# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 549 | 0 | 0.9902 | Extracytoplasmic function sigma factor σ(D) confers resistance to environmental stress by enhancing mycolate synthesis and modifying peptidoglycan structures in Corynebacterium glutamicum. Mycolates are α-branched, β-hydroxylated, long-chain fatty acid specifically synthesized in bacteria in the suborder Corynebacterineae of the phylum Actinobacteria. They form an outer membrane, which functions as a permeability barrier and confers pathogenic mycobacteria to resistance to antibiotics. Although the mycolate biosynthetic pathway has been intensively studied, knowledge of transcriptional regulation of genes involved in this pathway is limited. Here, we report that the extracytoplasmic function sigma factor σ(D) is a key regulator of the mycolate synthetic genes in Corynebacterium glutamicum in the suborder. Chromatin immunoprecipitation with microarray analysis detected σ(D) -binding regions in the genome, establishing a consensus promoter sequence for σ(D) recognition. The σ(D) regulon comprised acyl-CoA carboxylase subunits, acyl-AMP ligase, polyketide synthase and mycolyltransferases; they were involved in mycolate synthesis. Indeed, deletion or overexpression of sigD encoding σ(D) modified the extractable mycolate amount. Immediately downstream of sigD, rsdA encoded anti-σ(D) and was under the control of a σ(D) -dependent promoter. Another σ(D) regulon member, l,d-transpeptidase, conferred lysozyme resistance. Thus, σ(D) modifies peptidoglycan cross-linking and enhances mycolate synthesis to provide resistance to environmental stress. | 2018 | 29148103 |
| 8751 | 1 | 0.9897 | Mutations in the Two-Component GluS-GluR Regulatory System Confer Resistance to β-Lactam Antibiotics in Burkholderia glumae. Bacteria have specific signaling systems to overcome selective pressure, such as exposure to antibiotics. The two-component system (TCS) plays an important role in the development of antibiotic resistance. Using the rice pathogen Burkholderia glumae BGR1 as a model organism, we showed that the GluS (BGLU_1G13350) - GluR (BGLU_1G13360) TCS, consisting of a sensor kinase and response regulator, respectively, contributes to β-lactam resistance through a distinct mechanism. Inactivation of gluS or gluR conferred resistance to β-lactam antibiotics in B. glumae, whereas wild-type (WT) B. glumae was susceptible to these antibiotics. In gluS and gluR mutants, the expression of genes encoding metallo-β-lactamases (MBLs) and penicillin-binding proteins (PBPs) was significantly higher than in the WT. GluR-His bound to the putative promoter regions of annotated genes encoding MBL (BGLU_1G21360) and PBPs (BGLU_1G13280 and BGLU_1G04560), functioning as a repressor. These results demonstrate that the potential to attain β-lactam resistance may be genetically concealed in the TCS, in contrast to the widely accepted view of the role of TCS in antibiotic resistance. Our findings provide a new perspective on antibiotic resistance mechanisms, and suggest a different therapeutic approach for successful control of bacterial pathogens. | 2021 | 34381438 |
| 675 | 2 | 0.9897 | Pavlovian-Type Learning in Environmental Bacteria: Regulation of Herbicide Resistance by Arsenic in Pseudomonas putida. The canonical arsRBC genes of the ars1 operon in Pseudomonas putida KT2440, which confer tolerance to arsenate and arsenite, are followed by a series of additional ORFs culminating in phoN1. The phoN1 gene encodes an acetyltransferase that imparts resistance to the glutamine synthetase inhibitor herbicide phosphinothricin (PPT). The co-expression of phoN1 and ars genes in response to environmental arsenic, along with the physiological effects, was analysed through transcriptomics of cells exposed to the oxyanion and phenotypic characterization of P. putida strains deficient in different components of the bifan motif governing arsenic resistance in this bacterium. Genetic separation of arsRBC and phoN1 revealed that their associated phenotypes operate independently, indicating that their natural co-regulation is not functionally required for simultaneous response to the same signal. The data suggest a scenario of associative evolution, akin to Pavlovian conditioning, where two unrelated but frequently co-occurring signals result in one regulating the other's response - even if there is no functional link between the signal and the response. Such surrogate regulatory events may provide an efficient solution to complex regulatory challenges and serve as a genetic patch to address transient gaps in evolving regulatory networks. | 2024 | 39667752 |
| 8268 | 3 | 0.9897 | Sustained coevolution of phage Lambda and Escherichia coli involves inner- as well as outer-membrane defences and counter-defences. Bacteria often evolve resistance to phage through the loss or modification of cell surface receptors. In Escherichia coli and phage λ, such resistance can catalyze a coevolutionary arms race focused on host and phage structures that interact at the outer membrane. Here, we analyse another facet of this arms race involving interactions at the inner membrane, whereby E. coli evolves mutations in mannose permease-encoding genes manY and manZ that impair λ's ability to eject its DNA into the cytoplasm. We show that these man mutants arose concurrently with the arms race at the outer membrane. We tested the hypothesis that λ evolved an additional counter-defence that allowed them to infect bacteria with deleted man genes. The deletions severely impaired the ancestral λ, but some evolved phage grew well on the deletion mutants, indicating that they regained infectivity by evolving the ability to infect hosts independently of the mannose permease. This coevolutionary arms race fulfils the model of an inverse gene-for-gene infection network. Taken together, the interactions at both the outer and inner membranes reveal that coevolutionary arms races can be richer and more complex than is often appreciated. | 2021 | 34032565 |
| 605 | 4 | 0.9895 | Conservation and diversity of the IrrE/DdrO-controlled radiation response in radiation-resistant Deinococcus bacteria. The extreme radiation resistance of Deinococcus bacteria requires the radiation-stimulated cleavage of protein DdrO by a specific metalloprotease called IrrE. DdrO is the repressor of a predicted radiation/desiccation response (RDR) regulon, composed of radiation-induced genes having a conserved DNA motif (RDRM) in their promoter regions. Here, we showed that addition of zinc ions to purified apo-IrrE, and short exposure of Deinococcus cells to zinc ions, resulted in cleavage of DdrO in vitro and in vivo, respectively. Binding of IrrE to RDRM-containing DNA or interaction of IrrE with DNA-bound DdrO was not observed. The data are in line with IrrE being a zinc peptidase, and indicate that increased zinc availability, caused by oxidative stress, triggers the in vivo cleavage of DdrO unbound to DNA. Transcriptomics and proteomics of Deinococcus deserti confirmed the IrrE-dependent regulation of predicted RDR regulon genes and also revealed additional members of this regulon. Comparative analysis showed that the RDR regulon is largely well conserved in Deinococcus species, but also showed diversity in the regulon composition. Notably, several RDR genes with an important role in radiation resistance in Deinococcus radiodurans, for example pprA, are not conserved in some other radiation-resistant Deinococcus species. | 2017 | 28397370 |
| 724 | 5 | 0.9895 | Xanthomonas citri T6SS mediates resistance to Dictyostelium predation and is regulated by an ECF σ factor and cognate Ser/Thr kinase. Plant-associated bacteria of the genus Xanthomonas cause disease in a wide range of economically important crops. However, their ability to persist in the environment is still poorly understood. Predation by amoebas represents a major selective pressure to bacterial populations in the environment. In this study, we show that the X. citri type 6 secretion system (T6SS) promotes resistance to predation by the soil amoeba Dictyostelium discoideum. We found that an extracytoplasmic function (ECF) sigma factor (EcfK) is required for induction of T6SS genes during interaction with Dictyostelium. EcfK homologues are found in several environmental bacteria in association with a gene encoding a eukaryotic-like Ser/Thr kinase (pknS). Deletion of pknS causes sensitivity to amoeba predation and abolishes induction of T6SS genes. Phosphomimetic mutagenesis of EcfK identified a threonine residue (T51) that renders EcfK constitutively active in standard culture conditions. Moreover, susceptibility of ΔpknS to Dictyostelium predation can be overcome by expression of the constitutively active version EcfK(T51E) from a multicopy plasmid. Together, these results describe a new regulatory cascade in which PknS functions through activation of EcfK to promote T6SS expression. Our work reveals an important aspect of Xanthomonas physiology that affects its ability to persist in the environment. | 2018 | 29488354 |
| 8363 | 6 | 0.9894 | Hundreds of antimicrobial peptides create a selective barrier for insect gut symbionts. The spatial organization of gut microbiota is crucial for the functioning of the gut ecosystem, although the mechanisms that organize gut bacterial communities in microhabitats are only partially understood. The gut of the insect Riptortus pedestris has a characteristic microbiota biogeography with a multispecies community in the anterior midgut and a monospecific bacterial population in the posterior midgut. We show that the posterior midgut region produces massively hundreds of specific antimicrobial peptides (AMPs), the Crypt-specific Cysteine-Rich peptides (CCRs) that have membrane-damaging antimicrobial activity against diverse bacteria but posterior midgut symbionts have elevated resistance. We determined by transposon-sequencing the genetic repertoire in the symbiont Caballeronia insecticola to manage CCR stress, identifying different independent pathways, including AMP-resistance pathways unrelated to known membrane homeostasis functions as well as cell envelope functions. Mutants in the corresponding genes have reduced capacity to colonize the posterior midgut, demonstrating that CCRs create a selective barrier and resistance is crucial in gut symbionts. Moreover, once established in the gut, the bacteria differentiate into a CCR-sensitive state, suggesting a second function of the CCR peptide arsenal in protecting the gut epithelia or mediating metabolic exchanges between the host and the gut symbionts. Our study highlights the evolution of an extreme diverse AMP family that likely contributes to establish and control the gut microbiota. | 2024 | 38865264 |
| 571 | 7 | 0.9894 | Alternative periplasmic copper-resistance mechanisms in Gram negative bacteria. Bacteria have evolved different systems to tightly control both cytosolic and envelope copper concentration to fulfil their requirements and at the same time, avoid copper toxicity. We have previously demonstrated that, as in Escherichia coli, the Salmonella cue system protects the cytosol from copper excess. On the other hand, and even though Salmonella lacks the CusCFBA periplasmic copper efflux system, it can support higher copper concentrations than E. coli under anaerobic conditions. Here we show that the Salmonella cue regulon is also responsible for the control of copper toxicity in anaerobiosis. We establish that resistance in this condition requires a novel CueR-controlled gene named cueP. A DeltacueP mutant is highly susceptible to copper in the absence of oxygen, but shows a faint phenotype in aerobic conditions unless other copper-resistance genes are also deleted, resembling the E. coli CusCFBA behaviour. Species that contain a cueP homologue under CueR regulation have no functional CusR/CusS-dependent Cus-coding operon. Conversely, species that carry a CusR/CusS-regulated cus operon have no cueP homologues. Even more, we show that the CueR-controlled cueP expression increases copper resistance of a Deltacus E. coli. We posit that CueP can functionally replace the Cus complex for periplasmic copper resistance, in particular under anaerobic conditions. | 2009 | 19538445 |
| 732 | 8 | 0.9894 | Extracellular ATP is an environmental cue in bacteria. In animals and plants, extracellular ATP (eATP) functions as a signal and regulates the immune response. During inflammation, intestinal bacteria are exposed to elevated eATP originating from the mucosa. However, whether bacteria respond to eATP is unclear. Here, we show that non-pathogenic Escherichia coli responds to eATP by modifying its transcriptional and metabolic landscapes. A genome-scale promoter library showed that the response is dependent on time, concentration, and medium and ATP specific. Second messengers and genes related to metabolism, biofilm formation, and envelope stress were regulated downstream of eATP. Metabolomics confirmed that eATP triggers enrichment of compounds with bioactive properties in the host or bacteria. Combined genome-scale modeling revealed modifications to global metabolic and biomass building blocks. Consequently, eATP altered the sensitivity to antibiotics and antimicrobial peptides. Finally, in pathogens, eATP controlled virulence factor expression. Our results indicate that eATP is an environmental cue in prokaryotes, which broadly regulates physiology, antimicrobial resistance, and virulence. | 2025 | 41071676 |
| 9361 | 9 | 0.9894 | Evolutionary consequences of bacterial resistance to a flagellotropic phage. Bacteria often rapidly evolve resistance to bacteriophages (phages) by mutating or suppressing the phage-receptors, the factors that phages first target to initiate infection. Flagellotropic phages infect bacteria by initially binding to the flagellum. Since motility is an important fitness factor that allows bacteria to efficiently explore their environment, losing flagellar function to evade infection by flagellotropic phages represents a crucial trade-off. In this study, we investigated the evolutionary responses of Escherichia coli when exposed to the flagellotropic phage χ. Using an experimental evolution approach, E. coli cells were repeatedly subjected to environments rich in phage χ but selective for motility. Unlike traditional well-mixed cultures, we employed swim-plate assays to simulate spatial confinement and promote motility. Whole genome sequencing of evolved populations revealed early emergence of non-motile, χ-resistant mutants with mutations disrupting motility-related genes. Motile mutants emerged in later passages, possessing mutations in the flagellin gene fliC. Swim-plate assays showed a diverse range of motility among these mutants, with some displaying slower, and others faster, expansion speeds compared to the ancestral strain. Single-cell tracking experiments indicated an increased tumble bias in χ-resistant mutants, suggesting an adaptive response involving altered flagellar rotation. Our findings demonstrate that motility can undergo trade-offs and trade-ups with phage resistance, shedding light on the complex evolutionary dynamics between motile bacteria and flagellotropic phages. | 2025 | 40654869 |
| 193 | 10 | 0.9894 | Screening of metagenomic and genomic libraries reveals three classes of bacterial enzymes that overcome the toxicity of acrylate. Acrylate is produced in significant quantities through the microbial cleavage of the highly abundant marine osmoprotectant dimethylsulfoniopropionate, an important process in the marine sulfur cycle. Acrylate can inhibit bacterial growth, likely through its conversion to the highly toxic molecule acrylyl-CoA. Previous work identified an acrylyl-CoA reductase, encoded by the gene acuI, as being important for conferring on bacteria the ability to grow in the presence of acrylate. However, some bacteria lack acuI, and, conversely, many bacteria that may not encounter acrylate in their regular environments do contain this gene. We therefore sought to identify new genes that might confer tolerance to acrylate. To do this, we used functional screening of metagenomic and genomic libraries to identify novel genes that corrected an E. coli mutant that was defective in acuI, and was therefore hyper-sensitive to acrylate. The metagenomic libraries yielded two types of genes that overcame this toxicity. The majority encoded enzymes resembling AcuI, but with significant sequence divergence among each other and previously ratified AcuI enzymes. One other metagenomic gene, arkA, had very close relatives in Bacillus and related bacteria, and is predicted to encode an enoyl-acyl carrier protein reductase, in the same family as FabK, which catalyses the final step in fatty-acid biosynthesis in some pathogenic Firmicute bacteria. A genomic library of Novosphingobium, a metabolically versatile alphaproteobacterium that lacks both acuI and arkA, yielded vutD and vutE, two genes that, together, conferred acrylate resistance. These encode sequential steps in the oxidative catabolism of valine in a pathway in which, significantly, methacrylyl-CoA is a toxic intermediate. These findings expand the range of bacteria for which the acuI gene encodes a functional acrylyl-CoA reductase, and also identify novel enzymes that can similarly function in conferring acrylate resistance, likely, again, through the removal of the toxic product acrylyl-CoA. | 2014 | 24848004 |
| 606 | 11 | 0.9894 | Coexistence of SOS-Dependent and SOS-Independent Regulation of DNA Repair Genes in Radiation-Resistant Deinococcus Bacteria. Deinococcus bacteria are extremely resistant to radiation and able to repair a shattered genome in an essentially error-free manner after exposure to high doses of radiation or prolonged desiccation. An efficient, SOS-independent response mechanism to induce various DNA repair genes such as recA is essential for radiation resistance. This pathway, called radiation/desiccation response, is controlled by metallopeptidase IrrE and repressor DdrO that are highly conserved in Deinococcus. Among various Deinococcus species, Deinococcus radiodurans has been studied most extensively. Its genome encodes classical DNA repair proteins for error-free repair but no error-prone translesion DNA polymerases, which may suggest that absence of mutagenic lesion bypass is crucial for error-free repair of massive DNA damage. However, many other radiation-resistant Deinococcus species do possess translesion polymerases, and radiation-induced mutagenesis has been demonstrated. At least dozens of Deinococcus species contain a mutagenesis cassette, and some even two cassettes, encoding error-prone translesion polymerase DnaE2 and two other proteins, ImuY and ImuB-C, that are probable accessory factors required for DnaE2 activity. Expression of this mutagenesis cassette is under control of the SOS regulators RecA and LexA. In this paper, we review both the RecA/LexA-controlled mutagenesis and the IrrE/DdrO-controlled radiation/desiccation response in Deinococcus. | 2021 | 33923690 |
| 725 | 12 | 0.9893 | The Bacillus subtilis extracytoplasmic function σ factor σ(V) is induced by lysozyme and provides resistance to lysozyme. Bacteria encounter numerous environmental stresses which can delay or inhibit their growth. Many bacteria utilize alternative σ factors to regulate subsets of genes required to overcome different extracellular assaults. The largest group of these alternative σ factors are the extracytoplasmic function (ECF) σ factors. In this paper, we demonstrate that the expression of the ECF σ factor σ(V) in Bacillus subtilis is induced specifically by lysozyme but not other cell wall-damaging agents. A mutation in sigV results in increased sensitivity to lysozyme killing, suggesting that σ(V) is required for lysozyme resistance. Using reverse transcription (RT)-PCR, we show that the previously uncharacterized gene yrhL (here referred to as oatA for O-acetyltransferase) is in a four-gene operon which includes sigV and rsiV. In quantitative RT-PCR experiments, the expression of oatA is induced by lysozyme stress. Lysozyme induction of oatA is dependent upon σ(V). Overexpression of oatA in a sigV mutant restores lysozyme resistance to wild-type levels. This suggests that OatA is required for σ(V)-dependent resistance to lysozyme. We also tested the ability of lysozyme to induce the other ECF σ factors and found that only the expression of sigV is lysozyme inducible. However, we found that the other ECF σ factors contributed to lysozyme resistance. We found that sigX and sigM mutations alone had very little effect on lysozyme resistance but when combined with a sigV mutation resulted in significantly greater lysozyme sensitivity than the sigV mutation alone. This suggests that sigV, sigX, and sigM may act synergistically to control lysozyme resistance. In addition, we show that two ECF σ factor-regulated genes, dltA and pbpX, are required for lysozyme resistance. Thus, we have identified three independent mechanisms which B. subtilis utilizes to avoid killing by lysozyme. | 2011 | 21856855 |
| 8425 | 13 | 0.9893 | Carotenoid biosynthesis in extremophilic Deinococcus-Thermus bacteria. Bacteria from the phylum Deinococcus-Thermus are known for their resistance to extreme stresses including radiation, oxidation, desiccation and high temperature. Cultured Deinococcus-Thermus bacteria are usually red or yellow pigmented because of their ability to synthesize carotenoids. Unique carotenoids found in these bacteria include deinoxanthin from Deinococcus radiodurans and thermozeaxanthins from Thermus thermophilus. Investigations of carotenogenesis will help to understand cellular stress resistance of Deinococcus-Thermus bacteria. Here, we discuss the recent progress toward identifying carotenoids, carotenoid biosynthetic enzymes and pathways in some species of Deinococcus-Thermus extremophiles. In addition, we also discuss the roles of carotenoids in these extreme bacteria. | 2010 | 20832321 |
| 9364 | 14 | 0.9893 | Predictable properties of fitness landscapes induced by adaptational tradeoffs. Fitness effects of mutations depend on environmental parameters. For example, mutations that increase fitness of bacteria at high antibiotic concentration often decrease fitness in the absence of antibiotic, exemplifying a tradeoff between adaptation to environmental extremes. We develop a mathematical model for fitness landscapes generated by such tradeoffs, based on experiments that determine the antibiotic dose-response curves of Escherichia coli strains, and previous observations on antibiotic resistance mutations. Our model generates a succession of landscapes with predictable properties as antibiotic concentration is varied. The landscape is nearly smooth at low and high concentrations, but the tradeoff induces a high ruggedness at intermediate antibiotic concentrations. Despite this high ruggedness, however, all the fitness maxima in the landscapes are evolutionarily accessible from the wild type. This implies that selection for antibiotic resistance in multiple mutational steps is relatively facile despite the complexity of the underlying landscape. | 2020 | 32423531 |
| 200 | 15 | 0.9893 | Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Microbial infection activates two distinct intracellular signalling cascades in the immune-responsive fat body of Drosophila. Gram-positive bacteria and fungi predominantly induce the Toll signalling pathway, whereas Gram-negative bacteria activate the Imd pathway. Loss-of-function mutants in either pathway reduce the resistance to corresponding infections. Genetic screens have identified a range of genes involved in these intracellular signalling cascades, but how they are activated by microbial infection is largely unknown. Activation of the transmembrane receptor Toll requires a proteolytically cleaved form of an extracellular cytokine-like polypeptide, Spätzle, suggesting that Toll does not itself function as a bona fide recognition receptor of microbial patterns. This is in apparent contrast with the mammalian Toll-like receptors and raises the question of which host molecules actually recognize microbial patterns to activate Toll through Spätzle. Here we present a mutation that blocks Toll activation by Gram-positive bacteria and significantly decreases resistance to this type of infection. The mutation semmelweis (seml) inactivates the gene encoding a peptidoglycan recognition protein (PGRP-SA). Interestingly, seml does not affect Toll activation by fungal infection, indicating the existence of a distinct recognition system for fungi to activate the Toll pathway. | 2001 | 11742401 |
| 8620 | 16 | 0.9892 | Changes in Microbiome Confer Multigenerational Host Resistance after Sub-toxic Pesticide Exposure. The gut is a first point of contact with ingested xenobiotics, where chemicals are metabolized directly by the host or microbiota. Atrazine is a widely used pesticide, but the role of the microbiome metabolism of this xenobiotic and the impact on host responses is unclear. We exposed successive generations of the wasp Nasonia vitripennis to subtoxic levels of atrazine and observed changes in the structure and function of the gut microbiome that conveyed atrazine resistance. This microbiome-mediated resistance was maternally inherited and increased over successive generations, while also heightening the rate of host genome selection. The rare gut bacteria Serratia marcescens and Pseudomonas protegens contributed to atrazine metabolism. Both of these bacteria contain genes that are linked to atrazine degradation and were sufficient to confer resistance in experimental wasp populations. Thus, pesticide exposure causes functional, inherited changes in the microbiome that should be considered when assessing xenobiotic exposure and as potential countermeasures to toxicity. | 2020 | 32023487 |
| 9366 | 17 | 0.9892 | Impact of bacterial mutation rate on coevolutionary dynamics between bacteria and phages. Mutator bacteria are frequently found in natural populations of bacteria and although coevolution with parasitic viruses (phages) is thought to be one reason for their persistence, it remains unclear how the presence of mutators affects coevolutionary dynamics. We hypothesized that phages must themselves adapt more rapidly or go extinct, in the face of rapidly evolving mutator bacteria. We compared the coevolutionary dynamics of wild-type Pseudomonas fluorescens SBW25 with a lytic phage to the dynamics of an isogenic mutator of P. fluorescens SBW25 together with the same phage. At the beginning of the experiment both wild-type bacteria and mutator bacteria coevolved with phages. However, mutators rapidly evolved higher levels of sympatric resistance to phages. The phages were unable to "keep-up" with the mutator bacteria, and these rates of coevolution declined to less than the rates of coevolution between the phages and wild-type bacteria. By the end of the experiment, the sympatric resistance of the mutator bacteria was not significantly different to the sympatric resistance of the wild-type bacteria. This suggests that the importance of mutators in the coevolutionary interactions with a particular phage population is likely to be short-lived. More generally, the results demonstrate that coevolving enemies may escape from Red-Queen dynamics. | 2010 | 20497216 |
| 509 | 18 | 0.9892 | A novel toxoflavin-quenching regulation in bacteria and its application to resistance cultivars. The toxoflavin (Txn), broad host range phytotoxin produced by a variety of bacteria, including Burkholderia glumae, is a key pathogenicity factor of B. glumae in rice and field crops. Two bacteria exhibiting Txn-degrading activity were isolated from healthy rice seeds and identified as Sphingomonas adhaesiva and Agrobacterium sp. respectively. The genes stdR and stdA, encoding proteins responsible for Txn degradation of both bacterial isolates, were identical, indicating that horizontal gene transfer occurred between microbial communities in the same ecosystem. We identified a novel Txn-quenching regulation of bacteria, demonstrating that the LysR-type transcriptional regulator (LTTR) StdR induces the expression of the stdA, which encodes a Txn-degrading enzyme, in the presence of Txn as a coinducer. Here we show that the bacterial StdR(Txn) -quenching regulatory system mimics the ToxR(Txn) -mediated biosynthetic regulation of B. glumae. Substrate specificity investigations revealed that Txn is the only coinducer of StdR and that StdA has a high degree of specificity for Txn. Rice plants expressing StdA showed Txn resistance. Collectively, bacteria mimic the mechanism of Txn biosynthesis regulation, employ it in the development of a Txn-quenching regulatory system and share it with neighbouring bacteria for survival in rice environments full of Txn. | 2021 | 34009736 |
| 9085 | 19 | 0.9891 | Mode of action and resistance studies unveil new roles for tropodithietic acid as an anticancer agent and the γ-glutamyl cycle as a proton sink. While we have come to appreciate the architectural complexity of microbially synthesized secondary metabolites, far less attention has been paid to linking their structural features with possible modes of action. This is certainly the case with tropodithietic acid (TDA), a broad-spectrum antibiotic generated by marine bacteria that engage in dynamic symbioses with microscopic algae. TDA promotes algal health by killing unwanted marine pathogens; however, its mode of action (MoA) and significance for the survival of an algal-bacterial miniecosystem remains unknown. Using cytological profiling, we herein determine the MoA of TDA and surprisingly find that it acts by a mechanism similar to polyether antibiotics, which are structurally highly divergent. We show that like polyether drugs, TDA collapses the proton motive force by a proton antiport mechanism, in which extracellular protons are exchanged for cytoplasmic cations. The α-carboxy-tropone substructure is ideal for this purpose as the proton can be carried on the carboxyl group, whereas the basicity of the tropylium ion facilitates cation export. Based on similarities to polyether anticancer agents we have further examined TDA's cytotoxicity and find it to exhibit potent, broad-spectrum anticancer activities. These results highlight the power of MoA-profiling technologies in repurposing old drugs for new targets. In addition, we identify an operon that confers TDA resistance to the producing marine bacteria. Bioinformatic and biochemical analyses of these genes lead to a previously unknown metabolic link between TDA/acid resistance and the γ-glutamyl cycle. The implications of this resistance mechanism in the context of the algal-bacterial symbiosis are discussed. | 2016 | 26802120 |