# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6353 | 0 | 0.9829 | Diversity of silver resistance genes in IncH incompatibility group plasmids. Silver compounds are used as antimicrobial agents in medicine and bacteria that develop resistance to silver cations (Ag(+)) pose problems similar to those of antibiotic-resistant bacteria. The first set of Ag(+) resistance genes (sil) was from plasmid pMG101, now assigned to the IncHI incompatibility group. Questions of whether sil genes are unique to pMG101 or are more widely found, and whether they are associated with a specific incompatibility group or occur in many plasmid groups and on bacterial chromosomes were addressed. sil genes were identified in five IncH plasmids, but not in plasmids of the IncP incompatibility group. Three sil genes (silP, silR and silE) from these plasmids were PCR-amplified, cloned, sequenced and compared to those of pMG101. Differences of 0-50 nt per kb of sequence were found. Predicted gene products were 0-6% different in amino acid sequence, but the differences did not alter residues thought to be involved in protein function (see supplementary data at http://mic.sgmjournals.org or http://www.uic.edu/depts/mcmi/individual/gupta/index.htm). For representative IncH plasmid R476b and pMG101 the effects of Ag(+) exposure on resistance levels were measured by growth. The inducibility of silC, silR and silE gene expression after Ag(+) exposure was studied by reverse transcriptase (RT)-PCR. Silver resistance increased after Ag(+) exposure for strains carrying plasmid R476b. silC and silE expression from R476b was inducible after Ag(+) exposure and was constitutive and high from pMG101. The mRNA levels for the regulatory gene silR was constitutive for both pMG101 and R476b. Close homologues for silABC(ORF96)RS from pMG101 are clustered on the chromosomes of Escherichia coli strains K-12 and O157:H7, without contiguous silP and silE homologues. Insertion deletions of the E. coli K-12 chromosomal homologues for silA and silP gave Ag(+) hypersensitivity for growth. The silA homologue knockout was complemented back to wild-type resistance by the same gene cloned on a plasmid. Homologues of sil genes have also been identified on other enterobacterial genomes. | 2001 | 11739772 |
| 5221 | 1 | 0.9790 | Molecular cloning of the DNA gyrase genes from Methylovorus sp. strain SS1 and the mechanism of intrinsic quinolone resistance in methylotrophic bacteria. The genes encoding the DNA gyrase A (GyrA) and B subunits (GyrB) of Methylovorus sp. strain SS1 were cloned and sequenced. gyrA and gyrB coded for proteins of 846 and 799 amino acids with calculated molecular weights of 94,328 and 88,714, respectively, and complemented Escherichia coli gyrA and gyrB temperature sensitive (ts) mutants. To analyze the role of type II topoisomerases in the intrinsic quinolone resistance of methylotrophic bacteria, the sequences of the quinolone resistance-determining regions (QRDRs) in the A subunit of DNA gyrase and the C subunit (ParC) of topoisomerase IV (Topo IV) of Methylovorus sp. strain SS1, Methylobacterium extorquens AM1 NCIB 9133, Methylobacillus sp, strain SK1 DSM 8269, and Methylophilus methylotrophus NCIB 10515 were determined. The deduced amino acid sequences of the QRDRs of the ParCs in the four methylotrophic bacteria were identical to that of E. coli ParC. The sequences of the QRDR in GyrA were also identical to those in E. coli GyrA except for the amino acids at positions 83, 87, or 95. The Ser83 to Thr substitution in Methylovorus sp. strain SS1, and the Ser83 to Leu and Asp87 to Asn substitutions in the three other methylotrophs, agreed well with the minimal inhibitory concentrations of quinolones in the four bacteria, suggesting that these residues play a role in the intrinsic susceptibility of methylotrophic bacteria to quinolones. | 2005 | 16404155 |
| 6143 | 2 | 0.9787 | Paleomicrobiology to investigate copper resistance in bacteria: isolation and description of Cupriavidus necator B9 in the soil of a medieval foundry. Remains of a medieval foundry were excavated by archaeologists in 2013 in Verdun (France). Ancient workshops specialized in brass and copper alloys were found with an activity between 13th to 16th c. Levels of Cu, Zn and Pb reached 20000, 7000 and 6000 mg kg(-1) (dw), respectively, in several soil horizons. The objective of the present work was to examine the microbial community in this contaminated site. A total of 8-22 10(6) reads were obtained by shotgun metagenomics in four soil horizons. Bioinformatic analyses suggest the presence of complex bacterial communities dominated by Proteobacteria. The structure of the community was not affected by metals, contrary to the set of metal-resistance genes. Using selective media, a novel strain of Cupriavidus necator (eutrophus), strain B9, was isolated. Its genome was sequenced and a novel metal resistance gene cluster with Hg resistance genes (merRTPCA) followed by 24 copper-resistance genes (actP, cusCBAF, silP, copK1, copH4QLOFGJH3IDCBARS, copH2H1, copK2) was found. This cluster is partly homologous to the cop genes of Cupriavidus gilardii CR3 and C. metallidurans CH34. Proteomics indicated that the four copH genes were differentially expressed: CopH1 and CopH2 were mostly induced by Cd while CopH4 was highly expressed by Cu. | 2017 | 27943589 |
| 6350 | 3 | 0.9786 | Characterization and genomic analysis of chromate resistant and reducing Bacillus cereus strain SJ1. BACKGROUND: Chromium is a toxic heavy metal, which primarily exists in two inorganic forms, Cr(VI) and Cr(III). Chromate [Cr(VI)] is carcinogenic, mutational, and teratogenic due to its strong oxidizing nature. Biotransformation of Cr(VI) to less-toxic Cr(III) by chromate-resistant and reducing bacteria has offered an ecological and economical option for chromate detoxification and bioremediation. However, knowledge of the genetic determinants for chromate resistance and reduction has been limited so far. Our main aim was to investigate chromate resistance and reduction by Bacillus cereus SJ1, and to further study the underlying mechanisms at the molecular level using the obtained genome sequence. RESULTS: Bacillus cereus SJ1 isolated from chromium-contaminated wastewater of a metal electroplating factory displayed high Cr(VI) resistance with a minimal inhibitory concentration (MIC) of 30 mM when induced with Cr(VI). A complete bacterial reduction of 1 mM Cr(VI) was achieved within 57 h. By genome sequence analysis, a putative chromate transport operon, chrIA1, and two additional chrA genes encoding putative chromate transporters that likely confer chromate resistance were identified. Furthermore, we also found an azoreductase gene azoR and four nitroreductase genes nitR possibly involved in chromate reduction. Using reverse transcription PCR (RT-PCR) technology, it was shown that expression of adjacent genes chrA1 and chrI was induced in response to Cr(VI) but expression of the other two chromate transporter genes chrA2 and chrA3 was constitutive. In contrast, chromate reduction was constitutive in both phenotypic and gene expression analyses. The presence of a resolvase gene upstream of chrIA1, an arsenic resistance operon and a gene encoding Tn7-like transposition proteins ABBCCCD downstream of chrIA1 in B. cereus SJ1 implied the possibility of recent horizontal gene transfer. CONCLUSION: Our results indicate that expression of the chromate transporter gene chrA1 was inducible by Cr(VI) and most likely regulated by the putative transcriptional regulator ChrI. The bacterial Cr(VI)-resistant level was also inducible. The presence of an adjacent arsenic resistance gene cluster nearby the chrIA1 suggested that strong selective pressure by chromium and arsenic could cause bacterial horizontal gene transfer. Such events may favor the survival and increase the resistance level of B. cereus SJ1. | 2010 | 20723231 |
| 5217 | 4 | 0.9782 | UV Resistance of bacteria from the Kenyan Marine cyanobacterium Moorea producens. UV resistance of bacteria isolated from the marine cyanobacterium Moorea producens has not been observed previously, findings which highlight how unsafe germicidal UV irradiation for sterilization of air, food, and water could be. Further, UV resistance of Bacillus licheniformis is being observed for the first time. This study focused on bacteria isolated from the marine cyanobacterium M. producens collected off the Kenyan coast at Shimoni, Wasini, Kilifi, and Mida. UV irradiance of isolates (302 nm, 70 W/m(2) , 0-1 hr) established B. licheniformis as the most UV resistant strain, with the following order of taxon resistance: Bacilli> γ proteobacteria > Actinobacteria. UV resistance was independent of pigmentation. The maximum likelihood phylogenetic distance determined for both B. licheniformis and Bacillus aerius relative to M. producens CCAP 1446/4 was 2.0. Survival of B. licheniformis upon UV irradiance followed first-order kinetics (k = 0.035/min, R(2) = 0.88). Addition of aqueous extracts (2, 10, 20 and 40 mg/ml) of this B. licheniformis strain on the less resistant Marinobacterium stanieri was not significant, however, the commercial sunscreen benzophenone-3 (BP-3) positive control and the time of irradiance were significant. Detection of bacteria on M. producens filaments stained with acridine orange confirmed its nonaxenic nature. Although the chemistry of UV resistance in cyanobacteria has been studied in depth revealing for example the role of mycosporine like amino acids (MAAs) in UV resistance less is known about how bacteria resist UV irradiation. This is of interest since cyanobacteria live in association with bacteria. | 2019 | 30123980 |
| 6195 | 5 | 0.9782 | Differential gene expression analysis shows that cephalosporin resistance is intrinsic to Clostridioides difficile strain 630. Clostridioides difficile infection (CDI) is the most common nosocomial infection in the US. CDI has become a growing concern due to C. difficile's resistance to several antibiotics, including cephalosporins. Furthermore, patients administered cephalosporins are at higher risk of contracting CDI. Cephalosporins are β-lactam antibiotics, which prevent bacterial cell wall synthesis by inhibiting penicillin-binding proteins (PBPs). β-lactam-resistant bacteria evade these antibiotics by producing β-lactamases or by harboring low-affinity PBPs. A genomic analysis of C. difficile strain 630 identified 31 putative β-lactam resistance genes. Upon cefoxitin exposure, few C. difficile strain 630 putative antibiotic-resistant genes were overexpressed. Most notably, the β-lactamase blaCDD gene was upregulated approximately 600-fold, as previously reported. Deletion of the blaCDD locus did not change in cephalosporin susceptibility. Deletion of the second most upregulated gene, the PBP vanY, was also ineffective at decreasing cephalosporin resistance. Cefoxitin exposure of the C. difficile strain 630ΔblaCDD mutant did not increase upregulation of other putative antibiotic resistance genes compared to wildtype C. difficile strain 630. Transcriptomic analyses of wildtype C. difficile strain 630 exposed to cephradine, cefoxitin, ceftazidime, or cefepime revealed the shared upregulation of a putative heterodimeric ABC transporter encoded by loci CD630_04590 (ABC transporter ATP-binding protein) and CD630_04600 (ABC transporter permease). These genes are genomically located directly downstream of blaCDD (CD630_04580). The deletion mutant CD630_04600 remained resistant to a number of antibiotics. Thus, even though blaCDD, CD630_04590, and CD630_04600 are all upregulated when exposed to cephalosporins, they do not seem to be involved in antibiotic resistance in C. difficile strain 630. | 2025 | 39672901 |
| 6228 | 6 | 0.9781 | Comparative transcription analysis and toxin production of two fluoroquinolone-resistant mutants of Clostridium perfringens. BACKGROUND: Fluoroquinolone use has been listed as a risk factor for the emergence of virulent clinical strains of some bacteria. The aim of our study was to evaluate the effect of fluoroquinolone (gatifloxacin) resistance selection on differential gene expression, including the toxin genes involved in virulence, in two fluoroquinolone-resistant strains of Clostridium perfringens by comparison with their wild-type isogenic strains. RESULTS: DNA microarray analyses were used to compare the gene transcription of two wild types, NCTR and ATCC 13124, with their gatifloxacin-resistant mutants, NCTRR and 13124R. Transcription of a variety of genes involved in bacterial metabolism was either higher or lower in the mutants than in the wild types. Some genes, including genes for toxins and regulatory genes, were upregulated in NCTRR and downregulated in 13124R. Transcription analysis by quantitative real-time PCR (qRT-PCR) confirmed the altered expression of many of the genes that were affected differently in the fluoroquinolone-resistant mutants and wild types. The levels of gene expression and enzyme production for the toxins phospholipase C, perfringolysin O, collagenase and clostripain had decreased in 13124R and increased in NCTRR in comparison with the wild types. After centrifugation, the cytotoxicity of the supernatants of NCTRR and 13224R cultures for mouse peritoneal macrophages confirmed the increased cytotoxicity of NCTRR and the decreased cytotoxicity of 13124R in comparison with the respective wild types. Fluoroquinolone resistance selection also affected cell shape and colony morphology in both strains. CONCLUSION: Our results indicate that gatifloxacin resistance selection was associated with altered gene expression in two C. perfringens strains and that the effect was strain-specific. This study clearly demonstrates that bacterial exposure to fluoroquinolones may affect virulence (toxin production) in addition to drug resistance. | 2013 | 23452396 |
| 455 | 7 | 0.9780 | An inducible tellurite-resistance operon in Proteus mirabilis. Tellurite resistance (Te(r)) is widespread in nature and it is shown here that the natural resistance of Proteus mirabilis to tellurite is due to a chromosomally located orthologue of plasmid-borne ter genes found in enteric bacteria. The P. mirabilis ter locus (terZABCDE) was identified in a screen of Tn5lacZ-generated mutants of which one contained an insertion in terC. The P. mirabilis terC mutant displayed increased susceptibility to tellurite (Te(s)) and complementation with terC carried on a multicopy plasmid restored high-level Te(r). Primer extension analysis revealed a single transcriptional start site upstream of terZ, but only with RNA harvested from bacteria grown in the presence of tellurite. Northern blotting and reverse transcriptase-PCR (RT-PCR) analyses confirmed that the ter operon was inducible by tellurite and to a lesser extent by oxidative stress inducers such as hydrogen peroxide and methyl viologen (paraquat). Direct and inverted repeat sequences were identified in the ter promoter region as well as motifs upstream of the -35 hexamer that resembled OxyR-binding sequences. Finally, the 390 bp intergenic promoter region located between orf3 and terZ showed no DNA sequence identity with any other published ter sequences, whereas terZABCDE genes exhibited 73-85 % DNA sequence identity. The ter operon was present in all clinical isolates of P. mirabilis and Proteus vulgaris tested and is inferred for Morganella and Providencia spp. based on screening for high level Te(r) and preliminary PCR analysis. Thus, a chromosomally located inducible tellurite resistance operon appears to be a common feature of the genus Proteus. | 2003 | 12724390 |
| 188 | 8 | 0.9780 | Resistance to ag(i) cations in bacteria: environments, genes and proteins. Bacterial resistance to Ag(I) has been reported periodically with isolates from many environments where toxic levels of silver might be expected to occur, but initial reports were limited to the occurrence of resistant bacteria. The availability of silver-resistance conferring DNA sequences now allow genetic and mechanistic studies that had basically been missing. The genes determining Ag(I) resistance were sequenced from a plasmid found in a burn ward isolate. The 14.2 kb determinant contains seven recognized genes, arranged in three mRNA transcriptional units. The silE gene determines an extracellular (periplasmic space) metal-binding protein of 123 amino acids, including ten histidine residues implicated in Ag(I) binding. SilE is homologous to PcoE, of copper resistance. The next two genes, silR and silS, determine a two protein, histidine-kinase membrane sensor and aspartyl phosphate transcriptional responder, similar to other two component systems such as CzcR and CzcS (for cadmium, zinc and cobalt resistance) and PcoR and PcoS (for copper resistance). The remaining four genes, silCBAP, are co-transcribed and appear to determine Ag(+) efflux, with SilCBA homologous to CzcCBA, a three component cation/proton antiporter, and SilP a novel P-type ATPase with a amino-terminal histidine-rich cation-specificity region. The effects of increasing Ag(+) concentrations and growth medium halides (Cl-, Br- and I-) have been characterized, with lower Cl- concentrations facilitating resistance and higher concentrations toxicity. The properties of this unique Ag(I)-binding SilE protein are being characterized. Sequences similar to the silver-resistance DNA are being characterized by Southern blot DNA/DNA hybridization, PCR in vitro DNA synthesis and DNA sequencing. More than 25 additional closely related sequences have been identified in bacteria from diverse sources. Initial DNA sequencing results shows approximately 5-20% differences in DNA sequences. | 1999 | 18475907 |
| 433 | 9 | 0.9779 | Expression of the strA-strB streptomycin resistance genes in Pseudomonas syringae and Xanthomonas campestris and characterization of IS6100 in X. campestris. Expression of the strA-strB streptomycin resistance (SMr) genes was examined in Pseudomonas syringae pv. syringae and Xanthomonas campestris pv. vesicatoria. The strA-strB genes in P. syringae and X. campestris were encoded on elements closely related to Tn5393 from Erwinia amylovora and designated Tn5393a and Tn5393b, respectively. The putative recombination site (res) and resolvase-repressor (tnpR) genes of Tn5393 from E. amylovora, P syringae, and X. campestris were identical; however, IS6100 mapped within tnpR in X. campestris, and IS1133 was previously located downstream of tnpR in E. amylovora (C.-S Chiou and A. L. Jones, J. Bacteriol. 175:732-740, 1993). Transcriptional fusions (strA-strB::uidA) indicated that a strong promoter sequence was located within res in Tn5393a. Expression from this promoter sequence was reduced when the tnpR gene was present in cis position relative to the promoter. In X. campestris pv. vesicatoria, analysis of promoter activity with transcriptional fusions indicated that IS6100 increased the expression of strA-strB. Analysis of codon usage patterns and percent G+C in the third codon position indicated that IS6100 could have originated in a gram-negative bacterium. The data obtained in the present study help explain differences observed in the levels of SMr expressed by three genera which share common genes for resistance. Furthermore, the widespread dissemination of Tn5393 and derivatives in phytopathogenic prokaryotes confirms the importance of these bacteria as reservoirs of antibiotic resistance in the environment. | 1995 | 7487022 |
| 6192 | 10 | 0.9777 | Quantitative RT-PCR analysis of multiple genes encoding putative metronidazole nitroreductases from Helicobacter pylori. Metronidazole (Mtz), a pro-drug, requires reductive activation by ferredoxin-like electron carrier proteins to kill bacteria and Mtz resistance is associated with a decrease or deficiency of Mtz nitroreductase activities in a target cell. Several genes encoding ferredoxin-like or -linked proteins such as pyruvate oxidoreductase (POR), ferredoxin oxidoreductase (FOR), ferredoxin (FdxA), ferredoxin-like protein (FdxB), flavodoxin (FldA) and oxygen insensitive nitroreductase (RdxA) have been identified from the complete genomic sequence of Helicobacter pylori. To understand the roles of these genes in H. pylori Mtz resistance, the gene expression for the proteins was examined using a method optimized for quantitative reverse transcription polymerase chain reaction (RT-PCR). The RT-PCR products of FOR and RdxA were significantly decreased in the total RNA prepared from H. pylori cultured in the presence of Mtz as compared to the total RNA prepared from H. pylori cultured without Mtz in the media. A slight decrease, however, in band intensity of the RT-PCR products of the POR and, to a lesser extent, FdxB was obtained in the presence of Mtz. In contrast, the RT-PCR products of the FdxA, FldA, and GalE (UDP-galactose 4-epimerase; a control gene) were unchanged in total RNA prepared from H. pylori cultured with or without Mtz in the culture media. These results suggest that Mtz resistance may also be acquired by decreasing the transcription of some genes involved in Mtz reductive activation, in addition to the mutation in some individual genes such as rdxA. | 2000 | 10856674 |
| 403 | 11 | 0.9777 | Nucleotide sequence and expression of the mercurial-resistance operon from Staphylococcus aureus plasmid pI258. The mercurial-resistance determinant from Staphylococcus aureus plasmid pI258 is located on a 6.4-kilobase-pair Bgl II fragment. The determinant was cloned into both Bacillus subtilis and Escherichia coli. Mercury resistance was found only in B. subtilis. The 6404-base-pair DNA sequence of the Bgl II fragment was determined. The mer DNA sequence includes seven open reading frames, two of which have been identified by homology with the merA (mercuric reductase) and merB (organomercurial lyase) genes from the mercurial-resistance determinants of Gram-negative bacteria. Whereas 40% of the amino acid residues overall were identical between the pI258 merA polypeptide product and mercuric reductases from Gram-negative bacteria, the percentage identity in the active-site positions and those thought to be involved in NADPH and FAD contacts was above 90%. The 216 amino acid organomercurial lyase sequence was 39% identical with that from a Serratia plasmid, with higher conservation in the middle of the sequences and lower homologies at the amino and carboxyl termini. The remaining five open reading frames in the pI258 mer sequence have no significant homologies with the genes from previously sequenced Gram-negative mer operons. | 1987 | 3037534 |
| 2446 | 12 | 0.9777 | Low selection of topoisomerase mutants from strains of Escherichia coli harbouring plasmid-borne qnr genes. OBJECTIVES: To investigate mutations in the type II topoisomerase genes in quinolone-resistant mutants selected from bacteria harbouring plasmid-borne qnr genes. METHODS: Mutants were selected by nalidixic acid, ciprofloxacin and moxifloxacin from two Escherichia coli reference strains and corresponding transconjugants harbouring qnrA1, qnrA3, qnrB2 or qnrS1 genes. RESULTS: The proportion of resistant mutants selected by the three quinolones was, respectively, in the same range for qnr-positive transconjugants and reference strains. Only 20% (65/329) of the mutants selected from the transconjugants showed a gyrase mutation, whereas 79% (94/119) of those from the reference strains without a qnr gene did (P < 0.0001). At four times the MIC of the selector quinolone, gyrA mutants represented 49% and 95% of the mutants selected with nalidixic acid, 4% and 94% with ciprofloxacin and 0% and 54% with moxifloxacin for qnr-positive transconjugants and reference strains, respectively. Mutations within gyrA were distributed at codon 87 (D87G, H, N or Y) and at codon 83 (S83L) with three novel mutations (gyrA Ser83stop, gyrA Asp82Asn and gyrB insertion of Glu at 465) and three rare mutations (gyrA Gly81Asp, gyrA Asp82Gly and gyrA Ser431Pro), mainly obtained from reference strains after moxifloxacin selection. Strikingly, none of the mutants selected by moxifloxacin from qnr-positive transconjugants harboured a mutation in the topoisomerase genes. CONCLUSIONS: Topoisomerase mutants are rarely selected by ciprofloxacin and moxifloxacin from strains harbouring qnr. This suggests that the quinolone resistance-determining region domains are protected from quinolones by the Qnr protein and consequently other mechanisms are developed to acquire a further step of fluoroquinolone resistance. | 2008 | 18325893 |
| 399 | 13 | 0.9777 | Identification of genes conferring arsenic resistance to Escherichia coli from an effluent treatment plant sludge metagenomic library. The majority of bacteria elude culture in the laboratory. A metagenomic approach provides culture-independent access to the gene pool of the whole bacterial community. A metagenomic library was constructed from an industrial effluent treatment plant sludge containing about 1.25 Gb of microbial community DNA. Two arsenic-resistant clones were selected from the metagenomic library. Clones MT3 and MT6 had eight- and 18-fold higher resistance to sodium arsenate in comparison with the parent strain, respectively. The clones also showed increased resistance to arsenite but not to antimony. Sequence analysis of the clones revealed genes encoding for putative arsenate reductases and arsenite efflux pumps. A novel arsenate resistance gene (arsN) encoding a protein with similarity to acetyltransferases was identified from clone MT6. ArsN homologues were found to be closely associated with arsenic resistance genes in many bacterial genomes. ArsN homologues were found fused to putative arsenate reductases in Methylibium petroleiphilum PM1 and Anaeromyxobacter dehalogenans 2CP-C and with a putative arsenite chaperone in Burkholderia vietnamiensis G4. ArsN alone resulted in an approximately sixfold higher resistance to sodium arsenate in wild-type Escherichia coli W3110. | 2009 | 19016868 |
| 407 | 14 | 0.9776 | Molecular cloning and characterization of two lincomycin-resistance genes, lmrA and lmrB, from Streptomyces lincolnensis 78-11. Two different lincomycin-resistance determinants (lmrA and lmrB) from Streptomyces lincolnensis 78-11 were cloned in Streptomyces lividans 66 TK23. The gene lmrA was localized on a 2.16 kb fragment, the determined nucleotide sequence of which encoded a single open reading frame 1446 bp long. Analysis of the deduced amino acid sequence suggested the presence of 12 membrane-spanning domains and showed significant similarities to the methylenomycin-resistance protein (Mmr) from Streptomyces coelicolor, the QacA protein from Staphylococcus aureus, and several tetracycline-resistance proteins from both Gram-positive and Gram-negative bacteria, as well as to some sugar-transport proteins from Escherichia coli. The lmrB gene was actively expressed from a 2.7 kb fragment. An open reading frame of 837 bp could be localized which encoded a protein that was significantly similar to 23S rRNA adenine(2058)-N-methyltransferases conferring macrolide-lincosamide-streptogramin resistance. LmrB also had putative rRNA methyltransferase activity since lincomycin resistance of ribosomes was induced in lmrB-containing strains. Surprisingly, both enzymes, LmrA and LmrB, had a substrate specificity restricted to lincomycin and did not cause resistance to other lincosamides such as celesticetin and clindamycin, or to macrolides. | 1992 | 1328813 |
| 531 | 15 | 0.9776 | p-Aminobenzoic acid and chloramphenicol biosynthesis in Streptomyces venezuelae: gene sets for a key enzyme, 4-amino-4-deoxychorismate synthase. Amplification of sequences from Streptomyces venezuelae ISP5230 genomic DNA using PCR with primers based on conserved prokaryotic pabB sequences gave two main products. One matched pabAB, a locus previously identified in S. venezuelae. The second closely resembled the conserved pabB sequence consensus and hybridized with a 3.8 kb NcoI fragment of S. venezuelae ISP5230 genomic DNA. Cloning and sequence analysis of the 3.8 kb fragment detected three ORFs, and their deduced amino acid sequences were used in BLAST searches of the GenBank database. The ORF1 product was similar to PabB in other bacteria and to the PabB domain encoded by S. venezuelae pabAB. The ORF2 product resembled PabA of other bacteria. ORF3 was incomplete; its deduced partial amino acid sequence placed it in the MocR group of GntR-type transcriptional regulators. Introducing vectors containing the 3.8 kb NcoI fragment of S. venezuelae DNA into pabA and pabB mutants of Escherichia coli, or into the Streptomyces lividans pab mutant JG10, enhanced sulfanilamide resistance in the host strains. The increased resistance was attributed to expression of the pair of discrete translationally coupled p-aminobenzoic acid biosynthesis genes (designated pabB/pabA) cloned in the 3.8 kb fragment. These represent a second set of genes encoding 4-amino-4-deoxychorismate synthase in S. venezuelae ISP5230. In contrast to the fused pabAB set previously isolated from this species, they do not participate in chloramphenicol biosynthesis, but like pabAB they can be disrupted without affecting growth on minimal medium. The gene disruption results suggest that S. venezuelae may have a third set of genes encoding PABA synthase. | 2001 | 11495989 |
| 437 | 16 | 0.9776 | Cloning of genes responsible for acetic acid resistance in Acetobacter aceti. Five acetic acid-sensitive mutants of Acetobacter aceti subsp. aceti no. 1023 were isolated by mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. Three recombinant plasmids that complemented the mutations were isolated from a gene bank of the chromosome DNA of the parental strain constructed in Escherichia coli by using cosmid vector pMVC1. One of these plasmids (pAR1611), carrying about a 30-kilobase-pair (kb) fragment that conferred acetic acid resistance to all five mutants, was further analyzed. Subcloning experiments indicated that a 8.3-kb fragment was sufficient to complement all five mutations. To identify the mutation loci and genes involved in acetic acid resistance, insertional inactivation was performed by insertion of the kanamycin resistance gene derived from E. coli plasmid pACYC177 into the cloned 8.3-kb fragment and successive integration into the chromosome of the parental strain. The results suggested that three genes, designated aarA, aarB, and aarC, were responsible for expression of acetic acid resistance. Gene products of these genes were detected by means of overproduction in E. coli by use of the lac promoter. The amino acid sequence of the aarA gene product deduced from the nucleotide sequence was significantly similar to those of the citrate synthases (CSs) of E. coli and other bacteria. The A. aceti mutants defective in the aarA gene were found to lack CS activity, which was restored by introduction of a plasmid containing the aarA gene. A mutation in the CS gene of E. coli was also complemented by the aarA gene. These results indicate that aarA is the CS gene. | 1990 | 2156811 |
| 494 | 17 | 0.9776 | The mercury resistance operon of the IncJ plasmid pMERPH exhibits structural and regulatory divergence from other Gram-negative mer operons. The bacterial mercury resistance determinant carried on the IncJ plasmid pMERPH has been characterized further by DNA sequence analysis. From the sequence of a 4097 bp Bg/II fragment which confers mercury resistance, it is predicted that the determinant consists of the genes merT, merP, merC and merA. The level of DNA sequence similarity between these genes and those of the mer determinant of Tn21 was between 56 center dot 4 and 62 center dot 4%. A neighbour-joining phylogenetic tree of merA gene sequences was constructed which suggested that pMERPH bears the most divergent Gram-negative mer determinant characterized to date. Although the determinant from pMERPH has been shown to be inducible, no regulatory genes have been found within the Bg/II fragment and it is suggested that a regulatory gene may be located elsewhere on the plasmid. The cloned determinant has been shown to express mercury resistance constitutively. Analysis of the pMERPH mer operator/promoter (O/P) region in vivo has shown constitutive expression from the mer PTCPA promoter, which could be partially repressed by the presence of a trans-acting MerR protein from a Tn21-like mer determinant. This incomplete repression of mer PTCPA promoter activity may be due to the presence of an extra base between the -35 and -10 sequences of the promoter and/or to variation in the MerR binding sites in the O/P region. Expression from the partially repressed mer PTCPA promoter could be restored by the addition of inducing levels of Hg2+ ions. Using the polymerase chain reaction with primers designed to amplify regions in the merP and merA genes, 1 center dot 37 kb pMERPH-like sequences have been amplified from the IncJ plasmid R391, the environmental isolate SE2 and from DNA isolated directly from non-cultivated bacteria in River Mersey sediment. This suggests that pMERPH-like sequences, although rare, are nevertheless persistent in natural environments. | 1996 | 8932707 |
| 6348 | 18 | 0.9776 | Overexpression of cold shock protein A of Psychromonas arctica KOPRI 22215 confers cold-resistance. A polar bacterium was isolated from Arctic sea sediments and identified as Psychromonas artica, based on 16S rDNA sequence. Psychromonas artica KOPRI 22215 has an optimal growth temperature of 10 degrees C and a maximum growth temperature of 25 degrees C, suggesting this bacterium is a psychrophile. Cold shock proteins (Csps) are induced upon temperature downshift by more than 10 degrees C. Functional studies have researched mostly Csps of a mesophilic bacterium Escherichia coli, but not on those of psychrophilic bacteria. In an effort to understand the molecular mechanisms of psychrophilic bacteria that allow it withstand freezing environments, we cloned a gene encoding a cold shock protein from P. artica KOPRI 22215 (CspA(Pa)) using the conserved sequences in csp genes. The 204 bp-long ORF encoded a protein of 68 amino acids, sharing 56% homology to previously reported E. coli CspA protein. When CspA(Pa) was overexpressed in E. coli, it caused cell growth-retardation and morphological elongation. Interestingly, overexpression of CspA(Pa) drastically increased the host's cold-resistance by more than ten times, suggesting the protein aids survival in polar environments. | 2010 | 20169403 |
| 6012 | 19 | 0.9775 | Metal resistance-related genes are differently expressed in response to copper and zinc ion in six Acidithiobacillus ferrooxidans strains. Metal resistance of acidophilic bacteria is very significant during bioleaching of copper ores since high concentration of metal is harmful to the growth of microorganisms. The resistance levels of six Acidithiobacillus ferrooxidans strains to 0.15 M copper and 0.2 M zinc were investigated, and eight metal resistance-related genes (afe-0022, afe-0326, afe-0329, afe-1143, afe-0602, afe-0603, afe-0604, and afe-1788) were sequenced and analyzed. The transcriptional expression levels of eight possible metal tolerance genes in six A. ferrooxidans strains exposed to 0.15 M Cu(2+) and 0.2 M Zn(2+) were determined by real-time quantitative PCR (RT-qPCR), respectively. The copper resistance levels of six A. ferrooxidans strains declined followed by DY26, DX5, DY15, GD-B, GD-0, and YTW. The zinc tolerance levels of six A. ferrooxidans strains exposed to 0.2 M Zn(2+) from high to low were YTW > GD-B > DY26 > GD-0 > DX5 > DY15. Seven metal tolerance-related genes all presented in the genome of six strains, except afe-0604. The metal resistance-related genes showed different transcriptional expression patterns in six A. ferrooxidans strains. The expression of gene afe-0326 and afe-0022 in six A. ferrooxidans strains in response to 0.15 M Cu(2+) showed the same trend with the resistance levels. The expression levels of genes afe-0602, afe-0603, afe-0604, and afe-1788 in six strains response to 0.2 M Zn(2+) did not show a clear correlation between the zinc tolerance levels of six strains. According to the results of RT-qPCR and bioinformatics analysis, the proteins encoded by afe-0022, afe-0326, afe-0329, and afe-1143 were related to Cu(2+) transport of A. ferrooxidans strains. | 2014 | 25023638 |