# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6389 | 0 | 0.9574 | Microbial community and functions involved in smokeless tobacco product: a metagenomic approach. Smokeless tobacco products (STPs) are attributed to oral cancer and oral pathologies in their users. STP-associated cancer induction is driven by carcinogenic compounds including tobacco-specific nitrosamines (TSNAs). The TSNAs synthesis could enhanced due to the metabolic activity (nitrate metabolism) of the microbial populations residing in STPs, but identifying microbial functions linked to the TSNAs synthesis remains unexplored. Here, we rendered the first report of shotgun metagenomic sequencing to comprehensively determine the genes of all microorganisms residing in the Indian STPs belonging to two commercial (Moist-snuff and Qiwam) and three loose (Mainpuri Kapoori, Dohra, and Gudakhu) STPs, specifically consumed in India. Further, the level of nicotine, TSNAs, mycotoxins, and toxic metals were determined to relate their presence with microbial activity. The microbial population majorly belongs to bacteria with three dominant phyla including Actinobacteria, Proteobacteria, and Firmicutes. Furthermore, the STP-linked microbiome displayed several functional genes associated with nitrogen metabolism and antibiotic resistance. The chemical analysis revealed that the Mainpuri Kapoori product contained a high concentration of ochratoxins-A whereas TSNAs and Zink (Zn) quantities were high in the Moist-snuff, Mainpuri Kapoori, and Gudakhu products. Hence, our observations will help in attributing the functional potential of STP-associated microbiome and in the implementation of cessation strategies against STPs. KEY POINTS: •Smokeless tobacco contains microbes that can assist TSNA synthesis. •Antibiotic resistance genes present in smokeless tobacco-associated bacteria. •Pathogens in STPs can cause infections in smokeless tobacco users. | 2024 | 38918238 |
| 6390 | 1 | 0.9507 | Shotgun metagenome sequencing of a Sudanese toombak snuff tobacco: genetic attributes of a high tobacco-specific nitrosamine containing smokeless tobacco product. The most alarming aspect of the Sudanese toombak smokeless tobacco is that it contains high levels of highly toxic tobacco-specific nitrosamines (TSNAs). Understanding the microbiology of toombak is of relevance because TSNAs are an indirect result of microbial-mediated nitrate reductions. We conducted shotgun metagenomic sequencing on a toombak product for which relevant features are presented here. The microbiota was composed of over 99% Bacteria. The most abundant taxa included Actinobacteria, specifically the genera Enteractinococcus and Corynebacterium, while Firmicutes were represented by the family Bacillaceae and the genus Staphylococcus. Selected gene targets were nitrate reduction and transport, antimicrobial resistance, and other genetic transference mechanisms. Canonical nitrate reduction and transport genes (i.e. nar) were found for Enteractinococcus and Corynebacterium while various species of Staphylococcus exhibited a notable number of antimicrobial resistance and genetic transference genes. The nitrate reduction activity of the microbiota in toombak is suspected to be a contributing factor to its high levels of TSNAs. Additionally, the presence of antimicrobial resistance and transference genes could contribute to deleterious effects on oral and gastrointestinal health of the end user. Overall, the high toxicity and increased incidences of cancer and oral disease of toombak users warrants further investigation into the microbiology of toombak. | 2022 | 34862647 |
| 7739 | 2 | 0.9464 | Community ecology and functional potential of bacteria, archaea, eukarya and viruses in Guerrero Negro microbial mat. In this study, the microbial ecology, potential environmental adaptive mechanisms, and the potential evolutionary interlinking of genes between bacterial, archaeal and viral lineages in Guerrero Negro (GN) microbial mat were investigated using metagenomic sequencing across a vertical transect at millimeter scale. The community composition based on unique genes comprised bacteria (98.01%), archaea (1.81%), eukarya (0.07%) and viruses (0.11%). A gene-focused analysis of bacteria archaea, eukarya and viruses showed a vertical partition of the community. The greatest coverages of genes of bacteria and eukarya were detected in first layers, while the highest coverages of genes of archaea and viruses were found in deeper layers. Many genes potentially related to adaptation to the local environment were detected, such as UV radiation, multidrug resistance, oxidative stress, heavy metals, salinity and desiccation. Those genes were found in bacterial, archaeal and viral lineages with 6477, 44, and 1 genes, respectively. The evolutionary histories of those genes were studied using phylogenetic analysis, showing an interlinking between domains in GN mat. | 2024 | 38297006 |
| 6079 | 3 | 0.9459 | Genomic and metabonomic methods reveal the probiotic functions of swine-derived Ligilactobacillus salivarius. BACKGROUND: As substitutes for antibiotics, probiotic bacteria protect against digestive infections caused by pathogenic bacteria. Ligilactobacillus salivarius is a species of native lactobacillus found in both humans and animals. Herein, a swine-derived Ligilactobacillus salivarius was isolated and shown to colonize the ileal mucous membrane, thereby promoting nutritional digestion, absorption, and immunity. To evaluate its probiotic role, the entire genome was sequenced, the genetic information was annotated, and the metabolic information was analyzed. RESULTS: The phylogenetic relationship indicated that the bacteria was closer to L. salivarius MT573555.1 and MT585431.1. Functional genes included transporters, membrane proteins, enzymes, heavy metal resistance proteins, and putative proteins; metabolism-related genes were the most abundant. The six types of metabolic pathways secreted by L. salivarius were mainly composed of secretory transmembrane proteins and peptides. The secretory proteins of L. salivarius were digestive enzymes, functional proteins that regulate apoptosis, antibodies, and hormones. Non-targeted metabolomic analysis of L. salivarius metabolites suggested that ceramide, pyrrolidone- 5- carboxylic acid, N2-acetyl-L-ornithine, 2-ethyl-2-hydroxybutyric acid, N-lactoyl-phenylalanine, and 12 others were involved in antioxidation, repair of the cellular membrane, anticonvulsant, hypnosis, and appetite inhibition. Metabolites of clavaminic acid, antibiotic X14889C, and five other types of bacteriocins were identified, namely phenyllactic acid, janthitrem G, 13-demethyl tacrolimus, medinoside E, and tertonasin. The adherence and antioxidation of L. salivarius were also predicted. No virulence genes were found. CONCLUSION: The main probiotic properties of L. salivarius were identified using genomic, metabonomic, and biochemical assays, which are beneficial for porcine feeding. Our results provided deeper insights into the probiotic effects of L. salivarius. | 2023 | 37648978 |
| 7733 | 4 | 0.9449 | A glance at the gut microbiota and the functional roles of the microbes based on marmot fecal samples. Research on the gut microbiota, which involves a large and complex microbial community, is an important part of infectious disease control. In China, few studies have been reported on the diversity of the gut microbiota of wild marmots. To obtain full details of the gut microbiota, including bacteria, fungi, viruses and archaea, in wild marmots, we have sequenced metagenomes from five sample-sites feces on the Hulun Buir Grassland in Inner Mongolia, China. We have created a comprehensive database of bacterial, fungal, viral, and archaeal genomes and aligned metagenomic sequences (determined based on marmot fecal samples) against the database. We delineated the detailed and distinct gut microbiota structures of marmots. A total of 5,891 bacteria, 233 viruses, 236 fungi, and 217 archaea were found. The dominant bacterial phyla were Firmicutes, Proteobacteria, Bacteroidetes, and Actinomycetes. The viral families were Myoviridae, Siphoviridae, Phycodnaviridae, Herpesviridae and Podoviridae. The dominant fungi phyla were Ascomycota, Basidiomycota, and Blastocladiomycota. The dominant archaea were Biobacteria, Omoarchaea, Nanoarchaea, and Microbacteria. Furthermore, the gut microbiota was affected by host species and environment, and environment was the most important factor. There were 36,989 glycoside hydrolase genes in the microbiota, with 365 genes homologous to genes encoding β-glucosidase, cellulase, and cellulose β-1,4-cellobiosidase. Additionally, antibiotic resistance genes such as macB, bcrA, and msbA were abundant. To sum up, the gut microbiota of marmot had population diversity and functional diversity, which provides a basis for further research on the regulatory effects of the gut microbiota on the host. In addition, metagenomics revealed that the gut microbiota of marmots can degrade cellulose and hemicellulose. | 2023 | 37125200 |
| 6080 | 5 | 0.9448 | Metagenomic Insights into the Taxonomic and Functional Features of Traditional Fermented Milk Products from Russia. Fermented milk products (FMPs) contain probiotics that are live bacteria considered to be beneficial to human health due to the production of various bioactive molecules. In this study, nine artisanal FMPs (kefir, ayran, khurunga, shubat, two cottage cheeses, bryndza, khuruud and suluguni-like cheese) from different regions of Russia were characterized using metagenomics. A metagenomic sequencing of ayran, khurunga, shubat, khuruud and suluguni-like cheese was performed for the first time. The taxonomic profiling of metagenomic reads revealed that Lactococcus species, such as Lc. lactis and Lc. cremoris prevailed in khuruud, bryndza, one sample of cottage cheese and khurunga. The latter one together with suluguni-like cheese microbiome was dominated by bacteria, affiliated to Lactobacillus helveticus (32-35%). In addition, a high proportion of sequences belonging to the genera Lactobacillus, Lactococcus and Streptococcus but not classified at the species level were found in the suluguni-like cheese. Lactobacillus delbrueckii, as well as Streptococcus thermophilus constituted the majority in another cottage cheese, kefir and ayran metagenomes. The microbiome of shubat, produced from camel's milk, was significantly distinctive, and Lentilactobacillus kefiri, Lactobacillus kefiranofaciens and Bifidobacterium mongoliense represented the dominant components (42, 7.4 and 5.6%, respectively). In total, 78 metagenome-assembled genomes with a completeness ≥ 50.2% and a contamination ≤ 8.5% were recovered: 61 genomes were assigned to the Enterococcaceae, Lactobacillaceae and Streptococcaceae families (the Lactobacillales order within Firmicutes), 4 to Bifidobacteriaceae (the Actinobacteriota phylum) and 2 to Acetobacteraceae (the Proteobacteria phylum). A metagenomic analysis revealed numerous genes, from 161 to 1301 in different products, encoding glycoside hydrolases and glycosyltransferases predicted to participate in lactose, alpha-glucans and peptidoglycan hydrolysis as well as exopolysaccharides synthesis. A large number of secondary metabolite biosynthetic gene clusters, such as lanthipeptides, unclassified bacteriocins, nonribosomal peptides and polyketide synthases were also detected. Finally, the genes involved in the synthesis of bioactive compounds like β-lactones, terpenes and furans, nontypical for fermented milk products, were also found. The metagenomes of kefir, ayran and shubat was shown to contain either no or a very low count of antibiotic resistance genes. Altogether, our results show that traditional indigenous fermented products are a promising source of novel probiotic bacteria with beneficial properties for medical and food industries. | 2023 | 38276185 |
| 8652 | 6 | 0.9446 | Co-occurrence of dominant bacteria and methanogenic archaea and their metabolic traits in a thermophilic anaerobic digester. Thermophilic anaerobic digestion (TAD) represents a promising biotechnology for both methane energy production and waste stream treatment. However, numerous critical microorganisms and their metabolic characteristics involved in this process remain unidentified due to the limitations of culturable isolates. This study investigated the phylogenetic composition and potential metabolic traits of bacteria and methanogenic archaea in a TAD system using culture-independent metagenomics. Predominant microorganisms identified in the stable phase of TAD included hydrogenotrophic methanogens (Methanothermobacter and Methanosarcina) and hydrogen-producing bacteria (Coprothermobacter, Acetomicrobium, and Defluviitoga). Nine major metagenome-assembled genomes (MAGs) associated with the dominant genera were selected to infer their metabolic potentials. Genes related to thermal resistance were widely found in all nine major MAGs, such as the molecular chaperone genes, Clp protease gene, and RNA polymerase genes, which may contribute to their predominance under thermophilic condition. Thermophilic temperatures may increase the hydrogen partial pressure of Coprothermobacter, Acetomicrobium, and Defluviitoga, subsequently altering the primary methanogenesis pathway from acetoclastic pathway to hydrogenotrophic pathway in the TAD. Consequently, genes encoding the hydrogenotrophic methanogenesis pathway were the most abundant in the recovered archaeal MAGs. The potential interaction between hydrogen-producing bacteria and hydrogenotrophic methanogens may play critical roles in TAD processes. | 2024 | 38753237 |
| 6387 | 7 | 0.9445 | Insights into the Evolutionary and Ecological Roles of Bathyarchaeia in Arsenic Detoxification. Arsenic (As) is a prevalent toxic element, posing significant risks to organisms, including microbes. While microbial arsenic detoxification has been extensively studied in bacteria, archaeal mechanisms remain understudied. Here, we investigated arsenic resistance genes in Bathyarchaeia, one of the most abundant archaeal lineages on Earth. Comprehensive genomic analysis of 318 Bathyarchaeia representatives revealed a widespread distribution of arsenic resistance genes, with 60% of genomes harboring genes for arsenate reduction (arsR1 and arsC2), arsenite methylation (arsM), and arsenic transport (acr3, arsP, and arsB). Phylogenetic analysis revealed that these genes are widely distributed across 14 archaeal phyla, including Asgardarchaeota, Thermoproteota, and Thermoplasmatota, with close evolutionary relationships among these archaeal lineages. In situ investigation of sediment columns and laboratory microcosm experiments demonstrated a strong positive correlation between Bathyarchaeia abundance and arsenic concentrations, suggesting their adaptation to arsenic-rich environments. Molecular dating analysis placed the emergence of Bathyarchaeia at approximately 3.01 billion years ago, with the evolution of their arsenic resistance mechanisms closely tracking major geological events, including the Great Oxidation Event (2.4-2.1 Gya), Huronian Glaciation (2.29-2.25 Gya), and Cryogenian Glaciation (∼700 Mya). Our findings highlight the critical role of Archaea in the arsenic cycle and provide insights into the evolutionary history of arsenic resistance associated with paleogeochemical changes in Bathyarchaeia. | 2025 | 40921195 |
| 8807 | 8 | 0.9444 | Dietary watermelon residue influencing the nonspecific immunity of juvenile Pseudorasbora parva. The study explored the improvement of disease resistance, non-specific immunity and anti-oxidation reactions for Pseudorasbora parva (PP) using dietary watermelon residue. The cumulative PP mortality and the pathogenic bacteria number in 15-45% groups reduced relative to those in control group (CK). Under 15-45% groups, AKP, ACP activities and akp, acp genes expression levels were increased markedly in nonspecific immunity system. Similarly, antioxidant response (SOD, CAT activities) and their genes was promoted also at 15-45% groups. Organic matter (vitamin and polyphenols) in watermelon residue improved AKP, ACP, SOD, CAT activities by increasing corresponding gene expressions. Theoretically, they could also function as stimulus signal, active center or composition to modulate enzyme activities and gene expressions. Besides, watermelon residue ameliorated NF-kB, mTOR responses pathway, and consequently suppressed Aeromonas hydrophila which augmented disease resistance. | 2021 | 34534653 |
| 6388 | 9 | 0.9444 | A Metagenome from a Steam Vent in Los Azufres Geothermal Field Shows an Abundance of Thermoplasmatales archaea and Bacteria from the Phyla Actinomycetota and Pseudomonadota. Los Azufres National Park is a geothermal field that has a wide number of thermal manifestations; nevertheless, the microbial communities in many of these environments remain unknown. In this study, a metagenome from a sediment sample from Los Azufres National Park was sequenced. In this metagenome, we found that the microbial diversity corresponds to bacteria (Actinomycetota, Pseudomonadota), archaea (Thermoplasmatales and Candidatus Micrarchaeota and Candidatus Parvarchaeota), eukarya (Cyanidiaceae), and viruses (Fussellovirus and Caudoviricetes). The functional annotation showed genes related to the carbon fixation pathway, sulfur metabolism, genes involved in heat and cold shock, and heavy-metal resistance. From the sediment, it was possible to recover two metagenome-assembled genomes from Ferrimicrobium and Cuniculiplasma. Our results showed that there are a large number of microorganisms in Los Azufres that deserve to be studied. | 2023 | 37504286 |
| 8710 | 10 | 0.9443 | Microbial communities and gene contributions in smokeless tobacco products. Smokeless tobacco products (STP) contain bacteria, mold, and fungi due to exposure from surrounding environments and tobacco processing. This has been a cause for concern since the presence of microorganisms has been linked to the formation of highly carcinogenic tobacco-specific nitrosamines. These communities have also been reported to produce toxins and other pro-inflammatory molecules that can cause mouth lesions and elicit inflammatory responses in STP users. Moreover, microbial species in these products could transfer to the mouth and gastrointestinal tract, potentially altering the established respective microbiotas of the consumer. Here, we present the first metagenomic analysis of select smokeless tobacco products, specifically US domestic moist and dry snuff. Bacterial, eukaryotic, and viral species were found in all tobacco products where 68% of the total species was comprised of Bacteria with 3 dominant phyla but also included 32% Eukarya and 1% share abundance for Archaea and Viruses. Furthermore, 693,318 genes were found to be present and included nitrate and nitrite reduction and transport enzymes, antibiotic resistance genes associated with resistance to vancomycin, β-lactamases, their derivatives, and other antibiotics, as well as genes encoding multi-drug transporters and efflux pumps. Additional analyses showed the presence of endo- and exotoxin genes in addition to other molecules associated with inflammatory responses. Our results present a novel aspect of the smokeless tobacco microbiome and provide a better understanding of these products' microbiology. KEY POINTS: • The findings presented will help understand microbial contributions to overall STP chemistries. • Gene function categorization reveals harmful constituents outside canonical forms. • Pathway genes for TSNA precursor activity may occur at early stages of production. • Bacteria in STPs carry antibiotic resistance genes and gene transfer mechanisms. | 2020 | 33180172 |
| 191 | 11 | 0.9442 | Mariprofundus ferrooxydans PV-1 the first genome of a marine Fe(II) oxidizing Zetaproteobacterium. Mariprofundus ferrooxydans PV-1 has provided the first genome of the recently discovered Zetaproteobacteria subdivision. Genome analysis reveals a complete TCA cycle, the ability to fix CO(2), carbon-storage proteins and a sugar phosphotransferase system (PTS). The latter could facilitate the transport of carbohydrates across the cell membrane and possibly aid in stalk formation, a matrix composed of exopolymers and/or exopolysaccharides, which is used to store oxidized iron minerals outside the cell. Two-component signal transduction system genes, including histidine kinases, GGDEF domain genes, and response regulators containing CheY-like receivers, are abundant and widely distributed across the genome. Most of these are located in close proximity to genes required for cell division, phosphate uptake and transport, exopolymer and heavy metal secretion, flagellar biosynthesis and pilus assembly suggesting that these functions are highly regulated. Similar to many other motile, microaerophilic bacteria, genes encoding aerotaxis as well as antioxidant functionality (e.g., superoxide dismutases and peroxidases) are predicted to sense and respond to oxygen gradients, as would be required to maintain cellular redox balance in the specialized habitat where M. ferrooxydans resides. Comparative genomics with other Fe(II) oxidizing bacteria residing in freshwater and marine environments revealed similar content, synteny, and amino acid similarity of coding sequences potentially involved in Fe(II) oxidation, signal transduction and response regulation, oxygen sensation and detoxification, and heavy metal resistance. This study has provided novel insights into the molecular nature of Zetaproteobacteria. | 2011 | 21966516 |
| 6077 | 12 | 0.9442 | Brytella acorum gen. nov., sp. nov., a novel acetic acid bacterium from sour beverages. Polyphasic taxonomic and comparative genomic analyses revealed that a series of lambic beer isolates including strain LMG 32668(T) and the kombucha isolate LMG 32879 represent a novel species among the acetic acid bacteria, with Acidomonas methanolica as the nearest phylogenomic neighbor with a valid name. Overall genomic relatedness indices and phylogenomic and physiological analyses revealed that this novel species was best classified in a novel genus for which we propose the name Brytella acorum gen. nov., sp. nov., with LMG 32668(T) (=CECT 30723(T)) as the type strain. The B. acorum genomes encode a complete but modified tricarboxylic acid cycle, and complete pentose phosphate, pyruvate oxidation and gluconeogenesis pathways. The absence of 6-phosphofructokinase which rendered the glycolysis pathway non-functional, and an energy metabolism that included both aerobic respiration and oxidative fermentation are typical metabolic characteristics of acetic acid bacteria. Neither genome encodes nitrogen fixation or nitrate reduction genes, but both genomes encode genes for the biosynthesis of a broad range of amino acids. Antibiotic resistance genes or virulence factors are absent. | 2023 | 37429096 |
| 6377 | 13 | 0.9441 | Comparative metagenomics and characterization of antimicrobial resistance genes in pasteurized and homemade fermented Arabian laban. The aim of this study was to investigate bacterial diversity and function in a fermented milk drink called laban, which is traditionally served in the Middle East, Africa, and Indian subcontinent. Pasteurized laban (LBP) and unpasteurized, homemade, raw laban (LBR) underwent 16S rRNA gene amplicon and shotgun sequencing to analyze their bacterial community, presence of antimicrobial resistance genes (ARGs), and metabolic pathways. This study highlighted relatively greater diversity in LBR bacterial populations compared to LBP, despite containing similar major taxa that consisted primarily of Firmicutes followed by Proteobacteria, Bacteroidetes, and Actinobacteria. The dominant species, Streptococcus thermophilus, was relatively more abundant in LBP (80.7%) compared to LBR (47.9%). LBR had increased diversity and higher relative abundance of several known probiotic bacteria, such as Streptococcus salivarius and Lactococcus lactis, whereas Lactobacillus acidophilus was detected at a higher abundance in LBP. Pathogens like Acinetobacter baumannii, Streptococcus pneumoniae, Streptococcus pyogenes, and Escherichia coli had lower abundance in LBP compared to LBR. Thirty-three ARGs were detected in LBR compared to nine in LBP and are responsible for resistance to 11 classes of antibiotics. A significant proportion of the metagenomes from both types of laban were assigned to housekeeping functions, such as amino acid metabolism, translation, membrane transport, and carbohydrate metabolism. LBR demonstrated increased diversity in probiotics and metabolic functions compared to LBP. However, the relatively high diversity of pathogenic and opportunistic bacteria and ARGs in LBR raises safety concerns and highlights the need for a more hygienic environment for the processing of homemade fermented dairy foods. | 2020 | 33233218 |
| 6380 | 14 | 0.9439 | Seasonal dynamics of anammox bacteria in estuarial sediment of the Mai Po Nature Reserve revealed by analyzing the 16S rRNA and hydrazine oxidoreductase (hzo) genes. The community and population dynamics of anammox bacteria in summer (wet) and winter (dry) seasons in estuarial mudflat sediment of the Mai Po Nature Reserve were investigated by 16S rRNA and hydrazine oxidoreductase (hzo) genes. 16S rRNA phylogenetic diversity showed that sequences related to 'Kuenenia' anammox bacteria were presented in summer but not winter while 'Scalindua' anammox bacteria occurred in both seasons and could be divided into six different clusters. Compared to the 16S rRNA genes, the hzo genes revealed a relatively uniform seasonal diversity, with sequences relating to 'Scalindua', 'Anammoxoglobus', and planctomycete KSU-1 found in both seasons. The seasonal specific bacterial groups and diversity based on the 16S rRNA and hzo genes indicated strong seasonal community structures in estuary sediment of this site. Furthermore, the higher abundance of hzo genes in summer than winter indicates clear seasonal population dynamics. Combining the physicochemical characteristics of estuary sediment in the two seasons and their correlations with anammox bacteria community structure, we proposed the strong seasonal dynamics in estuary sediment of Mai Po to be due to the anthropogenic and terrestrial inputs, especially in summer, which brings in freshwater anammox bacteria, such as 'Kuenenia', interacting with the coastal marine anammox bacteria 'Scalindua'. | 2011 | 21487198 |
| 7740 | 15 | 0.9436 | Diversity, functions, and antibiotic resistance genes of bacteria and fungi are examined in the bamboo plant phyllosphere that serve as food for the giant pandas. The phyllosphere of bamboo is rich in microorganisms that can disrupt the intestinal microbiota of the giant pandas that consume them, potentially leading to their death. In the present study, the abundance, diversity, biological functions (e.g., KEGG and CAZyme), and antibiotic resistance genes (ARGs) of bacteria and fungi in two bamboo species phyllosphere (Chimonobambusa szechuanensis, CS; Bashania fangiana, BF) in Daxiangling Nature Reserve (an important part of the Giant Panda National Park) were investigated respectively by amplicon sequencing of the whole 16S rRNA and ITS1-ITS2 genes on PacBio Sequel and whole-metagenome shotgun sequencing on Illumina NovaSeq 6000 platform. The results suggested that there were respectively 18 bacterial and 34 fungi biomarkers between the phyllosphere of the two species of bamboo. Beta diversity of bacteria and fungi communities exited between the two bamboos according to the (un)weighted UniFrac distance matrix. Moreover, the functional analysis showed that the largest relative abundance was found in the genes related to metabolism and global and overview maps. Glycoside hydrolases (GHs) and glycosyl transferases (GTs) have a higher abundance in two bamboo phyllospheres. Co-occurrence network modeling suggested that bacteria and fungi communities in CS phyllosphere employed a much more complex metabolic network than that in BF, and the abundance of multidrug, tetracycline, and glycopeptide resistance genes was higher and closely correlated with other ARGs. This study references the basis for protecting bamboo resources foraged by wild giant pandas and predicts the risk of antibiotic resistance in bamboo phyllosphere bacterial and fungal microbiota in the Giant Panda National Park, China. | 2025 | 39168909 |
| 7738 | 16 | 0.9435 | The microbiome and its association with antibiotic resistance genes in the hadal biosphere at the Yap Trench. The hadal biosphere, the deepest part of the ocean, is known as the least-explored aquatic environment and hosts taxonomically diverse microbial communities. However, the microbiome and its association with antibiotic resistance genes (ARGs) in the hadal ecosystem remain unknown. Here, we profiled the microbiome diversity and ARG occurrence in seawater and sediments of the Yap Trench (YT) using metagenomic sequencing. Within the prokaryote (bacteria and archaea) lineages, the main components of bacteria were Gammaproteobacteria (77.76 %), Firmicutes (8.36 %), and Alphaproteobacteria (2.25 %), whereas the major components of archaea were Nitrososphaeria (6.51 %), Nanoarchaeia (0.42 %), and Thermoplasmata (0.25 %), respectively. Taxonomy of viral contigs showed that the classified viral communities in YT seawater and sediments were dominated by Podoviridae (45.96 %), Siphoviridae (29.41 %), and Myoviridae (24.63 %). A large majority of viral contigs remained uncharacterized and exhibited endemicity. A total of 48 ARGs encoding resistance to 12 antibiotic classes were identified and their hosts were bacteria and viruses. Novel ARG subtypes mexF(YTV-1), mexF(YTV-2), mexF(YTV-3), vanR(YTV-1), vanS(YTV-1) (carried by unclassified viruses), and bacA(YTB-1) (carried by phylum Firmicutes) were detected in seawater samples. Overall, our findings imply that the hadal environment of the YT is a repository of viral and ARG diversity. | 2022 | 35870206 |
| 504 | 17 | 0.9434 | Activation of Dithiolopyrrolone Antibiotics by Cellular Reductants. Dithiolopyrrolone (DTP) natural products are broad-spectrum antimicrobial and anticancer prodrugs. The DTP structure contains a unique bicyclic ene-disulfide that once reduced in the cell, chelates metal ions and disrupts metal homeostasis. In this work we investigate the intracellular activation of the DTPs and their resistance mechanisms in bacteria. We show that the prototypical DTP holomycin is reduced by several bacterial reductases and small-molecule thiols in vitro. To understand how bacteria develop resistance to the DTPs, we generate Staphylococcus aureus mutants that exhibit increased resistance to the hybrid DTP antibiotic thiomarinol. From these mutants we identify loss-of-function mutations in redox genes that are involved in DTP activation. This work advances the understanding of how DTPs are activated and informs development of bioreductive disulfide prodrugs. | 2025 | 39665630 |
| 8643 | 18 | 0.9434 | Diversity of Phototrophic Genes Suggests Multiple Bacteria May Be Able to Exploit Sunlight in Exposed Soils from the Sør Rondane Mountains, East Antarctica. Microbial life in exposed terrestrial surface layers in continental Antarctica is faced with extreme environmental conditions, including scarcity of organic matter. Bacteria in these exposed settings can therefore be expected to use alternative energy sources such as solar energy, abundant during the austral summer. Using Illumina MiSeq sequencing, we assessed the diversity and abundance of four conserved protein encoding genes involved in different key steps of light-harvesting pathways dependent on (bacterio)chlorophyll (pufM, bchL/chlL, and bchX genes) and rhodopsins (actinorhodopsin genes), in exposed soils from the Sør Rondane Mountains, East Antarctica. Analysis of pufM genes, encoding a subunit of the type 2 photochemical reaction center found in anoxygenic phototrophic bacteria, revealed a broad diversity, dominated by Roseobacter- and Loktanella-like sequences. The bchL and chlL, involved in (bacterio)chlorophyll synthesis, on the other hand, showed a high relative abundance of either cyanobacterial or green algal trebouxiophyceael chlL reads, depending on the sample, while most bchX sequences belonged mostly to previously unidentified phylotypes. Rhodopsin-containing phototrophic bacteria could not be detected in the samples. Our results, while suggesting that Cyanobacteria and green algae are the main phototrophic groups, show that light-harvesting bacteria are nevertheless very diverse in microbial communities in Antarctic soils. | 2016 | 28066352 |
| 6016 | 19 | 0.9433 | Investigating human-derived lactic acid bacteria for alcohol resistance. BACKGROUND: Excessive alcohol consumption has been consistently linked to serious adverse health effects, particularly affecting the liver. One natural defense against the detrimental impacts of alcohol is provided by alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH), which detoxify harmful alcohol metabolites. Recent studies have shown that certain probiotic strains, notably Lactobacillus spp., possess alcohol resistance and can produce these critical enzymes. Incorporating these probiotics into alcoholic beverages represents a pioneering approach that can potentially mitigate the negative health effects of alcohol while meeting evolving consumer preferences for functional and health-centric products. RESULTS: Five lactic acid bacteria (LAB) isolates were identified: Lactobacillus paracasei Alc1, Lacticaseibacillus rhamnosus AA, Pediococcus acidilactici Alc3, Lactobacillus paracasei Alc4, and Pediococcus acidilactici Alc5. Assessment of their alcohol tolerance, safety, adhesion ability, and immunomodulatory effects identified L. rhamnosus AA as the most promising alcohol-tolerant probiotic strain. This strain also showed high production of ADH and ALDH. Whole genome sequencing analysis revealed that the L. rhamnosus AA genome contained both the adh (encoding for ADH) and the adhE (encoding for ALDH) genes. CONCLUSIONS: L. rhamnosus AA, a novel probiotic candidate, showed notable alcohol resistance and the capability to produce enzymes essential for alcohol metabolism. This strain is a highly promising candidate for integration into commercial alcoholic beverages upon completion of comprehensive safety and functionality evaluations. | 2024 | 38659044 |