the transmission of ARGs by reducing the abundances of PHB. Composting with 7.5% sepiolite is an effective strategy for reducing the risk of ARGs proliferating. | 2022 | 35063626 |
| 7995 | 4 | 0.8898 | Risk of penicillin fermentation dreg: Increase of antibiotic resistance genes after soil discharge. Penicillin fermentation dreg (PFD) is a solid waste discharged by pharmaceutical enterprises in the fermentation production process. Due to the residual antibiotic of PFD, the risk of antibiotic resistance bacteria (ARB) generation should be considered in the disposal process. High-throughput quantitative PCR (HT-qPCR) and 16S rRNA gene sequencing were performed to investigate the effect of PFD on the dynamics of antibiotic resistance genes (ARGs) and bacterial community during a lab-scale soil experiment. After the application of PFD, the bacterial number and diversity showed an obvious decrease in the initial days. The abundances of Streptomyces and Bacillus, which are the most widespread predicted source phyla of ARGs, increased remarkably from 4.42% to 2.59%-22.97% and 21.35%. The increase of ARGs was observed during the PFD application and the ARGs carried by PFD itself contributed to the initiation of soil ARGs. The results of redundancy analysis (RDA) show that the shift in bacterial community induced by variation of penicillin content is the primary driver shaping ARGs compositions. | 2020 | 32023801 |
| 7876 | 5 | 0.8896 | Sulfamethoxazole impact on pollutant removal and microbial community of aerobic granular sludge with filamentous bacteria. In this study, sulfamethoxazole (SMX) was employed to investigate its impact on the process of aerobic granule sludge with filamentous bacteria (FAGS). FAGS has shown great tolerance ability. FAGS in a continuous flow reactor (CFR) could keep stable with 2 μg/L of SMX addition during long-term operation. The NH(4)(+), chemical oxygen demand (COD), and SMX removal efficiencies kept higher than 80%, 85%, and 80%, respectively. Both adsorption and biodegradation play important roles in SMX removal for FAGS. The extracellular polymeric substances (EPS) might play important role in SMX removal and FAGS tolerance to SMX. The EPS content increased from 157.84 mg/g VSS to 328.22 mg/g VSS with SMX addition. SMX has slightly affected on microorganism community. A high abundance of Rhodobacter, Gemmobacter, and Sphaerotilus of FAGS may positively correlate to SMX. The SMX addition has led to the increase in the abundance of the four sulfonamide resistance genes in FAGS. | 2023 | 36871701 |
| 576 | 6 | 0.8893 | Caenorhabditis elegans defective-pharynx and constipated mutants are resistant to Orsay virus infection. C. elegans animals with a compromised pharynx accumulate bacteria in their intestinal lumen and activate a transcriptional response that includes anti-bacterial response genes. In this study, we demonstrate that animals with defective pharynxes are resistant to Orsay virus (OrV) infection. This resistance is observed for animals grown on Escherichia coli OP50 and on Comamonas BIGb0172, a bacterium naturally associated with C. elegans . The viral resistance observed in defective-pharynx mutants does not seem to result from constitutive transcriptional immune responses against viruses. OrV resistance is also observed in mutants with defective defecation, which share with the pharynx-defective perturbations in the regulation of their intestinal contents and altered lipid metabolism. The underlying mechanisms of viral resistance in pharynx- and defecation-defective mutants remain elusive. | 2024 | 38590801 |
| 7534 | 7 | 0.8890 | Mechanisms and effects of arsanilic acid on antibiotic resistance genes and microbial communities during pig manure digestion. High concentrations of residual arsanilic acid occur in pig manure due to its use in feed to promote growth and control diseases. This study compared the effects of arsanilic acid at three concentrations (0, 325, and 650mg/kg dry pig manure) on the abundance of antibiotic resistance genes (ARGs) and the microbial community during anaerobic digestion. Addition of 650mg/kg arsanilic acid enhanced the absolute abundances of tetC, sul2, ermB, and gyrA more than twofold in the digestion product. Redundancy analysis indicated that the change in the microbial community structure was the main driver of variation in the ARGs profile. The As resistance gene arsC co-occurred with four ARGs and intI1, possibly causing the increase in ARGs under pressure by arsanilic acid. High arsanilic acid concentrations can increase the risk of ARGs occurring in anaerobic digestion products. The amount of arsanilic acid used as a feed additive should be controlled. | 2017 | 28319770 |
| 8058 | 8 | 0.8887 | Effects of biochars on the fate of antibiotics and their resistance genes during vermicomposting of dewatered sludge. It is currently still difficult to decrease the high contents of antibiotics and their corresponding antibiotic resistance genes (ARGs) in sludge vermicompost. To decrease the environmental risk of vermicompost as a bio-fertilizer, this study investigated the feasibility of biochar addition to decrease the levels of antibiotics and ARGs during vermicomposting of dewatered sludge. To achieve this, 1.25% and 5% of corncob and rice husk biochars, respectively, were added to sludge, which was then vermicomposted by Eisenia fetida for 60 days. The sludge blended with corncob biochar showed increased decomposition and humification of organic matter. Higher biochar concentration promoted both the number and diversity of bacteria, and differed dominant genera. The level of antibiotics significantly decreased as a result of biochar addition (P < 0.05), and tetracycline was completely removed. Relative to the control without addition of biochars, ermF and tetX genes significantly decreased with corncob biochar treatment (P < 0.05). Rice husk biochar (5%) could effectively decrease sul-1 and sul-2 genes in vermicompost (P < 0.05). However, the abundance of the intI-1 gene increased with biochar concentration. This study suggests that biochar addition can lessen the antibiotic and ARG pollution in sludge vermicompost, depending on the type and concentration of biochars. | 2020 | 32388093 |
| 8115 | 9 | 0.8886 | Effects of reductive soil disinfestation on potential pathogens and antibiotic resistance genes in soil. Reductive soil disinfestation (RSD) is commonly employed for soil remediation in greenhouse cultivation. However, its influence on antibiotic resistance genes (ARGs) in soil remains uncertain. This study investigated the dynamic changes in soil communities, potential bacterial pathogens, and ARG profiles under various organic material treatments during RSD, including distillers' grains, potato peel, peanut vine, and peanut vine combined with charcoal. Results revealed that applying diverse organic materials in RSD significantly altered bacterial community composition and diminished the relative abundance of potential bacterial pathogens (P < 0.05). The relative abundance of high-risk ARGs decreased by 10.7%-30.6% after RSD treatments, the main decreased ARG subtypes were AAC(3)_Via, dfrA1, ErmB, lnuB, aadA. Actinobacteria was the primary host of ARGs and was suppressed by RSD. Soil physicochemical properties, such as total nitrogen, soil pH, total carbon, were crucial factors affecting ARG profiles. Our findings demonstrated that RSD treatment inhibited pathogenic bacteria and could be an option for reducing high-risk ARG proliferation in soil. | 2025 | 39306413 |
| 7923 | 10 | 0.8885 | Effect of ultrasonic and ozone pretreatment on the fate of enteric indicator bacteria and antibiotic resistance genes, and anaerobic digestion of dairy wastewater. In this study, the effect of ultrasound (US), ozone and US combined with ozone (US/ozone) pretreatments on the fate of enteric indicator bacteria and antibiotic resistance genes (ARGs), and anaerobic digestion (AD) of dairy wastewater was investigated. The pretreatment conditions included US power 200 W, ozone concentration 4.2 mg O(3)/L, and pretreatment time 0-30 min. The results showed that US/ozone pretreatment was effective in the inactivation of enteric indicator bacteria. Total coliforms and enterococci were reduced by 99% and 92% after 30 min US/ozone pretreatment. Pretreatments could not decrease ARGs in absolute concentration, but could decrease ARGs in relative abundance. In the subsequent AD process, methane production increased more than 10% with 20 min ozone or 20 min US/ozone pretreatments. Pretreatment-AD together obviously inhibited the enrichment of ARGs in relative abundance. This study provided a pretreatment way to enhance methane production and to prevent the enrichment of ARGs. | 2021 | 33186838 |
| 6722 | 11 | 0.8883 | Studies on the bacterial permeability of non-woven fabrics and cotton fabrics. The permeability of cotton and non-woven fabrics to bacteria, air and water was studied. Non-woven fabrics, even when wet, showed low resistance to air, and high resistance to permeation of water and bacteria. Water-repellent cotton fabrics were resistant to permeation of water, air and bacteria, but these properties decreased on washing. Non-water-repellent cotton fabrics were poor bacterial barriers even when new. | 1986 | 2873172 |
| 8717 | 12 | 0.8882 | Protective Effect of Pediococcus pentosaceus Li05 on Constipation via TGR5/TPH1/5-HT Activation. Pediococcus pentosaceus Li05, a strain of lactic acid bacteria isolated from the faeces of healthy volunteers, exhibited potential protective effects against various diseases. This study performed third-generation sequencing and detailed characterisation of its genome. The Li05 chromosome harboured conserved genes associated with acid resistance (atp), bile salt resistance (bsh), oxidative stress resistance (hsl, dltA, and et al.), and adhesion (nrd, gap, and et al.), whereas the plasmid did not contain antibiotic resistance or virulence genes. Following intervention with Li05 in loperamide-induced constipated mice, constipation symptoms improved. Meanwhile, alterations in gut microbiota, increased BSH activity in faeces, and modifications to the faecal bile acid profile were observed. Additionally, expression levels of TGR5 and TPH1 in the colon of the mice increased, leading to elevated 5-HT levels. When the TGR5 gene was knocked out or the TPH1 inhibitor LX1606 was administered to suppress 5-HT synthesis in constipated mice, the beneficial effects of Li05 on gastrointestinal motility and mucus secretion were reversed. Culturing intestinal organoids demonstrated that increased bile acids such as DCA, Iso-LCA, and EALCA could enhance 5-HT levels through the TGR5/TPH1 axis. Therefore, we concluded that Li05 regulated bile acid metabolism, subsequently increasing 5-HT levels through the TGR5/TPH1 axis, thus alleviating constipation. | 2025 | 41159760 |
| 8105 | 13 | 0.8878 | Refluxing mature compost to replace bulking agents: A low-cost solution for suppressing antibiotic resistance genes rebound in sewage sludge composting. Antibiotic resistance genes (ARGs) rebounding during composting cooling phase is a critical bottleneck in composting technology that increased ARGs dissemination and application risk of compost products. In this study, mature compost (MR) was used as a substitute for rice husk (RH) to mitigate the rebound of ARGs and mobile genetic elements (MGEs) during the cooling phase of sewage sludge composting, and the relationship among ARGs, MGEs, bacterial community and environmental factors was investigated to explore the key factor influencing ARGs rebound. The results showed that aadD, blaCTX-M02, ermF, ermB, tetX and vanHB significantly increased 4.76-32.41 times, and the MGEs rebounded by 38.60% in the cooling phase of RH composting. Conversely, MR reduced aadD, tetM, ermF and ermB concentrations by 59.49-98.58%, and reduced the total abundance of ARGs in the compost product by 49.32% compared to RH, which significantly restrained ARGs rebound. MR promoted secondary high temperature inactivation of potential host bacteria, including Ornithinibacter, Rhizobiales and Caldicoprobacter, which could harbor aadE, blaCTX-M02, and blaVEB. It also reduced the abundance of lignocellulose degrading bacteria of Firmicutes, which were potential hosts of aadD, tetX, ermF and vanHB. Moreover, MR reduced moisture and increased oxidation reduction potential (ORP) that promoted aadE, tetQ, tetW abatement. Furthermore, MR reduced 97.36% of total MGEs including Tn916/1545, IS613, Tp614 and intI3, which alleviated ARGs horizontal transfer. Overall finding proposed mature compost reflux as bulking agent was a simple method to suppress ARGs rebound and horizontal transfer, improve ARGs removal and reduce composting plant cost. | 2025 | 39798649 |
| 8113 | 14 | 0.8878 | Fate of antibiotic resistance genes in mesophilic and thermophilic anaerobic digestion of chemically enhanced primary treatment (CEPT) sludge. Anaerobic digestion (AD) of chemically enhanced primary treatment (CEPT) sludge and non-CEPT (conventional sedimentation) sludge were comparatively operated under mesophilic and thermophilic conditions. The highest methane yield (692.46±0.46mL CH(4)/g VS(removed) in CEPT sludge) was observed in mesophilic AD of CEPT sludge. Meanwhile, thermophilic conditions were more favorable for the removal of total antibiotic resistance genes (ARGs). In this study, no measurable difference in the fates and removal of ARGs and class 1 integrin-integrase gene (intI1) was observed between treated non-CEPT and CEPT sludge. However, redundancy analysis indicated that shifts in bacterial community were primarily accountable for the variations in ARGs and intI1. Network analysis further revealed potential host bacteria for ARGs and intI1. | 2017 | 28797965 |
| 7885 | 15 | 0.8878 | Susceptibility, resistance and resilience of anammox biomass to nanoscale copper stress. The increasing use of engineered nanoparticles (NPs) poses an emerging challenge to biological wastewater treatment. The long-term impact of CuNPs on anaerobic ammonium oxidation (anammox) process was firstly investigated in this study. The nitrogen removal capacity of anammox reactor was nearly deprived within 30days under the stress of 5.0mgL(-1) CuNPs and the relative abundance of anammox bacteria (Ca. Kuenenia) was decreased from 29.59% to 17.53%. Meanwhile, copper resistance genes associated with the Cus, Cop and Pco systems were enriched to eliminate excess intracellular copper. After the withdrawal of CuNPs from the influent, the nitrogen removal capacity of anammox biomass recovered completely within 70days. Overall, anammox biomass showed susceptibility, resistance and resilience to the stress of CuNPs. Therefore, the potential impacts of ENPs on anammox-based processes should be of great concern. | 2017 | 28550773 |
| 6732 | 16 | 0.8877 | Assessment of Bioavailability of Biochar-Sorbed Tetracycline to Escherichia coli for Activation of Antibiotic Resistance Genes. Human overuse and misuse of antibiotics have caused the wide dissemination of antibiotics in the environment, which has promoted the development and proliferation of antibiotic resistance genes (ARGs) in soils. Biochar (BC) with strong sorption affinity to many antibiotics is considered to sequester antibiotics and hence mitigate their impacts to bacterial communities in soils. However, little is known about whether BC-sorbed antibiotics are bioavailable and exert selective pressure on soil bacteria. In this study, we probed the bioavailability of tetracycline sorbed by BCs prepared from rice-, wheat-, maize-, and bean-straw feedstock using Escherichia coli MC4100/pTGM bioreporter strain. The results revealed that BC-sorbed tetracycline was still bioavailable to the E. coli attached to BC surfaces. Tetracycline sorbed by BCs prepared at 400 °C (BC400) demonstrated a higher bioavailability to bacteria compared to that sorbed by BCs prepared at 500 °C (BC500). Tetracycline could be sorbed primarily in the small pores of BC500 where bacteria could not access due to the size exclusion to bacteria. In contrast, tetracycline could be sorbed mainly on BC400 surfaces where bacteria could conveniently access tetracycline. Increasing the ambient humidity apparently enhanced the bioavailability of BC400-sorbed tetracycline. BC500-sorbed tetracycline exposed to varying levels of ambient humidity showed no significant changes in bioavailability, indicating that water could not effectively mobilize tetracycline from BC500 pores to surfaces where bacteria could access tetracycline. The results from this study suggest that BCs prepared at a higher pyrolysis temperature could be more effective to sequester tetracycline and mitigate the selective pressure on soil bacteria. | 2020 | 32786566 |
| 8045 | 17 | 0.8876 | Correlation among extracellular polymeric substances, tetracycline resistant bacteria and tetracycline resistance genes under trace tetracycline. Antibiotic resistance occurrences and proliferation in activated sludge have attracted more and more attention nowadays. However, the role which extracellular polymeric substance (EPS) plays on the antibiotic resistance is not clear. The changes and correlation among EPS, tetracycline (TC) resistant bacteria (TRB) and TC resistance genes (TRGs) of sequencing batch reactors (SBRs) were investigated. Performance of SBR without TC was compared with two other SBRs to which different amounts of TC were added. Total average EPS contents were found to increase significantly from 66 mg g−1 VSS to 181 mg g−1 VSS as the TC concentrations increased from 0 to 100 μg L−1. As the EPS content increased, TRB in sludge of the three SBRs increased significantly from 105 to 106 colony forming unit mL−1 after being exposed to TC. In addition, the concentrations of three groups of TRGs (copies mL−1) were determined by real-time fluorescence quantitative polymerase chain reaction and followed the order: efflux pump genes > ribosome protected genes > degradation enzyme genes. The numbers of TRGs in the idle stage were larger than those in the aeration sludge. Correlation coefficients (R2) between EPS and TRB in sludge were 0.823 (p < 0.01) while the correlation between EPS and total TRGs was poor (R2 = 0.463, p > 0.05). But it showed the same tendency that EPS and TRGs in sludge increased with the increasing of TC. | 2014 | 25461932 |
| 8735 | 18 | 0.8875 | The Effect of Ice-Nucleation-Active Bacteria on Metabolic Regulation in Evergestis extimalis (Scopoli) (Lepidoptera: Pyralidae) Overwintering Larvae on the Qinghai-Tibet Plateau. Evergestis extimalis (Scopoli) is a significant pest of spring oilseed rape in the Qinghai-Tibet Plateau. It has developed resistance to many commonly used insecticides. Therefore, biopesticides should be used to replace the chemical pesticides in pest control. In this study, the effects of ice-nucleation-active (INA) microbes (Pseudomonas syringae 1.7277, P. syringae 1.3200, and Erwinia pyrifoliae 1.3333) on E. extimalis were evaluated. The supercooling points (SCP) were markedly increased due to the INA bacteria application when they were compared to those of the untreated samples. Specifically, the SCP of E. extimalis after its exposure to a high concentration of INA bacteria in February were -10.72 °C, -13.73 °C, and -14.04 °C. Our findings have demonstrated that the trehalase (Tre) genes were up-regulated by the application of the INA bacteria, thereby resulting in an increased trehalase activity. Overall, the INA bacteria could act as effective heterogeneous ice nuclei which could lower the hardiness of E. extimalis to the cold and then freeze them to death in an extremely cold winter. Therefore, the control of insect pests with INA bacteria goes without doubt, in theory. | 2022 | 36292857 |
| 8054 | 19 | 0.8875 | Effects of nanoscale zero-valent iron on the performance and the fate of antibiotic resistance genes during thermophilic and mesophilic anaerobic digestion of food waste. The effects of nanoscale zero-valent iron (nZVI) on the performance of food waste anaerobic digestion and the fate of antibiotic resistance genes (ARGs) were investigated in thermophilic (TR) and mesophilic (MR) reactors. Results showed that nZVI enhanced biogas production and facilitated ARGs reduction. The maximum CH(4) production was 212.00 ± 4.77 ml/gVS with 5 g/L of nZVI in MR. The highest ARGs removal ratio was 86.64 ± 0.72% obtained in TR at nZVI of 2 g/L. nZVI corrosion products and their contribution on AD performance were analyzed. The abundance of tetracycline genes reduced significantly in nZVI amended digesters. Firmicutes, Chloroflexi, Proteobacteria and Spirochaetes showed significant positive correlations with various ARGs (p < 0.05) in MR and TR. Redundancy analysis indicated that microbial community was the main factor that influenced the fate of ARGs. nZVI changed microbial communities, with decreasing the abundance bacteria belonging to Firmicutes and resulting in the reduction of ARGs. | 2019 | 31505392 |