SILA - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
635300.9653Diversity of silver resistance genes in IncH incompatibility group plasmids. Silver compounds are used as antimicrobial agents in medicine and bacteria that develop resistance to silver cations (Ag(+)) pose problems similar to those of antibiotic-resistant bacteria. The first set of Ag(+) resistance genes (sil) was from plasmid pMG101, now assigned to the IncHI incompatibility group. Questions of whether sil genes are unique to pMG101 or are more widely found, and whether they are associated with a specific incompatibility group or occur in many plasmid groups and on bacterial chromosomes were addressed. sil genes were identified in five IncH plasmids, but not in plasmids of the IncP incompatibility group. Three sil genes (silP, silR and silE) from these plasmids were PCR-amplified, cloned, sequenced and compared to those of pMG101. Differences of 0-50 nt per kb of sequence were found. Predicted gene products were 0-6% different in amino acid sequence, but the differences did not alter residues thought to be involved in protein function (see supplementary data at http://mic.sgmjournals.org or http://www.uic.edu/depts/mcmi/individual/gupta/index.htm). For representative IncH plasmid R476b and pMG101 the effects of Ag(+) exposure on resistance levels were measured by growth. The inducibility of silC, silR and silE gene expression after Ag(+) exposure was studied by reverse transcriptase (RT)-PCR. Silver resistance increased after Ag(+) exposure for strains carrying plasmid R476b. silC and silE expression from R476b was inducible after Ag(+) exposure and was constitutive and high from pMG101. The mRNA levels for the regulatory gene silR was constitutive for both pMG101 and R476b. Close homologues for silABC(ORF96)RS from pMG101 are clustered on the chromosomes of Escherichia coli strains K-12 and O157:H7, without contiguous silP and silE homologues. Insertion deletions of the E. coli K-12 chromosomal homologues for silA and silP gave Ag(+) hypersensitivity for growth. The silA homologue knockout was complemented back to wild-type resistance by the same gene cloned on a plasmid. Homologues of sil genes have also been identified on other enterobacterial genomes.200111739772
570310.9633Genetic determinants and phenotypic characteristics of heavy metal and biocide tolerance among multidrug-resistant and susceptible Gram-negative bacilli clinical isolates. Antimicrobial resistance is a major health care problem as well as a concern for global public health. As a result, the use of nonantibiotic antimicrobials, such as heavy metals and biocides, has increased in a bid to control the spread of antibiotic-resistant bacteria. Consequently, heavy metal tolerance genes (HMTGs) and biocide tolerance genes (BTGs) have been more frequently detected in Gram-negative bacilli. In this study, we searched for acquired HMTGs, BTGs, and antibiotic resistance genes (ARGs) and determined the MICs of common heavy metals and biocides in multidrug-resistant and susceptible Gram-negative bacilli clinical isolates. A high frequency of silA and pcoD genes was mainly detected among Klebsiella spp. and Enterobacter cloacae regardless of their susceptible profile. The merA gene was also found in isolates carrying silA/pcoD genes. ARGs were detected in isolates that harboured silA and/or pcoD genes. BTGs (qacΔE, ydgE, ydgF, mdfA, and emrE) were mostly detected in Klebsiella pneumoniae and E. cloacae isolates regardless of their susceptibility profile, and these isolates often co-harboured HMTGs and/or ARGs. Higher copper sulphate MIC values were obtained under aerobic conditions, regardless of the presence or absence of pcoD and/or silA genes. Nevertheless, in most isolates carrying pcoD/silA, higher copper sulphate MIC values were determined under anaerobic conditions. Regarding AgNO(3), no significant differences in MIC values were observed for isolates with or without the silA gene. Our results show a broad distribution of HMTGs, BTGs, and ARGs in bacteria causing health care-associated infections, which could contribute to the co-selection of hospital pathogens resistant to multiple and diverse antimicrobials.202539984044
329320.9614High occurrence of heavy metal tolerance genes in bacteria isolated from wastewater: A new concern? Some heavy metals have antimicrobial activity and are considered as potential alternatives to traditional antibiotic therapy. However, heavy metal tolerance genes (HMTG) have been already detected and coding different tolerance mechanisms. Considering that certain metals are promising for antimicrobial therapy, evaluation of HMTG dissemination in bacteria from sewage is essential to understand the evolution of these bacteria and to predict antimicrobial use and control. The present study aimed to evaluate the occurrence of bacteria carrying HMTG in samples of hospital wastewater and from urban wastewater treatment plant (WWTP). The acquired HMTG were investigated by PCR in bacterial collection previously characterized for antibiotic resistant genes (ARGs). HMTG searched include arsB (arsenic efflux pump), czcA (cadmium, zinc and cobalt efflux pump), merA (mercuric reductase), pcoD (copper efflux pump), silA (silver efflux pump) and terF (tellurite resistance protein). Among 45 isolates, 82% of them carried at last one HMTG, in which the silA and pcoD tolerance genes were the most prevalent. A very strong positive correlation was found between these genes (r = 0.91, p < 0.0001). Tolerance genes merA, arsB, czcA and terF were detected in 47%, 13%, 13% and 7% of the isolates, respectively. It was found that 15 isolates co-harbored ARGs (β-lactamase encoding genes). HMTG are probably more dispersed than ARGs in bacteria, representing a new concern for heavy metals use as effective antimicrobials. To the best of our knowledge, this is the first study on the HMTG searched in Hafnia alvei, Serratia fonticola and Serratia liquefaciens. Hospital wastewater treatment implementation and additional technologies for treatment in WWTP can reduce the impacts on water resources and HMTG spread, ensureing the environmental and human health safety.202133098821
173730.9605Isolation and Characterisation of Human-Derived bla(KPC-3)-Producing Salmonella enterica Serovar Rissen in 2018. In this study, we describe a Salmonella enterica serovar (S.) Rissen strain with a reduced susceptibility to meropenem, isolated from a urinary infection in an 89-year-old woman in 2018 during activity surveillance in Italy (Enter-Net Italia). The genomic characteristics, pathogenicity, and antimicrobial resistance mechanisms were investigated via a genomic approach. Antimicrobial susceptibility testing revealed a "susceptible, increased exposure" phenotype to meropenem in the S. Rissen strain (4_29_19). Whole-genome sequencing (WGS) was performed using both the NovaSeq 6000 S4 PE150 XP platform (Illumina, San Diego, CA, USA) and MinION (Oxford Nanopore). The S. Rissen 4_29_19 strain harboured two plasmids: a pKpQIL-like plasmid carrying the bla(KPC-3) resistance gene in a Tn4401a transposon (pKPC_4_29_19), and a ColE-like plasmid (p4_4_29_19) without resistance genes, highly prevalent among Enterobacterales. Comparative analysis revealed that the pKPC_4_29_19 plasmid was highly related to the pKpQIL reference plasmid (GU595196), with 57% coverage and 99.96% identity, but lacking a region of about 30 kb, involving the FIIK(2) replicon region and the entire transfer locus, causing the loss of its ability to conjugate. To our knowledge, this is the first time that a pKpQIL-like plasmid, carrying bla(KPC-3), highly diffused in Klebsiella pneumoniae strains, has been identified in a Salmonella strain in our country. The acquisition of bla(KPC) genes by Salmonella spp. is extremely rare, and is reported only sporadically. In zoonotic bacteria isolated from humans, the presence of a carbapenem resistance gene carried by mobile genetic elements, usually described in healthcare-associated infection bacteria, represents an important concern for public health.202337760674
179340.9603Comparative Genome Analysis of an Extensively Drug-Resistant Isolate of Avian Sequence Type 167 Escherichia coli Strain Sanji with Novel In Silico Serotype O89b:H9. Extensive drug resistance (XDR) is an escalating global problem. Escherichia coli strain Sanji was isolated from an outbreak of pheasant colibacillosis in Fujian province, China, in 2011. This strain has XDR properties, exhibiting sensitivity to carbapenems but no other classes of known antibiotics. Whole-genome sequencing revealed a total of 32 known antibiotic resistance genes, many associated with insertion sequence 26 (IS26) elements. These were found on the Sanji chromosome and 2 of its 6 plasmids, pSJ_255 and pSJ_82. The Sanji chromosome also harbors a type 2 secretion system (T2SS), a type 3 secretion system (T3SS), a type 6 secretion system (T6SS), and several putative prophages. Sanji and other ST167 strains have a previously uncharacterized O-antigen (O89b) that is most closely related to serotype O89 as determined on the basis of analysis of the wzm-wzt genes and in silico serotyping. This O89b-antigen gene cluster was also found in the genomes of a few other pathogenic sequence type 617 (ST617) and ST10 complex strains. A time-scaled phylogeny inferred from comparative single nucleotide variant analysis indicated that development of these O89b-containing lineages emerged about 30 years ago. Comparative sequence analysis revealed that the core genome of Sanji is nearly identical to that of several recently sequenced strains of pathogenic XDR E. coli belonging to the ST167 group. Comparison of the mobile elements among the different ST167 genomes revealed that each genome carries a distinct set of multidrug resistance genes on different types of plasmids, indicating that there are multiple paths toward the emergence of XDR in E. coli. IMPORTANCE E. coli strain Sanji is the first sequenced and analyzed genome of the recently emerged pathogenic XDR strains with sequence type ST167 and novel in silico serotype O89b:H9. Comparison of the genomes of Sanji with other ST167 strains revealed distinct sets of different plasmids, mobile IS elements, and antibiotic resistance genes in each genome, indicating that there exist multiple paths toward achieving XDR. The emergence of these pathogenic ST167 E. coli strains with diverse XDR capabilities highlights the difficulty of preventing or mitigating the development of XDR properties in bacteria and points to the importance of better understanding of the shared underlying virulence mechanisms and physiology of pathogenic bacteria.201930834329
153750.9602Occurrence and mechanisms of tigecycline resistance in carbapenem- and colistin-resistant Klebsiella pneumoniae in Thailand. Tigecycline has been regarded as one of the most important last-resort antibiotics for the treatment of infections caused by extensively drug-resistant (XDR) bacteria, particularly carbapenem- and colistin-resistant Klebsiella pneumoniae (C-C-RKP). However, reports on tigecycline resistance have been growing. Overall, ~ 4000 K. pneumoniae clinical isolates were collected over a five-year period (2017-2021), in which 240 isolates of C-C-RKP were investigated. Most of these isolates (91.7%) were resistant to tigecycline. Notably, a high-risk clone of ST16 was predominantly identified, which was associated with the co-harboring of bla(NDM-1) and bla(OXA-232) genes. Their major mechanism of tigecycline resistance was the overexpression of efflux pump acrB gene and its regulator RamA, which was caused by mutations in RamR (M184V, Y59C, I141T, A28T, C99/C100 insertion), in RamR binding site (PI) of ramA gene (C139T), in MarR (S82G), and/or in AcrR (L154R, R13Q). Interestingly, four isolates of ST147 carried the mutated tet(A) efflux pump gene. To our knowledge, this is the first report on the prevalence and mechanisms of tigecycline resistance in C-C-RKP isolated from Thailand. The high incidence of tigecycline resistance observed among C-C-RKP in this study reflects an ongoing evolution of XDR bacteria against the last-resort antibiotics, which demands urgent action.202438433246
121160.9601Molecular characterization of multidrug-resistant Escherichia coli of the phylogroups A and C in dairy calves with meningitis and septicemia. Escherichia coli is an important cause of septicemia (SEPEC) and neonatal meningitis (NMEC) in dairy calves. However, the diversity of virulence profiles, phylogroups, antimicrobial resistance patterns, carriage of integron structures, and fluoroquinolone (FQ) resistance mechanisms have not been fully investigated. Also, there is a paucity of knowledge about the virulence profiles and frequency of potential SEPEC in feces from calves with or without diarrhea. This study aimed to characterize the virulence potential, phylogroups, antimicrobial susceptibility, integron content, and FQ-resistance mechanisms in Escherichia coli isolated from calves with meningitis and septicemia. Additionally, the virulence genes (VGs) and profiles of E. coli isolated from diarrheic and non-diarrheic calves were compared between them and together with NMEC and SEPEC in order to identify shared profiles. Tissue and fluid samples from eight dairy calves with septicemia, four of which had concurrent meningitis, were processed for bacteriology and histopathology. Typing of VGs was assessed in 166 isolates from diverse samples of each calf. Selected isolates were evaluated for antimicrobial susceptibility by the disk diffusion test. Phylogroups, integron gene cassettes cartography, and FQ-resistance determinants were analyzed by PCR, sequencing, and bioinformatic tools. Furthermore, 109 fecal samples and 700 fecal isolates from dairy calves with or without diarrhea were evaluated to detect 19 VGs by uniplex PCR. Highly diverse VG profiles were characterized among NMEC and SEPEC isolates, but iucD was the predominant virulence marker. Histologic lesions in all calves supported their pathogenicity. Selected isolates mainly belonged to phylogroups A and C and showed multidrug resistance. Classic (dfrA17 and arr3-dfrA27) and complex (dfrA17-aadA5::ISCR1::bla(CTX-M-2)) class 1 integrons were identified. Target-site mutations in GyrA (S83L and D87N) and ParC (S80I) encoding genes were associated with FQ resistance. The VGs detected more frequently in fecal samples included f17G (50%), papC (30%), iucD (20%), clpG (19%), eae (16%), and afaE-8 (13%). Fecal isolates displaying the profiles of f17 or potential SEPEC were found in 25% of calves with and without diarrhea. The frequency of E. coli VGs and profiles did not differ between both groups (p > 0.05) and were identical or similar to those found in NMEC and SEPEC. Overall, multidrug-resistant E. coli isolates with diverse VG profiles and belonging to phylogroups A and C can be implicated in natural cases of meningitis and septicemia. Their resistance phenotypes can be partially explained by class 1 integron gene cassettes and target-site mutations in gyrA and parC. These results highlight the value of antimicrobial resistance surveillance in pathogenic bacteria isolated from food-producing animals. Besides, calves frequently shed potential SEPEC in their feces as commensals ("Trojan horse"). Thus, these bacteria may be disseminated in the farm environment, causing septicemia and meningitis under predisposing factors.202234982979
227070.9600Antibiotic resistant bacteria and resistance genes in biofilms in clinical wastewater networks. Increasing isolation rates of resistant bacteria in the last years require identification of potential infection reservoirs in healthcare facilities. Especially the clinical wastewater network represents a potential source of antibiotic resistant bacteria. In this work, the siphons of the sanitary installations from 18 hospital rooms of two German hospitals were examined for antibiotic resistant bacteria and antibiotic residues including siphons of showers and washbasins and toilets in sanitary units of psychosomatic, haemato-oncological, and rehabilitation wards. In addition, in seven rooms of the haemato-oncological ward, the effect of 24 h of stagnation on the antibiotic concentrations and MDR (multi-drug-resistant) bacteria in biofilms was evaluated. Whereas no antibiotic residues were found in the psychosomatic ward, potential selective concentrations of piperacillin, meropenem and ciprofloxacin were detected at a rehabilitation ward and ciprofloxacin and trimethoprim were present at a haemato-oncology ward. Antibiotic resistant bacteria were isolated from the siphons of all wards, however in the psychosomatic ward, only one MDR strain with resistance to piperacillin, third generation cephalosporins and quinolones (3MRGN) was detected. In contrast, the other two wards yielded 11 carbapenemase producing MDR isolates and 15 3MRGN strains. The isolates from the haemato-oncological ward belonged mostly to two specific rare sequence types (ST) (P. aeruginosa ST823 and Enterobacter cloacae complex ST167). In conclusion, clinical wastewater systems represent a reservoir for multi-drug-resistant bacteria. Consequently, preventive and intervention measures should not start at the wastewater treatment in the treatment plant, but already in the immediate surroundings of the patient, in order to minimize the infection potential.201930905579
524080.9599Dynamics of Antimicrobial Resistance Carriage in Koalas (Phascolarctos Cinereus) and Pteropid Bats (Pteropus Poliocephalus) Before, During and After Wildfires. In the 2019-2020 summer, wildfires decimated the Australian bush environment and impacted wildlife species, including koalas (Phascolarctos cinereus) and grey headed flying fox pups (Pteropid bats, Pteropus poliocephalus). Consequently, hundreds of koalas and thousands of bat pups entered wildlife hospitals with fire-related injuries/illness, where some individuals received antimicrobial therapy. This study investigated the dynamics of antimicrobial resistance (AMR) in pre-fire, fire-affected and post-fire koalas and Pteropid bat pups. PCR and DNA sequencing were used to screen DNA samples extracted from faeces (koalas and bats) and cloacal swabs (koalas) for class 1 integrons, a genetic determinant of AMR, and to identify integron-associated antibiotic resistance genes. Class 1 integrons were detected in 25.5% of koalas (68 of 267) and 59.4% of bats (92 of 155). Integrons contained genes conferring resistance to aminoglycosides, trimethoprim and beta-lactams. Samples were also screened for blaTEM (beta-lactam) resistance genes, which were detected in 2.6% of koalas (7 of 267) and 25.2% of bats (39 of 155). Integron occurrence was significantly higher in fire-affected koalas in-care compared to wild pre-fire koalas (P < 0.0001). Integron and blaTEM occurrence were not significantly different in fire-affected bats compared to pre-fire bats (P > 0.05), however, their occurrence was significantly higher in fire-affected bats in-care compared to wild fire-affected bats (P < 0.0001 and P = 0.0488 respectively). The observed shifts of AMR dynamics in wildfire-impacted species flags the need for judicious antibiotic use when treating fire-affected wildlife to minimise unwanted selective pressure and negative treatment outcomes associated with carriage of resistance genes and antibiotic resistant bacteria.202438332161
185090.9599One Health Spread of 16S Ribosomal RNA Methyltransferase-Harboring Gram-Negative Bacterial Genomes: An Overview of the Americas. Aminoglycoside antimicrobials remain valuable therapeutic options, but their effectiveness has been threatened by the production of bacterial 16S ribosomal RNA methyltransferases (16S-RMTases). In this study, we evaluated the genomic epidemiology of 16S-RMTase genes among Gram-negative bacteria circulating in the American continent. A total of 4877 16S-RMTase sequences were identified mainly in Enterobacterales and nonfermenting Gram-negative bacilli isolated from humans, animals, foods, and the environment during 1931-2023. Most of the sequences identified were found in the United States, Brazil, Canada, and Mexico, and the prevalence of 16S-RMTase genes have increased in the last five years (2018-2022). The three species most frequently carrying 16S-RMTase genes were Acinetobacter baummannii, Klebsiella pneumoniae, and Escherichia coli. The armA gene was the most prevalent, but other 16S-RMTase genes (e.g., rmtB, rmtE, and rmtF) could be emerging backstage. More than 90% of 16S-RMTase sequences in the Americas were found in North American countries, and although the 16S-RMTase genes were less prevalent in Central and South American countries, these findings may be underestimations due to limited genomic data. Therefore, whole-genome sequence-based studies focusing on aminoglycoside resistance using a One Health approach in low- and middle-income countries should be encouraged.202337764972
3000100.9599A large conjugative Acinetobacter baumannii plasmid carrying the sul2 sulphonamide and strAB streptomycin resistance genes. Acinetobacter baumannii is an important nosocomial pathogen that often complicates treatment because of its high level of resistance to antibiotics. Though plasmids can potentially introduce various genes into bacterial strains, compared to other Gram-negative bacteria, information about the unique A. baumannii plasmid repertoire is limited. Here, whole genome sequence data was used to determine the plasmid content of strain A297 (RUH875), the reference strain for the globally disseminated multiply resistant A. baumannii clone, global clone 1(GC1). A297 contains three plasmids. Two known plasmids were present; one, pA297-1 (pRAY*), carries the aadB gentamicin, kanamycin and tobramycin resistance gene and another is an 8.7kb cryptic plasmid often found in GC1 isolates. The third plasmid, pA297-3, is 200kb and carries the sul2 sulphonamide resistance gene and strAB streptomycin resistance gene within Tn6172 and a mer mercuric ion resistance module elsewhere. pA297-3 transferred sulphonamide, streptomycin and mercuric ion resistance at high frequency to a susceptible A. baumannii recipient, and contains several genes potentially involved in conjugative transfer. However, a relaxase gene was not found. It also includes several genes encoding proteins involved in DNA metabolism such as partitioning. However, a gene encoding a replication initiation protein could not be found. pA297-3 includes two copies of a Miniature Inverted-Repeat Transposable Element (MITE), named MITE-297, bracketing a 77.5kb fragment, which contains several IS and the mer module. Several plasmids related to but smaller than pA297-3 were found in the GenBank nucleotide database. They were found in different A. baumannii clones and are wide spread. They all contain either Tn6172 or a variant in the same position in the backbone as Tn6172 in pA297-3. Some related plasmids have lost the segment between the MITE-297 copies and retain only one MITE-297. Others have segments of various lengths between two MITE-297 copies, and these can be derived from the region in pA297-3 via a deletion adjacent to IS related to IS26 such as IS1007 or IS1007-like. pA297-3 and its relatives represent a third type of conjugative Acinetobacter plasmid that contributes to the dissemination of antibiotic resistance in this species.201627601280
1844110.9598Polymyxin E-Resistant Gram-Negative Bacteria in Tunisia and Neighboring Countries: Are There Commonalities? The current global dissemination of polymyxin E resistance constitutes a real public health threat because of the restricted therapeutic options. This review provides a comprehensive assessment of the epidemiology of polymyxin E-resistant bacteria, with special reference to colistin-resistant Gram-negative bacteria in Tunisia and neighboring countries, based on available published data to January 2020. We aimed to determine their prevalence by species and origin, shedding light on the different genes involved and illustrating their genetic support, genetic environment, and geographic distribution. We found that colistin resistance varies considerably among countries. A majority of the research has focused on Algeria (13 of 32), followed by Tunisia (nine of 32), Egypt (nine of 32), and Libya (one of 32). All these reports showed that colistin-resistant Gram-negative bacteria were dramatically disseminated in these countries, as well as in African wildlife. Moreover, high prevalence of these isolates was recorded from various sources (humans, animals, food products, and natural environments). Colistin resistance was mainly reported among Enterobacteriaceae, particularly Klebsiella pneumoniae and Escherichia coli. It was associated with chromosomal mutations and plasmid-mediated genes (mcr). Four mcr variants (mcr1, mcr2, mcr3, and mcr8), mobilized by several plasmid types (IncHI2, IncP, IncFIB, and IncI2), were detected in these countries and were responsible for their rapid spread. Countrywide dissemination of high-risk clones was also observed, including E. coli ST10 and K. pneumoniae ST101 and ST11. Intensified efforts to raise awareness of antibiotic use and legalization thereon are required in order to monitor and minimize the spread of multidrug-resistant bacteria.202134815678
1397120.9598Genomic Features of an MDR Escherichia coli ST5506 Harboring an IncHI2/In229/bla(CTX-M-2) Array Isolated from a Migratory Black Skimmer. Migratory birds have contributed to the dissemination of multidrug-resistant (MDR) bacteria across the continents. A CTX-M-2-producing Escherichia coli was isolated from a black skimmer (Rynchops niger) in Southeast Brazil. The whole genome was sequenced using the Illumina NextSeq platform and de novo assembled by CLC. Bioinformatic analyses were carried out using tools from the Center for Genomic Epidemiology. The genome size was estimated at 4.9 Mb, with 4790 coding sequences. A wide resistome was detected, with genes encoding resistance to several clinically significant antimicrobials, heavy metals, and biocides. The bla(CTX-M-2) gene was inserted in an In229 class 1 integron inside a ∆TnAs3 transposon located in an IncHI2/ST2 plasmid. The strain was assigned to ST5506, CH type fumC19/fimH32, serotype O8:K87, and phylogroup B1. Virulence genes associated with survival in acid conditions, increased serum survival, and adherence were also identified. These data highlight the role of migratory seabirds as reservoirs and carriers of antimicrobial resistance determinants and can help to elucidate the antimicrobial resistance dynamics under a One Health perspective.202438251370
1665130.9598Colistin resistance emerges in pandrug-resistant Klebsiella pneumoniae epidemic clones in Rio de Janeiro, Brazil. Klebsiella pneumoniae is an important human pathogen, able to accumulate and disseminate a variety of antimicrobial resistance genes. Resistance to colistin, one of the last therapeutic options for multi-drug-resistant bacteria, has been reported increasingly. Colistin-resistant K. pneumoniae (ColRKp) emerged in two hospitals in Rio de Janeiro state, Brazil in 2016. The aim of this study was to investigate if these ColRKp isolates were clonally related when compared between hospitals, to identify the molecular mechanisms of colistin resistance, and to describe other antimicrobial resistance genes carried by isolates. Twenty-three isolates were successively recovered, and the whole-genome sequence was analysed for 10, each of a different pulsed-field gel electrophoresis (PFGE) type. Although some PFGE clusters were found, none of them included isolates from both hospitals. Half of the isolates were assigned to CC258, three to ST152 and two to ST15. One isolate was pandrug resistant, one was extensively drug resistant, and the others were multi-drug resistant. Colistin resistance was related to mutations in mgrB, pmrB, phoQ and crrB. Eleven new mutations were found in these genes, including two nucleotide deletions in mgrB. All isolates were carbapenem resistant, and seven were associated with carbapenemase carriage (bla(KPC-2) in six isolates and bla(OXA-370) in one isolate). All isolates had a bla(CTX-M), and two had a 16S ribosomal RNA methyltransferase encoding gene (armA and rmtB). ColRKp were composed of epidemic clones, but cross-dissemination between hospitals was not detected. Colistin resistance emerged with several novel mutations amid highly resistant strains, further restricting the number of drugs available and leading to pandrug resistance.201931479740
1513140.9596Occurrence and Characterization of NDM-1-Producing Shewanella spp. and Acinetobacter portensis Co-Harboring tet(X3) in a Chinese Dairy Farm. Bacteria with carbapenem or tigecycline resistance have been spreading widely among humans, animals and the environment globally, being great threats to public health. However, bacteria co-carrying drug resistance genes of carbapenem and tigecycline in Shewanella and Acinetobacter species remain to be investigated. Here, we detected nine bla(NDM-1)-carrying Shewanella spp. isolates as well as three A. portensis isolates co-harboring tet(X3) and bla(NDM-1) from seventy-two samples collected from a dairy farm in China. To explore their genomic characteristic and transmission mechanism, we utilized various methods, including PCR, antimicrobial susceptibility testing, conjugation experiment, whole-genome sequencing, circular intermediate identification and bioinformatics analysis. Clonal dissemination was found among three A. portensis, of which tet(X3) and bla(NDM-1) were located on a novel non-conjugative plasmid pJNE5-X3_NDM-1 (333,311 bp), and the circular intermediate ΔISCR2-tet(X3)-bla(NDM-1) was identified. Moreover, there was another copy of tet(X3) on the chromosome of A. portensis. It was verified that bla(NDM-1) could be transferred to Escherichia coli C600 from Shewanella spp. by conjugation, and self-transmissible IncA/C(2) plasmids mediated the transmission of bla(NDM-1) in Shewanella spp. strains. Stringent surveillance was warranted to curb the transmission of such vital resistance genes.202236290080
1874150.9596Potential sources and characteristic occurrence of mobile colistin resistance (mcr) gene-harbouring bacteria recovered from the poultry sector: a literature synthesis specific to high-income countries. Understanding the sources, prevalence, phenotypic and genotypic characteristics of mcr gene-harbouring bacteria (MGHB) in the poultry sector is crucial to supplement existing information. Through this, the plasmid-mediated colistin resistance (PMCR) could be tackled to improve food safety and reduce public health risks. Therefore, we conducted a literature synthesis of potential sources and characteristic occurrence of MGHB recovered from the poultry sector specific to the high-income countries (HICs). Colistin (COL) is a last-resort antibiotic used for treating deadly infections. For more than 60 years, COL has been used in the poultry sector globally, including the HICs. The emergence and rapid spread of mobile COL resistance (mcr) genes threaten the clinical use of COL. Currently, ten mcr genes (mcr-1 to mcr-10) have been described. By horizontal and vertical transfer, the mcr-1, mcr-2, mcr-3, mcr-4, mcr-5, and mcr-9 genes have disseminated in the poultry sector in HICs, thus posing a grave danger to animal and human health, as harboured by Escherichia coli, Klebsiella pneumoniae, Salmonella species, and Aeromonas isolates. Conjugative and non-conjugative plasmids are the major backbones for mcr in poultry isolates from HICs. The mcr-1, mcr-3 and mcr-9 have been integrated into the chromosome, making them persist among the clones. Transposons, insertion sequences (IS), especially ISApl1 located downstream and upstream of mcr, and integrons also drive the COL resistance in isolates recovered from the poultry sector in HICs. Genes coding multi-and extensive-drug resistance and virulence factors are often co-carried with mcr on chromosome and plasmids in poultry isolates. Transmission of mcr to/among poultry strains in HICs is clonally unrestricted. Additionally, the contact with poultry birds, manure, meat/egg, farmer's wears/farm equipment, consumption of contaminated poultry meat/egg and associated products, and trade of poultry-related products continue to serve as transmission routes of MGHB in HICs. Indeed, the policymakers, especially those involved in antimicrobial resistance and agricultural and poultry sector stakeholders-clinical microbiologists, farmers, veterinarians, occupational health clinicians and related specialists, consumers, and the general public will find this current literature synthesis very useful.202134707919
1851160.9595Phylogenomics, epigenomics, virulome and mobilome of Gram-negative bacteria co-resistant to carbapenems and polymyxins: a One Health systematic review and meta-analyses. Gram-negative bacteria (GNB) continue to develop resistance against important antibiotics including last-resort ones such as carbapenems and polymyxins. An analysis of GNB with co-resistance to carbapenems and polymyxins from a One Health perspective is presented. Data of species name, country, source of isolation, resistance genes (ARGs), plasmid type, clones and mobile genetic elements (MGEs) were deduced from 129 articles from January 2016 to March 2021. Available genomes and plasmids were obtained from PATRIC and NCBI. Resistomes and methylomes were analysed using BAcWGSTdb and REBASE whilst Kaptive was used to predict capsule typing. Plasmids and other MEGs were identified using MGE Finder and ResFinder. Phylogenetic analyses were done using RAxML and annotated with MEGA 7. A total of 877 isolates, 32 genomes and 44 plasmid sequences were analysed. Most of these isolates were reported in Asian countries and were isolated from clinical, animal and environmental sources. Colistin resistance was mostly mediated by mgrB inactivation (37%; n = 322) and mcr-1 (36%; n = 312), while OXA-48/181 was the most reported carbapenemase. IncX and IncI were the most common plasmids hosting carbapenemases and mcr genes. The isolates were co-resistant to other antibiotics, with floR (chloramphenicol) and fosA3 (fosfomycin) being common; E. coli ST156 and K. pneumoniae ST258 strains were common globally. Virulence genes and capsular KL-types were also detected. Type I, II, III and IV restriction modification systems were detected, comprising various MTases and restriction enzymes. The escalation of highly resistant isolates drains the economy due to untreatable bacterial infections, which leads to increasing global mortality rates and healthcare costs.202235129271
1875170.9593Mobile Colistin Resistance (mcr) Gene-Containing Organisms in Poultry Sector in Low- and Middle-Income Countries: Epidemiology, Characteristics, and One Health Control Strategies. Mobile colistin resistance (mcr) genes (mcr-1 to mcr-10) are plasmid-encoded genes that threaten the clinical utility of colistin (COL), one of the highest-priority critically important antibiotics (HP-CIAs) used to treat infections caused by multidrug-resistant and extensively drug-resistant bacteria in humans and animals. For more than six decades, COL has been used largely unregulated in the poultry sector in low- and middle-income countries (LMICs), and this has led to the development/spread of mcr gene-containing bacteria (MGCB). The prevalence rates of mcr-positive organisms from the poultry sector in LMICs between January 1970 and May 2023 range between 0.51% and 58.8%. Through horizontal gene transfer, conjugative plasmids possessing insertion sequences (ISs) (especially ISApl1), transposons (predominantly Tn6330), and integrons have enhanced the spread of mcr-1, mcr-2, mcr-3, mcr-4, mcr-5, mcr-7, mcr-8, mcr-9, and mcr-10 in the poultry sector in LMICs. These genes are harboured by Escherichia, Klebsiella, Proteus, Salmonella, Cronobacter, Citrobacter, Enterobacter, Shigella, Providencia, Aeromonas, Raoultella, Pseudomonas, and Acinetobacter species, belonging to diverse clones. The mcr-1, mcr-3, and mcr-10 genes have also been integrated into the chromosomes of these bacteria and are mobilizable by ISs and integrative conjugative elements. These bacteria often coexpress mcr with virulence genes and other genes conferring resistance to HP-CIAs, such as extended-spectrum cephalosporins, carbapenems, fosfomycin, fluoroquinolone, and tigecycline. The transmission routes and dynamics of MGCB from the poultry sector in LMICs within the One Health triad include contact with poultry birds, feed/drinking water, manure, poultry farmers and their farm workwear, farming equipment, the consumption and sale of contaminated poultry meat/egg and associated products, etc. The use of pre/probiotics and other non-antimicrobial alternatives in the raising of birds, the judicious use of non-critically important antibiotics for therapy, the banning of nontherapeutic COL use, improved vaccination, biosecurity, hand hygiene and sanitization, the development of rapid diagnostic test kits, and the intensified surveillance of mcr genes, among others, could effectively control the spread of MGCB from the poultry sector in LMICs.202337508213
2001180.9593Identification of plasmids co-carrying cfr(D)/optrA and cfr(D2)/poxtA linezolid resistance genes in two Enterococcus avium isolates from swine brain. Oxazolidinones are critically important antibiotics to treat human infections caused by multidrug-resistant bacteria, therefore the occurrence of linezolid-resistant enterococci from food-producing animals poses a serious risk to human health. In this study, Enterococcus avium 38157 and 44917 strains, isolated from the brain of two unrelated piglets, were found to carry the linezolid resistance genes cfr(D)-optrA, and cfr(D2)-poxtA, respectively. Whole genome sequencing analysis of E. avium 38157 revealed that the genes were co-located on the 36.5-kb pEa_cfr(D)-optrA plasmid showing high identity with the pAT02-c of Enterococcus faecium AT02 from pet food. The optrA region, was 99% identical to the one of the pAv-optrA plasmid from a bovine Aerococcus viridans strain, whereas the cfr(D) genetic context was identical to that of the plasmid 2 of E. faecium 15-307.1. pEa_cfr(D)-optrA was not transferable to enterococcal recipients. In E. avium 44917 a cfr(D)-like gene, named cfr(D2), and the poxtA gene were co-located on the transferable 42.6-kb pEa-cfr(D2)-poxtA plasmid 97% identical to the Tn6349 transposon of the human MRSA AOUC-0915. The cfr(D2) genetic context, fully replaced the Tn6644 that in S. aureus AOUC-0915 harbor the cfr gene. In conclusion, this is, the best of our knowledge, the first report of the new cfr(D2) gene variant. The occurrence of plasmids co-carrying two linezolid resistance genes in enterococci from food-producing animals needs close surveillance to prevent their spread to human pathogens.202337116421
5190190.9593Genomic Analysis of Cronobacter condimenti s37: Identification of Resistance and Virulence Genes and Comparison with Other Cronobacter and Closely Related Species. Cronobacter condimenti are environmental commensals that have not been associated with any clinical infections. To date, they are the least understood and described Cronobacter species within the genus. The objective of this study was to use a draft genome sequence (DGS) of the Cronobacter condimenti strain s37 to screen for genes encoding for antibiotic resistance, virulence, response to environmental stress, and biofilm formation. The strain was isolated in Poland from commercial small radish sprouts. This is the second genome of this species available in the GenBank database. The comparative genome analysis (cgMLST) of C. condimenti s37 with other Cronobacter spp. including the pathogenic species C. sakazakii and the plant-associated closely related genera Franconibacter and Siccibacter was also performed. The assembled and annotated genome of the C. condimenti s37 genome was 4,590,991 bp in length, with a total gene number of 4384, and a GC content of 55.7%. The s 37 genome encoded for genes associated with resistance to stressful environmental conditions (metal resistance genes: zinc, copper, osmotic regulation, and desiccation stress), 17 antimicrobial resistance genes encoding resistance to various classes of antibiotics and 50 genes encoding for the virulence factors. The latter were mainly genes associated with adhesion, chemotaxis, hemolysis, and biofilm formation. Cg-MLST analysis (3991 genes) revealed a greater similarity of C. condimenti s37 to S. turicensis, F. pulveris, and C. dublinensis than to other species of the genus Cronobacter. Studies on the diversity, pathogenicity, and virulence of Cronobacter species isolated from different sources are still insufficient and should certainly be continued. Especially the analysis of rare strains such as s37 is very important because it provides new information on the evolution of these bacteria. Comparative cgMLST analysis of s37 with other Cronobacter species, as well as closely related genera Franconibacter and Siccibacter, complements the knowledge on their adaptability to specific environments such as desiccation.202439201307