SITES - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
709100.9988Abundance of Class 1 Integron-Integrase and Sulfonamide Resistance Genes in River Water and Sediment Is Affected by Anthropogenic Pressure and Environmental Factors. In this study, we determined the presence of class 1 integron-integrase gene in culturable heterotrophic bacteria isolated from river water and sediment sampled upstream and downstream of a wastewater treatment plant effluent discharge. Moreover, we quantified intI1 and sulfonamide resistance genes (sul1 and sul2) in the water and sediment using qPCR. There was no correlation between the results from water and sediment samples, which suggests integron-containing bacteria are differentially retained in these two environmental compartments. The discharge of treated wastewater significantly increased the frequency of intI1 among culturable bacteria and the gene copy number in river water, and increased the number of sul1 genes in the sediment. We also observed seasonal differences in the frequency of the class 1 integron-integrase gene among culturable heterotrophs as well as intI1 copy number in water, but not in sediment. The results suggest that the abundance of class 1 integrons in aquatic habitat depends on anthropogenic pressure and environmental factors.201627599709
370610.9988Association of metal tolerance with multiple antibiotic resistance of bacteria isolated from drinking water. Bacterial isolates from the drinking water system of an Oregon coastal community were examined to assess the association of metal tolerance with multiple antibiotic resistance. Positive correlations between tolerance to high levels of Cu2+, Pb2+, and Zn2+ and multiple antibiotic resistance were noted among bacteria from distribution waters but not among bacteria from raw waters. Tolerances to higher levels of Al3+ and Sn2+ were demonstrated more often by raw water isolates which were not typically multiple antibiotic resistant. A similar incidence of tolerance to Cd2+ was demonstrated by isolates of both water types and was not associated with multiple antibiotic resistance. These results suggest that simultaneous selection phenomena occurred in distribution water for bacteria which exhibited unique patterns of tolerance to Cu2+, Pb2+, and Zn2+ and antibiotic resistance.19846742841
333020.9988Antibiotic-manufacturing sites are hot-spots for the release and spread of antibiotic resistance genes and mobile genetic elements in receiving aquatic environments. High antibiotic releases from manufacturing facilities have been identified as a risk factor for antibiotic resistance development in bacterial pathogens. However, the role of antibiotic pollution in selection and transferability of antibiotic resistance genes (ARGs) is still limited. In this study, we analyzed effluents from azithromycin-synthesis and veterinary-drug formulation facilities as well as sediments from receiving river and creek taken at the effluent discharge sites, upstream and downstream of discharge. Culturing showed that the effluent discharge significantly increased the proportion of antibiotic resistant bacteria in exposed sediments compared to the upstream ones. Quantitative real-time PCR revealed that effluents from both industries contained high and similar relative abundances of resistance genes [sul1, sul2, qacE/qacEΔ1, tet(A)], class 1 integrons (intI1) and IncP-1 plasmids (korB). Consequently, these genes significantly increased in relative abundances in receiving sediments, with more pronounced effects being observed for river than for creek sediments due to lower background levels of the investigated genes in the river. In addition, effluent discharge considerably increased transfer frequencies of captured ARGs from exposed sediments into Escherichia coli CV601 recipient as shown by biparental mating experiments. Most plasmids exogenously captured from effluent and polluted sediments belonged to the broad host range IncP-1ε plasmid group, conferred multiple antibiotic resistance and harbored class 1 integrons. Discharge of pharmaceutical waste from antibiotic manufacturing sites thus poses a risk for development and dissemination of multi-resistant bacteria, including pathogens.201931260930
46630.9988High diversity of bacterial mercuric reductase genes from surface and sub-surface floodplain soil (Oak Ridge, USA). DNA was extracted from different depth soils (0-5, 45-55 and 90-100 cm below surface) sampled at Lower East Fork Poplar Creek floodplain (LEFPCF), Oak Ridge (TN, USA). The presence of merA genes, encoding the mercuric reductase, the key enzyme in detoxification of mercury in bacteria, was examined by PCR targeting Actinobacteria, Firmicutes or beta/gamma-Proteobacteria. beta/gamma-Proteobacteria merA genes were successfully amplified from all soils, whereas Actinobacteria were amplified only from surface soil. merA clone libraries were constructed and sequenced. beta/gamma-Proteobacteria sequences revealed high diversity in all soils, but limited vertical similarity. Less than 20% of the operational taxonomic units (OTU) (DNA sequences > or = 95% identical) were shared between the different soils. Only one of the 62 OTU was > or = 95% identical to a GenBank sequence, highlighting that cultivated bacteria are not representative of what is found in nature. Fewer merA sequences were obtained from the Actinobacteria, but these were also diverse, and all were different from GenBank sequences. A single clone was most closely related to merA of alpha-Proteobacteria. An alignment of putative merA genes of genome sequenced mainly marine alpha-Proteobacteria was used for design of merA primers. PCR amplification of soil alpha-Proteobacteria isolates and sequencing revealed that they were very different from the genome-sequenced bacteria (only 62%-66% identical at the amino-acid level), although internally similar. In light of the high functional diversity of mercury resistance genes and the limited vertical distribution of shared OTU, we discuss the role of horizontal gene transfer as a mechanism of bacterial adaptation to mercury.200718043664
367940.9987Aquaculture changes the profile of antibiotic resistance and mobile genetic element associated genes in Baltic Sea sediments. Antibiotics are commonly used in aquaculture and they can change the environmental resistome by increasing antibiotic resistance genes (ARGs). Sediment samples were collected from two fish farms located in the Northern Baltic Sea, Finland, and from a site outside the farms (control). The sediment resistome was assessed by using a highly parallel qPCR array containing 295 primer sets to detect ARGs, mobile genetic elements and the 16S rRNA gene. The fish farm resistomes were enriched in transposon and integron associated genes and in ARGs encoding resistance to antibiotics which had been used to treat fish at the farms. Aminoglycoside resistance genes were also enriched in the farm sediments despite the farms not having used aminoglycosides. In contrast, the total relative abundance values of ARGs were higher in the control sediment resistome and they were mainly genes encoding efflux pumps followed by beta-lactam resistance genes, which are found intrinsically in many bacteria. This suggests that there is a natural Baltic sediment resistome. The resistome associated with fish farms can be from native ARGs enriched by antibiotic use at the farms and/or from ARGs and mobile elements that have been introduced by fish farming.201626976842
728950.9987Distribution of bacterial community structures and spread of antibiotic resistome at industrially polluted sites of Mini River, Vadodara, Gujarat, India. The influence of anthropogenic pollution on the distribution of bacterial diversity, antibiotic-resistant bacteria (ARBs), and antibiotic resistance genes (ARGs) was mapped at various geo-tagged sites of Mini River, Vadodara, Gujarat, India. The high-throughput 16S rRNA gene amplicon sequencing analysis revealed a higher relative abundance of Planctomycetota at the polluted sites, compared to the pristine site. Moreover, the relative abundance of Actinobacteriota increased, whereas Chloroflexi decreased in the water samples of polluted sites than the pristine site. The annotation of functional genes in the metagenome samples of Mini River sites indicated the presence of genes involved in the defence mechanisms against bacitracin, aminoglycosides, cephalosporins, chloramphenicol, streptogramin, streptomycin, methicillin, and colicin. The analysis of antibiotic resistome at the polluted sites of Mini River revealed the abundance of sulfonamide, beta-lactam, and aminoglycoside resistance. The presence of pathogens and ARB was significantly higher in water and sediment samples of polluted sites compared to the pristine site. The highest resistance of bacterial populations in the Mini River was recorded against sulfonamide (≥ 7.943 × 10(3) CFU/mL) and ampicillin (≥ 8.128 × 10(3) CFU/mL). The real-time PCR-based quantification of ARGs revealed the highest abundance of sulfonamide resistance genes sul1 and sul2 at the polluted sites of the Mini River. Additionally, the antimicrobial resistance genes aac(6')-Ib-Cr and blaTEM were also found abundantly at polluted sites of the Mini River. The findings provide insights into how anthropogenic pollution drives the ARG and ARB distribution in the riverine ecosystem, which may help with the development of antimicrobial resistance mitigation strategies.202438279971
342460.9987Contribution of bacteriophage and plasmid DNA to the mobilization of antibiotic resistance genes in a river receiving treated wastewater discharges. In this study, we quantified eleven antibiotic compounds and nine antibiotic resistance genes (ARGs) in water samples collected upstream and downstream of the discharge point from a municipal wastewater treatment plant (WWTP) into the Ter River. Antibiotics were analyzed by liquid chromatography coupled to mass spectrometry, whereas the concentration of ARGs in bacterial, phage and plasmid DNA fractions was determined by real-time PCR to explore their contribution to environmental antibiotic resistance. WWTP discharges resulted in higher concentrations of antibiotic residues as well as ARGs in water samples collected downstream the impact point. Specifically, genes conferring resistance to macrolides (ermB), fluoroquinolones (qnrS) and tetracyclines (tetW) showed significant differences (p<0.05) between upstream and downstream sites in the three DNA fractions (i.e. bacteria, plasmids and phages). Interestingly, genes conferring resistance to β-lactams (bla(TEM), bla(NDM) and bla(KPC)) and glycopeptides (vanA) only showed significant differences (p<0.05) between upstream and downstream sites in phage and plasmid DNA but not in the bacterial DNA fraction. Our results show for the first time the extent to which phages and plasmids contribute to the mobilization of ARGs in an aquatic environment exposed to chronic antibiotic pollution via WWTP discharges. Accordingly, these mobile genetic elements should be included in further studies to get a global view of the spread of antibiotic resistance.201728551539
367770.9987Prevalence of sulfonamide-resistant bacteria, resistance genes and integron-associated horizontal gene transfer in natural water bodies and soils adjacent to a swine feedlot in northern Taiwan. Antibiotics are commonly used in swine feed to treat and prevent disease, as well as to promote growth. Antibiotics released into the environment via wastewater could accelerate the emergence of antibiotic-resistant bacteria and resistance genes in the surrounding environment. In this study, we quantified the occurrence of sulfonamides, sulfonamide-resistant microorganisms and resistance genes in the wastewater from a swine farm in northern Taiwan and its surrounding natural water bodies and soils. Sulfonamide levels were similar in the receiving downstream and upstream river water. However, the prevalence of sulfonamide-resistant bacteria and resistance genes, as analyzed by cultivation-dependent and -independent molecular approaches, was significantly greater in the downstream compared to the upstream river water samples. Barcoded-pyrosequencing revealed a highly diverse bacterial community structure in each sample. However, the sequence identity of the sulfonamide resistance gene sul1 in the wastewater and downstream environment samples was nearly identical (99-100%). The sul1 gene, which is genetically linked to class 1 integrons, was dominant in the downstream water bodies and soils. In conclusion, the increased prevalence of sulfonamide resistance genes in the wastewater from a swine farm, independent of the persistent presence of sulfonamides, could be a potential source of resistant gene pools in the surrounding environment.201424637153
532280.9987Broad dissemination of plasmid-mediated quinolone resistance genes in sediments of two urban coastal wetlands. Contamination of soil and water with antibiotic-resistant bacteria may create reservoirs of antibiotic resistance genes that have the potential to negatively impact future public health through horizontal gene transfer. The plasmid-mediated quinolone resistance genes qnrA, qnrB, qnrS, qepA, and aac(6')-Ib-cr were detected by PCR amplification of metagenomic DNA from surface sediments of the Tijuana River Estuary, a sewage-impacted coastal wetland along the U.S.-Mexico border; sediments of Famosa Slough, a nearby urban wetland that is largely unaffected by sewage, contained only qnrB, qnrS, and qepA. The number of PCR-positive sites and replicates increased in both wetlands after rainfall. Real-time quantitative PCR revealed a significant increase (p < 0.0005) in qnrA abundance (copies per gram sediment or per 16S rDNA copy) in Tijuana River Estuary sediments immediately following rainfall, but no significant change was measured at Famosa Slough (p > 0.1). Nucleotide sequences of cloned qnrA amplicons were all affiliated with qnrA genes found on plasmids of clinical isolates with one exception that was most similar to the chromosomal qnrA gene found in Shewanella algae. Our results suggest that urban wetlands may become reservoirs of antibiotic resistance genes, particularly where wastewater is improperly managed.201121141884
367590.9987Evidence for Environmental Dissemination of Antibiotic Resistance Mediated by Wild Birds. The aquatic bird, egret, could carry antibiotic resistance (AR) from a contaminated waterway (Jin River, Chengdu, China) into the surrounding environment (Wangjianglou Park). A systematic study was carried out on the unique environmental dissemination mode of AR mediated by birds. The minimum inhibitory concentrations of various antibiotics against the environmental Escherichia coli isolates were used to evaluate the bacterial AR at the environmental locations where these isolates were recovered, i.e., the Jin River water, the egret feces, the park soil, and the campus soil. The level of AR in the park soil was significantly higher than that in the campus soil that was seldom affected by the egrets, which suggested that the egrets mediated the transportation of AR from the polluted waterway to the park. Genotyping of the resistant E. coli isolates via repetitive-element PCR gave no strong correlation between the genotypes and the AR patterns of the bacteria. So, the transfer of resistant strains should not be the main mode of AR transportation in this process. The results of real-time PCR revealed that the abundance of antibiotic resistance genes (ARGs) and mobile genetic element (MGE) sequences (transposase and integrase genes) declined along the putative transportation route. The transportation of ARGs could be due to their linkage with MGE sequences, and horizontal gene transfer should have contributed to the process. The movable colistin-resistance gene mcr-1 was detected among the colistin-resistant E. coli strains isolated from the river water and the egret feces, which indicated the possibility of the environmental dissemination of this gene. Birds, especially the migratory birds, for the role they played on the dissemination of environmental AR, should be considered when studying the ecology of AR.201829731740
3333100.9987A reservoir of 'historical' antibiotic resistance genes in remote pristine Antarctic soils. BACKGROUND: Soil bacteria naturally produce antibiotics as a competitive mechanism, with a concomitant evolution, and exchange by horizontal gene transfer, of a range of antibiotic resistance mechanisms. Surveys of bacterial resistance elements in edaphic systems have originated primarily from human-impacted environments, with relatively little information from remote and pristine environments, where the resistome may comprise the ancestral gene diversity. METHODS: We used shotgun metagenomics to assess antibiotic resistance gene (ARG) distribution in 17 pristine and remote Antarctic surface soils within the undisturbed Mackay Glacier region. We also interrogated the phylogenetic placement of ARGs compared to environmental ARG sequences and tested for the presence of horizontal gene transfer elements flanking ARGs. RESULTS: In total, 177 naturally occurring ARGs were identified, most of which encoded single or multi-drug efflux pumps. Resistance mechanisms for the inactivation of aminoglycosides, chloramphenicol and β-lactam antibiotics were also common. Gram-negative bacteria harboured most ARGs (71%), with fewer genes from Gram-positive Actinobacteria and Bacilli (Firmicutes) (9%), reflecting the taxonomic composition of the soils. Strikingly, the abundance of ARGs per sample had a strong, negative correlation with species richness (r = - 0.49, P < 0.05). This result, coupled with a lack of mobile genetic elements flanking ARGs, suggests that these genes are ancient acquisitions of horizontal transfer events. CONCLUSIONS: ARGs in these remote and uncontaminated soils most likely represent functional efficient historical genes that have since been vertically inherited over generations. The historical ARGs in these pristine environments carry a strong phylogenetic signal and form a monophyletic group relative to ARGs from other similar environments.201829471872
7368110.9987Riverine antibiotic resistome along an anthropogenic gradient. The introduction of antibiotic-resistant bacteria into riverine systems through the discharge of wastewater treatment plant (WWTP) effluent and agricultural waste poses significant health risks. Even when not pathogenic, these bacteria can act as reservoirs for antibiotic resistance genes (ARGs), transferring them to pathogens that infect humans and animals. In this study, we used fluorescence in situ hybridization, qPCR, and metagenomics to investigate how anthropogenic activities affect microbial abundance and the resistome along the Holtemme River, a small river in Germany, from near-pristine to human-impacted sites. Our results showed higher bacterial abundance, a greater absolute and relative abundance of ARGs, and a more diverse ARG profile at the impacted sites. Overall, the ARG profiles at these sites reflected antibiotic usage in Germany, with genes conferring resistance to drug classes such as beta-lactams, aminoglycosides, folate biosynthesis inhibitors, and tetracyclines. There were also variations in the ARG profiles of the impacted sites. Notably, there was a high abundance of the oxacillin resistance gene OXA-4 at the downstream site in the river. In the metagenome assembly, this gene was associated with a contig homologous to small plasmids previously identified in members of the Thiotrichaceae. The likely in-situ host of the putative plasmid was a close relative of Thiolinea (also known as Thiothrix) eikelboomii, a prominent member of WWTP microbiomes worldwide. Our results show that the effluent from WWTPs can introduce bacteria into the environment that act as shuttle systems for clinically relevant ARG.202540078550
3363120.9987Spreading antibiotic resistance through spread manure: characteristics of a novel plasmid type with low %G+C content. Bioactive amounts of antibiotics as well as resistant bacteria reach the soil through manure fertilization. We investigated plasmids that may stimulate the environmental spread and interspecies transfer of antibiotic resistance. After treatment of two soils with manure, either with or without the sulfonamide antibiotic sulfadiazine, a significant increase in copies of the sulfonamide resistance gene sul2 was detected by qPCR. All sul2 carrying plasmids, captured in Escherichia coli from soil, belonged to a novel class of self-transferable replicons. Manuring and sulfadiazine significantly increased the abundance of this replicon type in a chemically fertilized but not in an annually manured soil, as determined by qPCR targeting a transfer gene. Restriction patterns and antibiograms showed a considerable diversity within this novel plasmid group. Analysis of three complete plasmid sequences revealed a conserved 30 kbp backbone with only 36% G+C content, comprised of transfer and maintenance genes with moderate homology to plasmid pIPO2 and a replication module (rep and oriV) of other descent. The plasmids differed in composition of the 27.0-28.3 kbp accessory region, each of which carried ISCR2 and several resistance genes. Acinetobacter spp. was identified as a potential host of such LowGC-type plasmids in manure and soil.200919055690
3694130.9987Salmon aquaculture and antimicrobial resistance in the marine environment. Antimicrobials used in salmon aquaculture pass into the marine environment. This could have negative impacts on marine environmental biodiversity, and on terrestrial animal and human health as a result of selection for bacteria containing antimicrobial resistance genes. We therefore measured the numbers of culturable bacteria and antimicrobial-resistant bacteria in marine sediments in the Calbuco Archipelago, Chile, over 12-month period at a salmon aquaculture site approximately 20 m from a salmon farm and at a control site 8 km distant without observable aquaculture activities. Three antimicrobials extensively used in Chilean salmon aquaculture (oxytetracycline, oxolinic acid, and florfenicol) were studied. Although none of these antimicrobials was detected in sediments from either site, traces of flumequine, a fluoroquinolone antimicrobial also widely used in Chile, were present in sediments from both sites during this period. There were significant increases in bacterial numbers and antimicrobial-resistant fractions to oxytetracycline, oxolinic acid, and florfenicol in sediments from the aquaculture site compared to those from the control site. Interestingly, there were similar numbers of presumably plasmid-mediated resistance genes for oxytetracycline, oxolinic acid and florfenicol in unselected marine bacteria isolated from both aquaculture and control sites. These preliminary findings in one location may suggest that the current use of large amounts of antimicrobials in Chilean aquaculture has the potential to select for antimicrobial-resistant bacteria in marine sediments.201222905164
3360140.9986Gentamicin resistance genes in environmental bacteria: prevalence and transfer. A comprehensive multiphasic survey of the prevalence and transfer of gentamicin resistance (Gm(r)) genes in different non-clinical environments has been performed. We were interested to find out whether Gm(r) genes described from clinical isolates can be detected in different environmental habitats and whether hot spots can be identified. Furthermore, this study aimed to evaluate the impact of selective pressure on the abundance and mobility of resistance genes. The study included samples from soils, rhizospheres, piggery manure, faeces from cattle, laying and broiler chickens, municipal and hospital sewage water, and coastal water. Six clusters of genes coding for Gm-modifying enzymes (aac(3)-I, aac(3)-II/VI, aac(3)-III/IV, aac(6')-II/Ib, ant(2'')-I, aph(2'')-I) were identified based on a database comparison and primer systems for each gene cluster were developed. Gm-resistant bacteria isolated from the different environments had a different taxonomic composition. In only 34 of 207 isolates, mainly originating from sewage, faeces and coastal water polluted with wastewater, were known Gm(r) genes corresponding to five of the six clusters detected. The strains belonged to genera in which the genes had previously been detected (Enterobacteriaceae, Pseudomonas, Acinetobacter) but also to phylogenetically distant bacteria, such as members of the CFB group, alpha- and beta-Proteobacteria. Gm(r) genes located on mobile genetic elements (MGE) could be captured in exogenous isolations into recipients belonging to alpha-, beta- and gamma-Proteobacteria from all environments except for soil. A high proportion of the MGE, conferring Gm resistance isolated from sewage, were identified as IncPbeta plasmids. Molecular detection of Gm(r) genes, and broad host range plasmid-specific sequences (IncP-1, IncN, IncW and IncQ) in environmental DNA indicated a habitat-specific dissemination. A high abundance and diversity of Gm(r) genes could be shown for samples from faeces (broilers, layers, cattle), from sewage, from seawater, collected close to a wastewater outflow, and from piggery manure. In the latter samples all six clusters of Gm(r) genes could be detected. The different kinds of selective pressure studied here seemed to enhance the abundance of MGE, while an effect on Gm(r) genes was not obvious.200219709289
3690150.9986High Occurrence Rate of Tetracycline (TC)-Resistant Bacteria and TC Resistance Genes Relates to Microbial Diversity in Sediment of Mekong River Main Waterway. Spatial monitoring of tetracycline (TC)-resistant bacteria in sediments of the Mekong River watershed revealed that the main waterway showed a high occurrence rate of TC-resistant bacteria, whereas Tonle Sap Lake and the Sai Gon estuary did not. The Shannon index (H'), an indicator of ecological diversity, was calculated from denaturing gradient gel electrophoresis (DGGE) profiles, which indicated that the main waterway of the Mekong River had high microbial diversity (high H') compared to Tonle Sap Lake and the Sai Gon estuary; this diversity was positively correlated with the occurrence rate of TC-resistant bacteria. Analysis of ribosomal protection protein (RPP) genes tet(M), tet(S) and tet(W) in the same area also revealed that high diversity was positively correlated with the occurrence rate of RPP genes, suggesting that RPP genes are well conserved across various bacterial species. Further evidence of different genotypes of tet(M) suggests that the drug resistance genes likely have various origins, and are mixed in the sediment. Sediments in this area are therefore potential reservoirs of drug resistance genes.200821558701
3359160.9986Marine bacteria harbor the sulfonamide resistance gene sul4 without mobile genetic elements. Marine bacteria are possible reservoirs of antibiotic-resistance genes (ARGs) originating not only from clinical and terrestrial hot spots but also from the marine environment. We report here for the first time a higher rate of the sulfonamide-resistance gene sul4 in marine bacterial isolates compared with other sul genes. Among four sulfonamide-resistance genes (sul1, sul2, sul3, and sul4), sul4 was most abundant (45%) in 74 sulfonamide-resistant marine isolates by PCR screening. The order of abundance was sul4 (33 isolates) >sul2 (6 isolates) >sul3 (5 isolates) >sul1 (1 isolate). Whole-genome sequencing of 23 isolates of sul4-expressing α- and γ-proteobacteria and bacilli revealed that sul4 was not accompanied by known mobile genetic elements. This suggests that sul4 in these marine isolates is clonally transferred and not horizontally transferable. Folate metabolism genes formed a cluster with sul4, suggesting that the cluster area plays a role in folate metabolism, at which sul4 functions as a dihydropteroate synthase. Thus, sul4 might be expressed in marine species and function in folate synthesis, but it is not a transferable ARG.202337779713
3102170.9986Multidrug resistance phenotypes are widespread over different bacterial taxonomic groups thriving in surface water. The environment is the original and most ancient source of the antibiotic resistance determinants that threat the human health nowadays. In the environment, water is a privileged habitat and mode of dissemination of bacteria of different origins. Freshwater bodies that cross urban areas are supposed to hold a complex mixture of both human/animal origin and strictly environmental bacteria. In this study, we were interested in unveiling the bacterial diversity in urban river transects and, simultaneously, investigate the occurrence of antibiotic resistant bacteria, in particular the multidrug resistant (MDR). With this aim, water and sediments of two rivers were sampled from an urban transect and the bacterial diversity was assessed based on 16S rRNA gene-based community analysis and, simultaneously, total heterotrophic bacteria were isolated in the presence and in the absence of antibiotics. The three predominant phyla were Proteobacteria, Bacteroidetes and Actinobacteria, in water, or Acidobacteria, in sediments. MDR bacteria were observed to belong to the predominant phyla observed in water, mostly of the classes Gamma- and Betaproteobacteria (Proteobacteria) and Sphingobacteriia and Flavobacteriia (Bacteroidetes) and belonged to genera of ubiquitous (Pseudomonas, Acinetobacter, Stenotrophomonas) or mainly environmental (Chitinophaga, Chryseobacterium) bacteria. The observation that MDR bacteria are widespread in the environment and over distinct phylogenetic lineages has two relevant implications: i) the potential of environmental bacteria as source or facilitators for antibiotic resistance acquisition; ii) the need to complement culture-independent methods with culture-based approaches in order to identify major sources of MDR profiles.201627131885
5279180.9986Occurrence of integrons and antibiotic resistance genes in cryoconite and ice of Svalbard, Greenland, and the Caucasus glaciers. The prevalence of integrons and antibiotic resistance genes (ARGs) is a serious threat for public health in the new millennium. Although commonly detected in sites affected by strong anthropogenic pressure, in remote areas their occurrence, dissemination, and transfer to other ecosystems is poorly recognized. Remote sites are considered as a benchmark for human-induced contamination on Earth. For years glaciers were considered pristine, now they are regarded as reservoirs of contaminants, thus studies on contamination of glaciers, which may be released to other ecosystems, are highly needed. Therefore, in this study we evaluated the occurrence and frequency of clinically relevant ARGs and resistance integrons in the genomes of culturable bacteria and class 1 integron-integrase gene copy number in the metagenome of cryoconite, ice and supraglacial gravel collected on two Arctic (South-West Greenland and Svalbard) and two High Mountain (the Caucasus) glaciers. Altogether, 36 strains with intI1 integron-integrase gene were isolated. Presence of class 1 integron-integrase gene was also recorded in metagenomic DNA from all sampling localities. The mean values of relative abundance of intI1 gene varied among samples and ranged from 0.7% in cryoconite from Adishi Glacier (the Caucasus) to 16.3% in cryoconite from Greenland. Moreover, antibiotic-resistant strains were isolated from all regions. Genes conferring resistance to β-lactams (bla(SHV), bla(TEM), bla(OXA), bla(CMY)), fluoroquinolones (qepA, qnrC), and chloramphenicol (cat, cmr) were detected in the genomes of bacterial isolates.202032059297
3454190.9986Antibiotic Resistance Genes in Phage Particles from Antarctic and Mediterranean Seawater Ecosystems. Anthropogenic activities are a key factor in the development of antibiotic resistance in bacteria, a growing problem worldwide. Nevertheless, antibiotics and resistances were being generated by bacterial communities long before their discovery by humankind, and might occur in areas without human influence. Bacteriophages are known to play a relevant role in the dissemination of antibiotic resistance genes (ARGs) in aquatic environments. In this study, five ARGs (bla(TEM), bla(CTX-M-1), bla(CTX-M-9), sul1 and tetW) were monitored in phage particles isolated from seawater of two different locations: (i) the Mediterranean coast, subjected to high anthropogenic pressure, and (ii) the Antarctic coast, where the anthropogenic impact is low. Although found in lower quantities, ARG-containing phage particles were more prevalent among the Antarctic than the Mediterranean seawater samples and Antarctic bacterial communities were confirmed as their source. In the Mediterranean area, ARG-containing phages from anthropogenic fecal pollution might allow ARG transmission through the food chain. ARGs were detected in phage particles isolated from fish (Mediterranean, Atlantic, farmed, and frozen), the most abundant being β-lactamases. Some of these particles were infectious in cultures of the fecal bacteria Escherichia coli. By serving as ARG reservoirs in marine environments, including those with low human activity, such as the Antarctic, phages could contribute to ARG transmission between bacterial communities.202032847015