SKIN - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
238300.9965Risk Factors for Antimicrobial Resistance of Staphylococcus Species Isolated from Dogs with Superficial Pyoderma and Their Owners. The microbial communities on the skin of dogs include several species of bacteria, which contribute to skin health and disease. Staphylococcus pseudintermedius, cultured at high frequency from the skin of dogs, is an opportunistic pathogen causing superficial pyoderma. Effective treatment against S. pseudintermedius infections is an important issue in veterinary medicine. However, multiple antibiotic-resistant mechanisms gradually developed by bacteria make treatment more challenging nowadays. Drug-resistant genes may have the chance to be transferred from infected dogs to other staphylococci in humans. The objective of this survey is to investigate the bacterial species that cause canine superficial pyoderma and characterize the antibiotic-resistant profiles and drug-resistant genes of isolated S. pseudintermedius. In addition, the possible risk factors causing S. pseudintermedius colonizing owners were also evaluated by a questionnaire survey. Sixty-five bacteria were isolated from dogs with superficial pyoderma, which included 47 S. pseudintermedius (72.3%), 12 other staphylococci (18.5%), 4 other Gram-positive bacteria (6.2%) and 2 Gram-negative bacteria (3.1%). Strains containing mecA and blaZ genes showed multiple-drug resistance characteristics. Dogs that received antimicrobial treatment within a recent month were at significantly higher risk of MRSP infections. Only five S. pseudintermedius strains (8.33%) were isolated from 60 samples of owners. Risk factor analysis indicated there was no significant association between S. pseudintermedius isolated from dogs and owners, but the "Keeping three or more dogs" and "Dogs can lick the owner's face" have high odds ratios of 3.503 and 5.712, respectively. MRSP isolates belonged to three different dru types, including dt11y (29.41%), dt11a (47.06%) and dt10cp (23.53%). In conclusion, the major pathogen of canine superficial pyoderma is found to be S. pseudintermedius in Taiwan, and isolates which are mecA- or blaZ-positive are generally more resistant to commonly used antibiotics. Although S. pseudintermedius isolated from the owners might be transferred from their dogs, definite risk factors should be examined in the future study.202235878323
583410.9962Real-Time PCR to Identify Staphylococci and Assay for Virulence from Blood. The genus Staphylococcus includes pathogenic and non-pathogenic facultative anaerobes. Due to the plethora of virulence factors encoded in its genome, the species Staphylococcus aureus is known to be the most pathogenic. S. aureus strains harboring genes encoding virulence and antibiotic resistance are of public health importance. In clinical samples, however, pathogenic S. aureus is often mixed with putatively less pathogenic coagulase-negative staphylococci (CoNS), both of which can harbor mecA, the genetic driver for staphylococcal methicillin-resistance. In this chapter, the detailed practical procedure for operating a real-time pentaplex PCR assay in blood cultures is described. The pentaplex real-time PCR assay simultaneously detects markers for the presence of bacteria (16S rRNA), coagulase-negative staphylococcus (cns), S. aureus (spa), Panton-Valentine leukocidin (pvl), and methicillin resistance (mecA).201728600770
580720.9962ST8-t008-SCC (mec) IV methicillin-resistant Staphylococcus aureus in retail fresh cheese. This study reports the finding of 3 ST8-t008-SCC (mec) IVa (2B) methicillin-resistant Staphylococcus aureus (MRSA) strains in fresh cheese purchased within a single market in Costa Rica. In line with the finding of the resistance genes mecA, blaZ, mph(C), and msr(A) in their genomes, these bacteria showed phenotypic resistance to multiple β-lactams and erythromycin. In addition, they carry genes for acquired resistance to aminoglycosides (aph(3')-III) and fosfomycin (fosD), and genes for a myriad of virulence factors, including adhesins, hemolysins, and exotoxins. Our strains share multiple genomic features with MRSA from the USA300 lineage, which is a widely distributed and highly virulent strain implicated in community infections. As a result, consuming these or similar products could lead to multidrug infections in susceptible individuals. These results highlight safety deficiencies in cheese production practices and emphasize the risk of foodborne transmission of hard-to-treat ST8 MRSA strains.202439650008
238230.9962Molecular characteristics of antimicrobial resistance and virulence determinants of Staphylococcus aureus isolates derived from clinical infection and food. BACKGROUND: Staphylococcus aureus (S. aureus) is an important human etiologic agent. An investigation of the characteristics of common genotypes of S. aureus relating to pathogenicity and antibiotic resistance may provide a foundation to prevent infection. METHODS: This study collected 275 S. aureus isolates from Zhengzhou city in China, including 148 isolates from patient samples and 127 isolates from ready-to-eat food samples. Antimicrobial susceptibility testing was performed using the broth dilution method. Molecular characteristics of antimicrobial resistance, virulence, and genotypes were identified by polymerase chain reaction (PCR). RESULTS: In total, 34.18% (94/275) of S. aureus isolates were MRSA. Compared with food isolates, clinical isolates had significantly higher antibiotic resistance rates, carrying resistance genes such as acc(6')/aph(2'), aph(3')-III, ermA, and ermB and virulence genes such as tetM, sea, seb, pvl, and etb. MRSA-t030-agrI-SCCmecIII and MSSA-t002-agrII were the most common strain types among clinical strains, and MRSA-t002-agrII-SCCmecIII and MSSA-t002-agrII were the most common strain types among food strains. Additionally, some strains in the agr group were also spa type-specific, suggesting that there may be phenotypic consistency. CONCLUSION: Clinical isolates contained higher numbers of resistance genes and demonstrated higher antibiotic resistance, while 2 source strains exhibited high toxicity. These results indicate that bacteria with different origins may have undergone different evolutionary processes. As resistance and virulence factors in food bacteria can be transmitted to humans, food handlers should strictly follow hygienic measures during food production to ensure the safety of human consumers.201829676483
306540.9962Species diversity, virulence, and antimicrobial resistance of the nasal staphylococcal and mammaliicoccal biota of reindeer. BACKGROUND: Staphylococcus (S.) spp. and Mammaliicoccus (M.) spp., in addition to their established role as components of the human and animal microbiota, can also cause opportunistic infections. This study aimed to characterize bacteria recovered from nasal cavities of healthy adult reindeer from two farms located in Poland (15 reindeer) and Germany (15 reindeer). The research include bacteria isolation, species identification, detection of selected superantigen (SAg) genes, assessment of biofilm-forming capability in vitro, and evaluation of antimicrobial resistance. RESULTS: Seventy-four staphylococci and mammaliicocci from 14 different species were isolated from 30 nasal swabs, with one to four strains obtained from each reindeer. The most frequently identified species was S. equorum, followed by S. succinus, M. sciuri, S. xylosus, M. lentus, S. chromogenes, S. devriesei, M. vitulinus, S. auricularis, S. agnetis, S. edaphicus, S. petrasii, S. simulans, and S. warneri. A greater species diversity was observed among the reindeer from Poland compared to those from Germany. All isolated bacteria were coagulase negative and clumping factor negative and did not carry any of the 21 analyzed SAg genes. M. sciuri demonstrated the highest antimicrobial resistance (100%), followed by S. succinus (91%) and S. equorum (78%). Resistance to rifampicin was the most common (30% strains). Sixteen strains (22%) exhibited biofilm production at least 10% greater than the strong biofilm-forming S. aureus ATCC 6538. CONCLUSIONS: This study reveals a significant knowledge gap regarding the nasal microbiota of reindeer. It contributes to our understanding of staphylococcal and mammaliicoccal biota of reindeer and underscores the necessity for monitoring of microbial populations to assess their health implications for both animals and humans, particularly concerning the zoonotic transmission of bacteria.202540452044
238150.9962Potential of Natural Phenolic Compounds as Antimicrobial Agents against Multidrug-Resistant Staphylococcus aureus in Chicken Meat. Staphylococcus aureus is one of the most widespread foodborne bacteria that cause high morbidity, mortality, and economic loss, primarily if foodborne diseases are caused by pathogenic and multidrug-resistant (MDR) strains. This study aimed to determine the prevalence of S. aureus in chicken meat in Egyptian markets. Thus, this study might be the first to assess the efficiency of different natural phenolic compounds as novel antibacterial agents against MDR S. aureus pathogens isolated from raw chicken meat in the Egyptian market. The incidence and quantification of pathogenic S. aureus were detected in retail raw chicken meat parts (breast, thigh, fillet, and giblets). In total, 73 out of 80 (91.3%) of the chicken meat parts were contaminated, with S. aureus as the only species isolated. Of the 192 identified S. aureus isolates, 143 were coagulase-positive S. aureus and 117 isolates were MDR (81.8%, 117/143). Twenty-two antibiotic resistance profile patterns were detected. One strain was randomly selected from each pattern to further analyze virulence and resistance genes. Extracted DNA was assessed for the presence of antibiotic-resistance genes, i.e., vancomycin-resistance (vanA), aminoglycosides-resistance (aacA-aphD), apramycin-resistance (apmA), and methicillin-resistance (mecA), penicillin-resistance (blaZ), and virulence genes staphylococcal enterotoxins (sea and seb), Panton-Valentine leucocidin (pvl), clumping factor A (clfA), and toxic shock syndrome toxin (tst). Clustering analyses revealed that six S. aureus strains harbored the most virulence and resistance genes. The activity of hydroquinone was significantly higher than thymol, carvacrol, eugenol, and protocatechuic acid. Therefore, phenolic compounds, particularly hydroquinone, could potentially alternate with conventional antibiotics against the pathogenic MDR S. aureus inhabiting raw chicken meat. Hence, this study indicates that urgent interventions are necessary to improve hygiene for safer meat in Egyptian markets. Moreover, hydroquinone could be a natural phenolic compound for inhibiting foodborne pathogens.202337764518
588860.9961Microbial Composition of Extracted Dental Alveoli in Dogs with Advanced Periodontitis. Periodontitis is a serious gum infection that damages the soft tissue and destroys the bone supporting the teeth. The aim of the study was to investigate the microbiota using traditional microbiology plating and metagenomic sequencing of extracted tooth alveoli in dogs with severe periodontitis. Isolation of culturable microorganisms was performed as part of bacteriological testing to provide bacteriological diagnosis to veterinary surgeons. Metagenomic sequencing was performed using shotgun sequencing on the Illumina HiSeq system platform. The most prevalent species at sites of periodontal infection detected by metagenomic sequencing were Porphyromonas gulae, Prevotella spp., Tannerella forsythia, Porphyromonas crevioricanis, Porphyromonas cangingivalis, and Bacteroides heparinolyticus. Pasteurella, Streptococcus, and Neisseria were the most frequently isolated culturable bacteria from infected sites detected by traditional microbiologic methods. Metagenomic data revealed that these three genera accounted for only 1.6% of all microbiota at the sites of infection. Antimicrobial resistance patterns of the isolated bacteria included resistance to ampicillin, doxycycline, sulfamethoxazole-trimethoprim, ciprofloxacin, colistin, cefotaxime, and chloramphenicol. Antimicrobial-resistant genes detected using shotgun sequencing also showed resistance to aminoglycosides and macrolides. Dogs with periodontal infections carry bacteria that can cause bite infections in humans as well as multi-resistant isolates. Therefore, treatment and prophylaxis or periodontal disease of dogs is important from a One Health perspective.202439065223
243370.9961Confirmed low prevalence of Listeria mastitis in she-camel milk delivers a safe, alternative milk for human consumption. She-camel milk is an alternative solution for people allergic to milk; unfortunately, potential harmful bacteria have not been tested in she-camel milk. Listeria monocytogenes is one harmful bacterium that causes adverse health effects if chronically or acutely ingested by humans. The purpose of this study was to estimate the prevalence, characterize the phenotypic, genetic characterization, virulence factors, and antibiopotential harmful bacteria resistance profile of Listeria isolated from the milk of she-camel. Udder milk samples were collected from 100 she-camels and screened for mastitis using the California mastitis test (46 healthy female camels, 24 subclinical mastitic animals and 30 clinical mastitic animals). Samples were then examined for the presence of pathogenic Listeria spp; if located, the isolation of Listeria was completed using the International Organization for Standards technique to test for pathogenicity. The isolates were subjected to PCR assay for virulence-associated genes. Listeria spp. were isolated from 4% of samples and only 1.0% was confirmed as L. monocytogenes. The results of this study provide evidence for the low prevalence of intramammary Listeria infection; additionally, this study concludes she-camel milk in healthy camels milked and harvested in proper hygienic conditions may be used as alternative milk for human consumption.201424161878
237880.9961Molecular Detection and Characterization of the mecA and nuc Genes From Staphylococcus Species (S. aureus, S. pseudintermedius, and S. schleiferi) Isolated From Dogs Suffering Superficial Pyoderma and Their Antimicrobial Resistance Profiles. Canine superficial pyoderma (CSP) is a bacterial infection secondary to several skin diseases of the dog. Staphylococcus pseudintermedius, which is a commensal bacterium of the dog's skin, is the leading agent found in dogs affected by CSP, which can progress to deep pyoderma. It is also of clinical significance because S. pseudintermedius strains carry antimicrobial resistance genes, mainly the mecA gene. In this descriptive longitudinal study, molecular characterization of bacterial isolates from dogs affected by CSP was performed in addition to phenotyping, antimicrobial profiling, and assessment of resistance carriage status. Fifty dogs (24 females and 26 males) attending the CES University Veterinary Teaching Hospital were included in the study. CSP was confirmed according to clinical signs and cytological examination. Swabs were taken from active skin lesions for bacterial culture, and phenotyping and antimicrobial resistance profiles were assessed using API-Staph phenotyping and the Kirby-Bauer method, respectively. We also performed molecular detection and characterization of the mecA and nuc encoding gene of coagulase-positive Staphylococci. The mecA gene frequency was established by qPCR amplification of a 131bp gene fragment. Data were evaluated by descriptive statistics. Erythema, peeling, pruritus, and alopecia were the predominant symptoms (72, 56, and 46%, respectively). We isolated bacteria compatible with Staphylococcus species from all samples tested. API phenotyping showed 83.1 to 97.8% compatibility with S. pseudintermedius. PCR-genotyping resulted in 15, 3, and 1 isolates positive for S. pseudintermedius, S. aureus, and S. schleiferi, respectively. Isolated strains showed high susceptibility to Imipenem, Ampicillin/Sulbactam, and Rifampicin (100, 94, and 92%, respectively). The highest resistance was against Vancomycin and Trimethoprim/Sulfamethoxazole (98 and 74%, respectively). S. pseudintermedius, S. aureus, and S. schleiferi isolates were cloned and shared 96% sequence homology. Finally, we found 62% carriage status of the mecA gene in isolates of CSP patients, although only 36% of the isolates were methicillin-resistant. Identification of three Staphylococcus species causing CSP, high-level resistance against conventional antimicrobials, and carriage of the mecA gene highlight the importance of performing molecular characterization of bacteria causing dermatological conditions in dogs.202032793641
237990.9961Virulence and Antimicrobial Resistance in Canine Staphylococcus spp. Isolates. Dogs are reservoirs of different Staphylococcus species, but at the same time, they could develop several clinical forms caused by these bacteria. The aim of the present investigation was to characterize 50 clinical Staphylococcus isolates cultured from sick dogs. Bacterial species determination, hemolysins, protease, lipase, gelatinase, slime, and biofilm production, presence of virulence genes (lukS/F-PV, eta, etb, tsst, icaA, and icaD), methicillin resistance, and antimicrobial resistance were investigated. Most isolates (52%) were Staphylococcus pseudointermedius, but 20% and 8% belonged to Staphylococcusxylosus and Staphylococcus chromogenes, respectively. Gelatinase, biofilm, and slime production were very common characters among the investigated strains with 80%, 86%, and 76% positive isolates, respectively. Virulence genes were detected in a very small number of the tested strains. A percentage of 14% of isolates were mecA-positive and phenotypically-resistant to methicillin. Multi-drug resistance was detected in 76% of tested staphylococci; in particular, high levels of resistance were detected for ampicillin, amoxicillin, clindamycin, and erythromycin. In conclusion, although staphylococci are considered to be opportunistic bacteria, the obtained data showed that dogs may be infected by Staphylococcus strains with important virulence characteristics and a high antimicrobial resistance.202133801518
2660100.9961Antimicrobial resistance and virulence characteristics in 3 collections of staphylococci from bovine milk samples. Mastitis is a prevalent disease in dairy cattle, and staphylococci are among the most common causative pathogens. Staphylococci can express resistance to a range of antimicrobials, of which methicillin resistance is of particular public health concern. Additionally, Staphylococcus aureus carries a variety of virulence factors, although less is understood about the virulence of non-aureus staphylococci (NAS). The aim of our study was to identify and characterize 3 collections of staphylococcal isolates from bovine milk samples regarding antimicrobial resistance, with emphasis on methicillin resistance, and their carriage of virulence genes typically displayed by Staph. aureus. A total of 272 staphylococcal isolates collected in Norway and Belgium in 2016 were included, distributed as follows: group 1, Norway, 100 isolates; group 2, Flanders, Belgium, 64 isolates; group 3, Wallonia, Belgium, 108 isolates. Species identification was performed by use of MALDI-TOF mass spectrometry. Phenotypic resistance was determined via disk diffusion, and PCR was used for detection of methicillin resistance genes, mecA and mecC, and virulence genes. Antimicrobial resistance was common in Staphylococcus epidermidis and Staphylococcus haemolyticus from all different groups, with resistance to trimethoprim-sulfonamide frequently occurring in Staph. epidermidis and Staph. haemolyticus as well as in Staph. aureus. Resistance to penicillin was most frequently observed in group 1. Ten Belgian isolates (1 from group 2, 9 from group 3) carried the methicillin resistance determinant mecA: 5 Staph. aureus from 2 different farms and 5 NAS from 3 different farms. Almost all Staph. aureus isolates were positive for at least 3 of the screened virulence genes, whereas, in total, only 8 NAS isolates harbored any of the same genes. Our study contributes to the continuous need for knowledge regarding staphylococci from food-producing animals as a basis for better understanding of occurrence of resistance and virulence traits in these bacteria.202133934873
2438110.9961Detection of Staphylococcus aureus and their toxin genes inhabit on the scorpions surface. The transmission of infectious agents by arthropods is of particular importance. Every year, many people are bitten by scorpions around the world. Staphylococcus aureus is of the most important infectious bacteria. This study aimed to investigate the distribution of S. aureus in scorpion specimens and the presence of some toxin genes in these species. The fauna of scorpions in the Kuhdasht region was studied for one year. Then, S. aureus was identified on the body surface of scorpions by biochemical and molecular methods, and the presence of Sea, Seb, Sec, Sed, See, Pvl, Tsst1, Eta, Etb, and mecA genes was examined by the PCR method. The pattern of antibiotic resistance was determined by the use disk diffusion method. MRSA isolates were identified using genotypic and phenotypic methods. Of 75 studied scorpion specimens, Hottentotta saulcyi was the most abundant species. Sixteen (21.3%) isolates of S. aureus were identified from all samples. The highest and lowest antibiotic resistance levels belonged to penicillin and clindamycin, respectively. MRSA was observed in 50% of the isolates. Thirteen out of 16 isolates possessed at least one of the toxin genes. Due to the presence of S. aureus on the body surface of scorpions, it should always be expected that an infection may occur after the bite. Moreover, the presence of toxin genes in the studied isolates showed that infection with these bacteria would seriously threaten one's health.202236018402
2351120.9961Association between biofilm production, adhesion genes and drugs resistance in different SCCmec types of methicillin resistant Staphylococcus aureus strains isolated from several major hospitals of Iran. OBJECTIVES: The ability of bacteria to produce biofilm and adhesion makes them more resistant to antibiotics. The current study aims to evaluate the biofilm formation by Staphylococcus aureus and to determine the prevalence of adhesion genes, also their correlation with drug resistance. MATERIALS AND METHODS: A total of 96 MRSA were collected from hospitals of Iran's western provinces during 2012 to 2013. The presence of ica A, B, C, D, clfA, cna, fnbA, mecA genes were determined by PCR technique. Biofilm formation was studied by microtiter plate assay, the clonal relations of the strains were examined by SCCmec and Spa typing. RESULTS: The results demonstrated that 96 % of isolates were biofilm producers. The distributions of biofilm formation between isolates were 4.2%, 54.2%, 35.4% as high, moderate and weak, respectivelly. The highest biofilm production was observed from blood culture isolates. All virulent genes icaA,B, C, D, clfA, cna, fnbA were observed in moderate and weak biofilm formation isolates. Among high biofilm formation isolates, icaB and cna genes were not seen. Statistical analysis showed that there was a significant correlation between ica, fnbA and the biofilm production, but there was not a significant correlation between the type of samples and drug resistance, spa type and SCCmec type with biofilm production (P>0.05). Frequency of All virulent genes in type III SCCmec was higher than other types. CONCLUSION: The majority of MRSA isolates were biofilm producers and blood isolates ranked as the great biofilm producer. In these isolates ica D and fnbA genes are correlated with biofilm production.201829796224
2348130.9960Characterization of Multidrug-Resistant Staphylococcus aureus Isolates and Comparison of Methods of Susceptibility to Vancomycin. S. aureus are among the main bacteria causing problems related to multidrug resistance in nosocomial infections. Therefore, it is necessary to carry out a reliable and rapid diagnosis for the identification of the bacteria and characterization of its susceptibility profile, especially vancomycin, which is an alternative treatment against multidrug-resistant (MDR) S. aureus. Thus, the goal of this study was to characterize isolates of S. aureus regarding the resistance and virulence and to check the susceptibility to vancomycin, through different methods, for comparative purposes. Seventeen antimicrobials were tested to assess the susceptibility profile. It was evaluated the presence of identification (nuc), resistance (mecA and blaZ), biofilm (icaA and icaD) and siderophore (sfaD and sbnD) genes. The susceptibility to vancomycin was evaluated by Minimum Inhibitory Concentration (MIC) by broth microdilution (BMD), E-test, commercial panel (Kit), and Phoenix equipment. Most S. aureus (93,33%) was classified as MDR. These isolates were 100% positive for nuc, mecA, icaA, icaD, and sfaD genes; 96.67% for sbnD and 33.33% for blaZ. In relation to BMD, all methods correctly classified the susceptibility of the isolates; however, regarding the exact MIC value for vancomycin, Phoenix showed agreement of 63.33%, E-test (33.33%) and Kit (26.66%). In conclusion, most of S. aureus was considered MDR. Also, they presented resistance, biofilm production, and siderophores genes, showing the pathogenic potential of these bacteria. Besides, the Phoenix test was considered the most effective, as it presents advantages, such as identification of the microorganism and a greater number of antimicrobials tested at a time.202236308600
2415140.9960Profiles of Staphyloccocus aureus isolated from goat persistent mastitis before and after treatment with enrofloxacin. BACKGROUND: Staphylococcus aureus is one of the main causative agents of mastitis in small ruminants. Antimicrobial use is the major treatment, but there are many flaws linked to resistance, tolerance or persistence. This study aimed to verify changes in resistance, virulence and clonal profiles of S. aureus isolated from persistent mastitis goat milk before and after enrofloxacin treatment. RESULTS: MIC increased to at least one antimicrobial in S. aureus isolates after enrofloxacin treatment compared to before. The most detected resistance genes before and after treatment were tetK, tetM, and blaZ, with more resistance genes detected after enrofloxacin treatment (p < 0.05). Occasional variations in efflux system gene detection were observed before and after treatment. Nine virulence genes (hla, fnbA, fnbB, eta, etb, sea, sec, seh, and sej) were detected at both times, and between these, the hla and eta genes were detected more in isolates after treatment. All isolates of S. aureus belonged to the same sequence type (ST) 133, except for two S. aureus isolates prior to enrofloxacin treatment which were classified as ST5 and the other as a new one, ST4966. Isolates of S. aureus 4, 8, and 100 from before and after treatment had identical pulse types, while others obtained from other animals before and after treatment were classified into distinct pulse types. CONCLUSION: There were occasional changes in the studied profiles of S. aureus isolated before and after treatment of animals with enrofloxacin, which may have contributed to the permanence of bacteria in the mammary gland, even when using traditional treatment, resulting in persistent mastitis.202032448145
2352150.9960Phenotypic and Molecular Detection of Biofilm Formation in Methicillin-Resistant Staphylococcus Aureus Isolated from Different Clinical Sources in Erbil City. BACKGROUND: Staphylococcus aureus is an important causative pathogen. The production of biofilms is an important factor and makes these bacteria resistant to antimicrobial therapy. OBJECTIVES: the current study aimed to assess the prevalence of resistance to antibacterial agents and to evaluate the phenotypic and genotypic characterization of biofilm formation among S. aureus strains. METHODS: This study included 50 isolates of Methicillin-resistant S. aureus (MRSA) and Methicillin-Susceptible S. aureus (MSSA). S. aureus was identified by molecular and conventional methods, and antimicrobial resistance was tested with a disc diffusion method. The biofilm formation was performed through the Microtiter plate method. Strains were subjected to PCR to determine the presence of nuc, mecA, icaA, icaB, icaC, and icaD genes. RESULTS: Of the 50 S. aureus isolates, 32(64%) and 18(36%) were MRSA and MSSA, respectively. A large number of MRSA and MSSA isolates showed resistance to Penicillin and Azithromycin, and a lower number of MRSA and MSSA isolates showed resistance to Amikacin Gentamicin. None of the isolates was resistant to Vancomycin. The MRSA strains had significantly higher resistance against antibiotics than MSSA strains (P = 0.0154). All isolates (MRSA and MSSA) were able to produce biofilm with levels ranging from strong (31.25 %), (16.6%) to moderate (53.12%), (50%) to weak (15.6%), (33.3%) respectively. The MRSA strains had a significantly higher biofilm formation ability than the MSSA strains (P = 0.0079). The biofilm-encoding genes were detected among isolates with different frequencies. The majority of S. aureus isolates, 42 (84%), were positive for the icaA. The prevalence rates of the icaB, icaC and icaD genes were found to be 37 (74%), 40 (80%) and 41 (82%), respectively. CONCLUSIONS: The prevalence of biofilm encoding genes associated with multidrug resistance in S. aureus strains is high. Therefore, identifying epidemiology, molecular characteristics, and biofilm management of S. aureus infection would be helpful.202336908866
2380160.9960Red foxes (Vulpes vulpes) as a specific and underappreciated reservoir of resistant and virulent coagulase-positive Staphylococcus spp. strains. The aim of the study was to analyze the presence of coagulase-positive Staphylococcus in swabs collected from red foxes and to characterize the drug resistance and virulence of these bacteria. In total, 415 rectal and oral swabs were collected, and coagulase-positive strains of S. pseudintermedius (n = 104) and S. aureus (n = 27) were identified using multiplex-PCR and MALDI TOF MS. Subsequent analyses showed the highest phenotypic resistance of the strains to penicillin (16.8%) and tetracycline (30.5%) confirmed by the presence of the blaZ, tetM, and tetK genes. Slightly lower resistance to erythromycin (6.9%), clindamycin (9.2%), gentamicin, streptogramins, rifampicin, nitrofurantoin, and sulphamethoxazol/trimetophrim was exhibited by single strains. Several virulence genes in a few different combinations were detected in S. aureus; LukE-LukD, and seB were the most frequent genes (37%), LukE-LukD, seB, and seC were detected in 11% of the strains, and PVL, etA, etB, and tst genes were present in two or single strains. The results of our research have confirmed that the red fox is an underestimated reservoir of coagulase-positive Staphylococcus strains, with approximately 50% of carriers of at least one resistance gene. In turn, 88.8% of the S. aureus strains had one or more virulence genes; therefore, this species of wildlife animals should be monitored as part of epidemiological surveillance.202438113638
2350170.9959Antibiotic Resistance Profiles and MLST Typing of Staphylococcus Aureus Clone Associated with Skin and Soft Tissue Infections in a Hospital of China. OBJECTIVE: To analyze the antibiotic resistance profile, virulence genes, and molecular typing of Staphylococcus aureus (S. aureus) strains isolated in skin and soft tissue infections at the First Affiliated Hospital, Gannan Medical University, to better understand the molecular epidemiological characteristics of S. aureus. METHODS: In 2023, 65 S. aureus strains were isolated from patients with skin and soft tissue infections. Strain identification and susceptibility tests were performed using VITEK 2 and gram-positive bacteria identification cards. DNA was extracted using a DNA extraction kit, and all genes were amplified using polymerase chain reaction. Multilocus sequence typing (MLST) was used for molecular typing. RESULTS: In this study, of the 65 S. aureus strains were tested for their susceptibility to 16 antibiotics, the highest resistance rate to penicillin G was 95.4%. None of the staphylococcal isolates showed resistance to ceftaroline, daptomycin, linezolid, tigecycline, teicoplanin, or vancomycin. fnbA was the most prevalent virulence gene (100%) in S. aureus strains isolated in skin and soft tissue infections, followed by arcA (98.5%). Statistical analyses showed that the resistance rates of methicillin-resistant S. aureus isolates to various antibiotics were significantly higher than those of methicillin-susceptible S. aureus isolates. Fifty sequence types (STs), including 44 new ones, were identified by MLST. CONCLUSION: In this study, the high resistance rate to penicillin G and the high carrying rate of virulence gene fnbA and arcA of S.aureus were determine, and 44 new STs were identified, which may be associated with the geographical location of southern Jiangxi and local trends in antibiotic use. The study of the clonal lineage and evolutionary relationships of S. aureus in these regions may help in understanding the molecular epidemiology and provide the experimental basis for pathogenic bacteria prevention and treatment.202438933775
2342180.9959Correlation Analysis of Staphylococcus aureus Drug Resistance and Virulence Factors with Blood Cell Counts and Coagulation Indexes. OBJECTIVE: The influence of different Staphylococcus aureus variants on blood cells and coagulation system was evaluated by investigating the carrying status of drug resistance genes and virulence genes of methicillin-resistantStaphylococcus aureus (MRSA) and methicillin-sensitiveStaphylococcus aureus (MSSA). METHODS: A total of 105 blood culture-derivedStaphylococcus aureus strains were collected. The carrying status of drug resistance genes mecA and three virulence genes tst, pvl, and sasX was analyzed by polymerase chain reaction (PCR). The changes in routine blood routine counts and coagulation indexes of patients infected with different strains were analyzed. RESULTS: The results showed that the positive rate of mecA was consistent with that of MRSA. Virulence genes tst and sasX were detected only in MRSA. Compared with MSSA, patients infected with MRSA or MSSA patients infected with virulence factor, leukocyte count and neutrophil count in peripheral blood were significantly increased, and the platelet count decreased to a higher degree. Part thromboplastin time increased, D-dimer increased, but fibrinogen content decreased more. The changes of erythrocyte and hemoglobin had no significant correlation with whether Staphylococcus aureus carried virulence genes. CONCLUSION: The detection rate of MRSA in patients with positive Staphylococcus aureus in blood culture had exceeded 20%. The detected MRSA bacteria carried three virulence genes, tst, pvl, and sasX, which were more likely than MSSA. MRSA, which carries two virulence genes, is more likely to cause clotting disorders.202336846497
2393190.9959Detection of a mecC-positive Staphylococcus saprophyticus from bovine mastitis in Argentina. INTRODUCTION: Bovine mastitis causes important economic losses in the dairy industry. Coagulase-negative staphylococci (CNS) are a group of bacteria commonly isolated from bovine mastitis and can display resistance to a wide range of antimicrobial agents. OBJECTIVES: The objective of this study was to determine staphylococcal resistance towards β-lactam, macrolide and lincosamide antimicrobials in quarters previously treated with third-generation cephalosporin and after lincosamide intramammary therapy. METHODS: Sick quarters of eighteen cows from Villaguay, Entre Ríos (Argentina) with clinical mastitis were studied. All staphylococcal isolates were tested by disk diffusion for their antimicrobial susceptibilities. Cefoxitin resistance was investigated by PCR and sequencing for both the mecA and mecC genes. RESULTS: Resistances to penicillin, oxacillin and cefoxitin were observed, whereas no resistance to macrolide and lincosamide was detected. A cefoxitin-resistant Staphylococcus saprophyticus was found to be mecA-negative but mecC-positive. CONCLUSIONS: This study reports for the first time the mecC gene from a CNS in bovine mastitis in South America. Because CNS may act as reservoirs of antimicrobial resistance genes, they can be seen as a potential public health threat with respect to antimicrobial resistance and the development of multiple resistance. Also, the emergence of methicillin-resistant phenotypes will limit therapeutic options.201728732791