SHS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
880500.8653Transcriptional response of selected genes of Salmonella enterica serovar Typhimurium biofilm cells during inactivation by superheated steam. Superheated steam (SHS), produced by the addition of heat to saturated steam (SS) at the same pressure, has great advantages over conventional heat sterilization due to its high temperature and accelerated drying rate. We previously demonstrated that treatment with SHS at 200°C for 10 sec inactivated Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes biofilm cells on the surface of stainless steel to below the detection limit. However, bacteria withstanding heat stress become more resistant to other stress conditions, and may be more virulent when consumed by a host. Herein, we studied the transcriptional regulation of genes important for stress resistance and virulence in Salmonella biofilms after SHS treatments. Genes encoding heat shock proteins and general stress resistance proteins showed transcriptional surges after 1 sec of SHS treatment at 200°C, with parallel induction of stress-related regulator genes including rpoE, rpoS, and rpoH. Interestingly, Salmonella biofilm cells exposed to SHS showed decreased transcription of flagella and Salmonella pathogenicity island-1 (SPI-1) genes required for motility and invasion of host cells, respectively, whereas increased transcription of SPI-2 genes, important for bacterial survival and replication inside host cells, was detected. When the transcriptional response was compared between cells treated with SHS (200°C) and SS (100°C), SHS caused immediate changes in gene expression by shorter treatments. Understanding the status of Salmonella virulence and stress resistance induced by SHS treatments is important for wider application of SHS in controlling Salmonella biofilm formation during food production.201525440555
110.8575Constructs for insertional mutagenesis, transcriptional signal localization and gene regulation studies in root nodule and other bacteria. Cassettes have been developed that contain an antibiotic resistance marker with and without a promoterless gusA reporter gene. The nptII (encoding kanamycin resistance) or aacCI (encoding gentamicin resistance) genes were equipped with the tac promoter (Ptac) and the trpA terminator (TtrpA) and then cloned between NotI sites to construct the CAS-Nm (Ptac-nptII-TtrpA) and CAS-Gm (Ptac/PaacCI-aacCI-TtrpA) cassettes. The markers were also cloned downstream to a modified promoterless Escherichia coli gusA gene (containing TGA stop codons in all three reading frames prior to its RBS and start codon) to construct the CAS-GNm (gusA-Ptac-nptII-TtrpA) or CAS-GGm (gusA-Ptac/PaacCI-aacCI-TtrpA) cassettes. Cassettes containing the promoterless gusA create type I fusions with a target DNA sequence to detect transcriptional activity. The promoterless gusA gene has also been cloned into a broad-host-range IncP1 plasmid. This construct will enable transcriptional activity to be monitored in different genetic backgrounds. Each cassette was cloned as a NotI fragment into the NotI site of a pUT derivative to construct four minitransposons. The mTn5-Nm (containing Ptac-nptII-TtrpA) and mTn5-Gm (containing Ptac/PaacCI-aacCI-TtrpA) minitransposons have been constructed specifically for insertional inactivation studies. The minitransposons mTn5-GNm (containing gusA-Ptac-nptII-TtrpA) and mTn5-GGm (containing gusA-Ptac/PaacCI-aacCI-TtrpA) can be used for transcription signal localization or insertional inactivation. The TAC-31R and TAC-105F primers can be used to sequence DNA flanking both sides of CAS-Nm, CAS-Gm, mTn5-Nm and mTn5-Gm. The WIL3 and TAC-105F primers can be used to sequence DNA flanking both sides of CAS-GNm, CAS-GGm, mTn5-GNm and mTn5-GGm. The specific application of these constructs to generate acid- or nodule-inducible fusions is presented. The new constructs provide useful tools for insertional mutagenesis, transcriptional signal localization and gene regulation studies in the root nodule bacteria and possibly other gram-negative bacteria.199910411257
53820.8573The biochemical and genetic basis for high frequency thiomethyl galactoside resistance in lambda,lambdadg lysogens of Escherichia coli. In a culture of Escherichia coli K12 gal (lambdadg), cells which form large colonies on agar plates containing galactose and thiomethyl beta-D-galactoside (TMG) appear at high frequency. These clones are resistant to growth inhibition by TMG on galactose minimal medium. Biochemical studies of the steady-state levels of galactokinase and UDPgalactose 4-epimerase suggest that the resistant clones have extra copies of the genes for the galactose-metabolizing enzymes. The mutation for TMG resistance is not located in either the bacterial or the bacteriophage genome, but is probably due to an aberrant association between cell and prophage DNA. Mapping the TMG-resistant characteristic by phage P1 indicates that TMG-resistant bacteria posses at least two GAL+ OPERONS, ONE OF WHICH IS COTRANSDUCIBLe with bio+. In addition, TMG-resistant bacteria behave like lambdadg polylysogens when challenged with the phage lambdaI90c17. From these genetic experiments we conclude that TMG-resistant bacteria arise by duplication of the lambdadg prophage. Finally, gal+ bacteria which carry a single, additional, lambdadg prophage are TMG-resistant. TMG resistance is probably a gal+ gene dosage effect.1978344832
1130.8560Diffusible signal factor primes plant immunity against Xanthomonas campestris pv. campestris (Xcc) via JA signaling in Arabidopsis and Brassica oleracea. BACKGROUND: Many Gram-negative bacteria use quorum sensing (QS) signal molecules to monitor their local population density and to coordinate their collective behaviors. The diffusible signal factor (DSF) family represents an intriguing type of QS signal to mediate intraspecies and interspecies communication. Recently, accumulating evidence demonstrates the role of DSF in mediating inter-kingdom communication between DSF-producing bacteria and plants. However, the regulatory mechanism of DSF during the Xanthomonas-plant interactions remain unclear. METHODS: Plants were pretreated with different concentration of DSF and subsequent inoculated with pathogen Xanthomonas campestris pv. campestris (Xcc). Pathogenicity, phynotypic analysis, transcriptome combined with metabolome analysis, genetic analysis and gene expression analysis were used to evaluate the priming effects of DSF on plant disease resistance. RESULTS: We found that the low concentration of DSF could prime plant immunity against Xcc in both Brassica oleracea and Arabidopsis thaliana. Pretreatment with DSF and subsequent pathogen invasion triggered an augmented burst of ROS by DCFH-DA and DAB staining. CAT application could attenuate the level of ROS induced by DSF. The expression of RBOHD and RBOHF were up-regulated and the activities of antioxidases POD increased after DSF treatment followed by Xcc inoculation. Transcriptome combined with metabolome analysis showed that plant hormone jasmonic acid (JA) signaling involved in DSF-primed resistance to Xcc in Arabidopsis. The expression of JA synthesis genes (AOC2, AOS, LOX2, OPR3 and JAR1), transportor gene (JAT1), regulator genes (JAZ1 and MYC2) and responsive genes (VSP2, PDF1.2 and Thi2.1) were up-regulated significantly by DSF upon Xcc challenge. The primed effects were not observed in JA relevant mutant coi1-1 and jar1-1. CONCLUSION: These results indicated that DSF-primed resistance against Xcc was dependent on the JA pathway. Our findings advanced the understanding of QS signal-mediated communication and provide a new strategy for the control of black rot in Brassica oleracea.202337404719
80740.8557Transcriptomic analysis of Saccharomyces cerevisiae upon honokiol treatment. Honokiol (HNK), one of the main medicinal components in Magnolia officinalis, possesses antimicrobial activity against a variety of pathogenic bacteria and fungi. However, little is known of the molecular mechanisms underpinning the antimicrobial activity. To explore the molecular mechanism of its antifungal activity, we determined the effects of HNK on the mRNA expression profile of Saccharomyces cerevisiae using a DNA microarray approach. HNK markedly induced the expression of genes related to iron uptake and homeostasis. Conversely, genes associated with respiratory electron transport were downregulated, mirroring the effects of iron starvation. Meanwhile, HNK-induced growth deficiency was partly rescued by iron supplementation and HNK reacted with iron, producing iron complexes that depleted iron. These results suggest that HNK treatment induced iron starvation. Additionally, HNK treatment resulted in the upregulation of genes involved in protein synthesis and drug resistance networks. Furthermore, the deletion of PDR5, a gene encoding the plasma membrane ATP binding cassette (ABC) transporter, conferred sensitivity to HNK. Overexpression of PDR5 enhanced resistance of WT and pdr5Δ strains to HNK. Taken together, these findings suggest that HNK, which can be excluded by overexpression of Pdr5, functions in multiple cellular processes in S. cerevisiae, particularly in inducing iron starvation to inhibit cell growth.201728499955
80150.8553Redox-sensitive transcriptional regulator SoxR directly controls antibiotic production, development and thiol-oxidative stress response in Streptomyces avermitilis. The redox-sensitive transcriptional regulator SoxR is conserved in bacteria. Its role in mediating protective response to various oxidative stresses in Escherichia coli and related enteric bacteria has been well established. However, functions and regulatory mechanisms of SoxR in filamentous Streptomyces, which produce half of known antibiotics, are unclear. We report here that SoxR pleiotropically regulates antibiotic production, morphological development, primary metabolism and thiol-oxidative stress response in industrially important species Streptomyces avermitilis. SoxR stimulated avermectin production by directly activating ave structural genes. Four genes (sav_3956, sav_4018, sav_5665 and sav_7218) that are homologous to targets of S. coelicolor SoxR are targeted by S. avermitilis SoxR. A consensus 18-nt SoxR-binding site, 5'-VSYCNVVMHNKVKDGMGB-3', was identified in promoter regions of sav_3956, sav_4018, sav_5665, sav_7218 and target ave genes, leading to prediction of the SoxR regulon and confirmation of 11 new targets involved in development (ftsH), oligomycin A biosynthesis (olmRI), primary metabolism (metB, sav_1623, plcA, nirB, thiG, ndh2), transport (smoE) and regulatory function (sig57, sav_7278). SoxR also directly activated three key developmental genes (amfC, whiB and ftsZ) and promoted resistance of S. avermitilis to thiol-oxidative stress through activation of target trx and msh genes. Overexpression of soxR notably enhanced antibiotic production in S. avermitilis and S. coelicolor. Our findings expand our limited knowledge of SoxR and will facilitate improvement of methods for antibiotic overproduction in Streptomyces species.202233951287
1060.8544YODA Kinase Controls a Novel Immune Pathway of Tomato Conferring Enhanced Disease Resistance to the Bacterium Pseudomonas syringae. Mitogen-activated protein kinases (MAPK) play pivotal roles in transducing developmental cues and environmental signals into cellular responses through pathways initiated by MAPK kinase kinases (MAP3K). AtYODA is a MAP3K of Arabidopsis thaliana that controls stomatal development and non-canonical immune responses. Arabidopsis plants overexpressing a constitutively active YODA protein (AtCA-YDA) show broad-spectrum disease resistance and constitutive expression of defensive genes. We tested YDA function in crops immunity by heterologously overexpressing AtCA-YDA in Solanum lycopersicum. We found that these tomato AtCA-YDA plants do not show developmental phenotypes and fitness alterations, except a reduction in stomatal index, as reported in Arabidopsis AtCA-YDA plants. Notably, AtCA-YDA tomato plants show enhanced resistance to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 and constitutive upregulation of defense-associated genes, corroborating the functionality of YDA in tomato immunity. This function was further supported by generating CRISPR/Cas9-edited tomato mutants impaired in the closest orthologs of AtYDA [Solyc08g081210 (SlYDA1) and Solyc03g025360 (SlYDA2)]. Slyda1 and Slyda2 mutants are highly susceptible to P. syringae pv. tomato DC3000 in comparison to wild-type plants but only Slyda2 shows altered stomatal index. These results indicate that tomato orthologs have specialized functions and support that YDA also regulates immune responses in tomato and may be a trait for breeding disease resistance.202033154763
847470.8542The NCK and ABI adaptor genes in catfish and their involvement in ESC disease response. Adaptor proteins non-catalytic region of tyrosine kinase (NCK) and Abelson interactor (ABI) are crucial for disease response. NCK1 was identified to be a candidate gene for enteric septicemia of catfish (ESC) disease resistance, and was speculated to play similar roles during ESC and enteropathogenic Escherichia coli (EPEC) pathogenicity. ABI1 was reported as a positional candidate gene for bacterial cold water disease (BCWD) resistance in rainbow trout. In this study, three NCK genes and six ABI genes were identified in the channel catfish (Ictalurus punctatus) genome and blue catfish (I. furcatus) transcriptome, and annotated by domain structures, phylogenetic and syntenic analyses. Their expression patterns were examined in the intestine and liver of catfish after challenge with Edwardsiella ictaluri. In the intestine, NCK1, ABI2a, ABI2b, ABI3a were differentially expressed after E. ictaluri infection. In the liver, NCK2a, NCK2b, ABI1b, ABI2a, ABI2b were significantly upregulated in ESC susceptible fish. In general, the NCK and ABI genes, with exception of ABI3a gene and NCK1 gene, were expressed at higher levels in susceptible fish after infection than in control fish, but were expressed at lower levels in resistant fish than in the control fish. Taken together, these results support the notion that NCK and ABI genes are involved in disease processes facilitating pathogenesis of the E. ictaluri bacteria.201728341353
600380.8542Contact Lens Wear Alters Transcriptional Responses to Pseudomonas aeruginosa in Both the Corneal Epithelium and the Bacteria. PURPOSE: Healthy corneas resist colonization by virtually all microbes yet contact lens wear can predispose the cornea to sight-threatening infection with Pseudomonas aeruginosa. Here, we explored how lens wear changes corneal epithelium transcriptional responses to P. aeruginosa and its impact on bacterial gene expression. METHODS: Male and female C57BL/6J mice were fitted with a contact lens on one eye for 24 h. After lens removal, corneas were immediately challenged for 4 h with P. aeruginosa. A separate group of naïve mice were similarly challenged with bacteria. Bacteria-challenged eyes were compared to uninoculated naive controls as was lens wear alone. Total RNA-sequencing determined corneal epithelium and bacterial gene expression. RESULTS: Prior lens wear profoundly altered the corneal response to P. aeruginosa, including: upregulated pattern-recognition receptors (tlr3, nod1), downregulated lectin pathway of complement activation (masp1), amplified upregulation of tcf7, gpr55, ifi205, wfdc2 (immune defense) and further suppression of efemp1 (corneal stromal integrity). Without lens wear, P. aeruginosa upregulated mitochondrial and ubiquinone metabolism genes. Lens wear alone upregulated axl, grn, tcf7, gpr55 (immune defense) and downregulated Ca2(+)-dependent genes necab1, snx31 and npr3. P. aeruginosa exposure to prior lens wearing vs. naïve corneas upregulated bacterial genes of virulence (popD), its regulation (rsmY, PA1226) and antimicrobial resistance (arnB, oprR). CONCLUSION: Prior lens wear impacts corneal epithelium gene expression altering its responses to P. aeruginosa and how P. aeruginosa responds to it favoring virulence, survival and adaptation. Impacted genes and associated networks provide avenues for research to better understand infection pathogenesis.202439677621
600490.8542Contact Lens Wear Alters Transcriptional Responses to Pseudomonas aeruginosa in Both the Corneal Epithelium and the Bacteria. PURPOSE: Healthy corneas resist colonization by virtually all microbes, yet contact lens wear can predispose the cornea to sight-threatening infection with Pseudomonas aeruginosa. Here, we explored how lens wear changes corneal epithelium transcriptional responses to P. aeruginosa and its impact on bacterial gene expression. METHODS: Male and female C57BL/6J mice were fitted with a contact lens on one eye for 24 hours. After lens removal, corneas were immediately challenged for 4 hours with P. aeruginosa. A separate group of naïve mice was similarly challenged with bacteria. Bacteria-challenged eyes were compared to uninoculated naïve controls, as was lens wear alone. Total RNA sequencing determined corneal epithelium and bacterial gene expression. RESULTS: Prior lens wear profoundly altered the corneal response to P. aeruginosa, including upregulated pattern recognition receptors (tlr3, nod1); downregulated lectin pathway of complement activation (masp1); amplified upregulation of tcf7, gpr55, ifi205, and wfdc2 (immune defense); and further suppression of efemp1 (corneal stromal integrity). Without lens wear, P. aeruginosa upregulated mitochondrial and ubiquinone metabolism genes. Lens wear alone upregulated axl, grn, tcf7, and gpr55 (immune defense) and downregulated Ca2+-dependent genes necab1, snx31, and npr3. P. aeruginosa exposure to prior lens wearing versus naïve corneas upregulated bacterial genes of virulence (popD), its regulation (rsmY, PA1226), and antimicrobial resistance (arnB, oprR). CONCLUSIONS: Prior lens wear impacts corneal epithelium gene expression, altering its responses to P. aeruginosa and how P. aeruginosa responds to it favoring virulence, survival, and adaptation. Impacted genes and associated networks provide avenues for research to better understand infection pathogenesis.202539932472
8481100.8542Universal stress proteins contribute Edwardsiella piscicida adversity resistance and pathogenicity and promote blocking host immune response. Universal stress proteins (Usps) exist ubiquitously in bacteria and other organisms. Usps play an important role in adaptation of bacteria to a variety of environmental stresses. There is increasing evidence that Usps facilitate pathogens to adapt host environment and are involved in pathogenicity. Edwardsiella piscicida (formerly included in E. tarda) is a severe fish pathogen and infects various important economic fish including tilapia (Oreochromis niloticus). In E. piscicida, a number of systems and factors that are involved in stress resistance and pathogenesis were identified. However, the function of Usps in E. piscicida is totally unknown. In this study, we examined the expressions of 13 usp genes in E. piscicida and found that most of these usp genes were up-regulated expression under high temperature, oxidative stress, acid stress, and host serum stress. Particularly, among these usp genes, usp13, exhibited dramatically high expression level upon several stress conditions. To investigate the biological role of usp13, a markerless usp13 in-frame mutant strain, TX01Δusp13, was constructed. Compared to the wild type TX01, TX01Δusp13 exhibited markedly compromised tolerance to high temperature, hydrogen peroxide, and low pH. Deletion of usp13 significantly retarded bacterial biofilm growth and decreased resistance against serum killing. Pathogenicity analysis showed that the inactivation of usp13 significantly impaired the ability of E. piscicida to invade into host cell and infect host tissue. Introduction of a trans-expressed usp13 gene restored the lost virulence of TX01Δusp13. In support of these results, host immune response induced by TX01 and TX01Δusp13 was examined, and the results showed reactive oxygen species (ROS) levels in TX01Δusp13-infected macrophages were significantly higher than those in TX01-infected cells. The expression level of several cytokines (IL-6, IL-8, IL-10, TNF-α, and CC2) in TX01Δusp13-infected fish was significantly higher than that in TX01-infected fish. These results suggested that the deletion of usp13 attenuated the ability of bacteria to overcome the host immune response to pathogen infection. Taken together, our study indicated Usp13 of E. piscicida was not only important participant in adversity resistance, but also was essential for E. piscicida pathogenicity and contributed to block host immune response to pathogen infection.201931654767
8804110.8539A single exposure to a sublethal pediocin concentration initiates a resistance-associated temporal cell envelope and general stress response in Listeria monocytogenes. Listeria monocytogenes can cause the potentially fatal food-borne disease listeriosis, and the use of bacteriocin-producing lactic acid bacteria to control L. monocytogenes holds great promise. However, the development of bacteriocin resistance is a potential challenge, and the purpose of this study was to determine if exposure to sublethal concentrations of pediocin-containing Lactobacillus plantarum WHE 92 supernatant could prime L. monocytogenes for resistance. By transcriptomic analysis, we found two, 55 and 539 genes differentially expressed after 10, 60 and 180 min of exposure to L. plantarum WHE 92 supernatant as compared with control exposures. We observed temporal expression changes in genes regulated by the two component system LisRK and the alternative sigma factors SigB and SigL. Additionally, several genes involved in bacteriocin resistance were induced. ΔlisR, ΔsigB and ΔsigL mutants were all more resistant than wild types to L. plantarum WHE 92 supernatant. Conclusively, LisRK, SigB and SigL regulation and genes associated with resistance are involved in the temporal adaptive response to pediocin, and all three regulatory systems affect pediocin resistance. Thus, a single exposure to a sublethal pediocin concentration initiates a response pointing to resistance, and indicates that further research exploring the link between adaptive responses and resistance is needed.201524920558
9997120.8539RNAi screen of DAF-16/FOXO target genes in C. elegans links pathogenesis and dauer formation. The DAF-16/FOXO transcription factor is the major downstream output of the insulin/IGF1R signaling pathway controlling C. elegans dauer larva development and aging. To identify novel downstream genes affecting dauer formation, we used RNAi to screen candidate genes previously identified to be regulated by DAF-16. We used a sensitized genetic background [eri-1(mg366); sdf-9(m708)], which enhances both RNAi efficiency and constitutive dauer formation (Daf-c). Among 513 RNAi clones screened, 21 displayed a synthetic Daf-c (SynDaf) phenotype with sdf-9. One of these genes, srh-100, was previously identified to be SynDaf, but twenty have not previously been associated with dauer formation. Two of the latter genes, lys-1 and cpr-1, are known to participate in innate immunity and six more are predicted to do so, suggesting that the immune response may contribute to the dauer decision. Indeed, we show that two of these genes, lys-1 and clc-1, are required for normal resistance to Staphylococcus aureus. clc-1 is predicted to function in epithelial cohesion. Dauer formation exhibited by daf-8(m85), sdf-9(m708), and the wild-type N2 (at 27°C) were all enhanced by exposure to pathogenic bacteria, while not enhanced in a daf-22(m130) background. We conclude that knockdown of the genes required for proper pathogen resistance increases pathogenic infection, leading to increased dauer formation in our screen. We propose that dauer larva formation is a behavioral response to pathogens mediated by increased dauer pheromone production.201021209831
339130.8539Multiple mechanisms of resistance to cisplatin toxicity in an Escherichia coli K12 mutant. The mechanisms underlying cellular resistance to the antitumor drug cis-diamminedichloro-platinum(II) (CDDP) were studied in Escherichia coli K12. A bacterial strain (MC4100/DDP) was selected from the MC4100 wild-type strain after growth for four cycles in CDDP. MC4100/DDP bacteria showed a high level of resistance and exhibited various modifications including (1) a decrease in drug uptake and platinum/DNA binding which only partly contributed to resistance, (2) an increase in glutathione content not involved in the resistant phenotype, (3) an increase in DNA repair capacity. Resistance was unmodified by introducing a uvrA mutation which neutralizes the excision-repair pathway. In contrast, it was abolished by deletion of the recA gene which abolishes recombination and SOS repair but also by a mutation in the recA gene leading to RecA co-protease minus (no SOS induction). RecA protein was unchanged in MC4100/DDP but the expression of RecA-dependent gene(s) was required for CDDP resistance. The regulation of genes belonging to the SOS regulon was analysed in MC4100/DDP by monitoring the expression of sfiA and recA::lacZ gene fusions after UV irradiation. These gene fusions were derepressed faster and the optimal expression was obtained for a lower number of UV lesions in MC4100/DDP, suggesting a role of RecA co-protease activity in the mechanism of resistance to CDDP in this E. coli strain.19947974517
97140.8538Universal gene co-expression network reveals receptor-like protein genes involved in broad-spectrum resistance in pepper (Capsicum annuum L.). Receptor-like proteins (RLPs) on plant cells have been implicated in immune responses and developmental processes. Although hundreds of RLP genes have been identified in plants, only a few RLPs have been functionally characterized in a limited number of plant species. Here, we identified RLPs in the pepper (Capsicum annuum) genome and performed comparative transcriptomics coupled with the analysis of conserved gene co-expression networks (GCNs) to reveal the role of core RLP regulators in pepper-pathogen interactions. A total of 102 RNA-seq datasets of pepper plants infected with four pathogens were used to construct CaRLP-targeted GCNs (CaRLP-GCNs). Resistance-responsive CaRLP-GCNs were merged to construct a universal GCN. Fourteen hub CaRLPs, tightly connected with defense-related gene clusters, were identified in eight modules. Based on the CaRLP-GCNs, we evaluated whether hub CaRLPs in the universal GCN are involved in the biotic stress response. Of the nine hub CaRLPs tested by virus-induced gene silencing, three genes (CaRLP264, CaRLP277, and CaRLP351) showed defense suppression with less hypersensitive response-like cell death in race-specific and non-host resistance response to viruses and bacteria, respectively, and consistently enhanced susceptibility to Ralstonia solanacearum and/or Phytophthora capsici. These data suggest that key CaRLPs are involved in the defense response to multiple biotic stresses and can be used to engineer a plant with broad-spectrum resistance. Together, our data show that generating a universal GCN using comprehensive transcriptome datasets can provide important clues to uncover genes involved in various biological processes.202235043174
6158150.8537Nitric oxide stress resistance in Porphyromonas gingivalis is mediated by a putative hydroxylamine reductase. Porphyromonas gingivalis, the causative agent of adult periodontitis, must maintain nitric oxide (NO) homeostasis and surmount nitric oxide stress from host immune responses or other oral bacteria to survive in the periodontal pocket. To determine the involvement of a putative hydroxylamine reductase (PG0893) and a putative nitrite reductase-related protein (PG2213) in P. gingivalis W83 NO stress resistance, genes encoding those proteins were inactivated by allelic exchange mutagenesis. The isogenic mutants P. gingivalis FLL455 (PG0893ermF) and FLL456 (PG2213ermF) were black pigmented and showed growth rates and gingipain and hemolytic activities similar to those of the wild-type strain. P. gingivalis FLL455 was more sensitive to NO than the wild type. Complementation of P. gingivalis FLL455 with the wild-type gene restored the level of NO sensitivity to a level similar to that of the parent strain. P. gingivalis FLL455 and FLL456 showed sensitivity to oxidative stress similar to that of the wild-type strain. DNA microarray analysis showed that PG0893 and PG2213 were upregulated 1.4- and 2-fold, respectively, in cells exposed to NO. In addition, 178 genes were upregulated and 201 genes downregulated more than 2-fold. The majority of these modulated genes were hypothetical or of unknown function. PG1181, predicted to encode a transcriptional regulator, was upregulated 76-fold. Transcriptome in silico analysis of the microarray data showed major metabolomic variations in key pathways. Collectively, these findings indicate that PG0893 and several other genes may play an important role in P. gingivalis NO stress resistance.201222247513
576160.8537Caenorhabditis elegans defective-pharynx and constipated mutants are resistant to Orsay virus infection. C. elegans animals with a compromised pharynx accumulate bacteria in their intestinal lumen and activate a transcriptional response that includes anti-bacterial response genes. In this study, we demonstrate that animals with defective pharynxes are resistant to Orsay virus (OrV) infection. This resistance is observed for animals grown on Escherichia coli OP50 and on Comamonas BIGb0172, a bacterium naturally associated with C. elegans . The viral resistance observed in defective-pharynx mutants does not seem to result from constitutive transcriptional immune responses against viruses. OrV resistance is also observed in mutants with defective defecation, which share with the pharynx-defective perturbations in the regulation of their intestinal contents and altered lipid metabolism. The underlying mechanisms of viral resistance in pharynx- and defecation-defective mutants remain elusive.202438590801
678170.8537CpxAR of Actinobacillus pleuropneumoniae Contributes to Heat Stress Response by Repressing Expression of Type IV Pilus Gene apfA. Acute pleuropneumonia in swine, caused by Actinobacillus pleuropneumoniae, is characterized by a high and sustained fever. Fever creates an adverse environment for many bacteria, leading to reduced bacterial proliferation; however, most pathogenic bacteria can tolerate higher temperatures. CpxAR is a two-component regulation system, ubiquitous among Gram-negative bacteria, which senses and responds to envelope alterations that are mostly associated with protein misfolding in the periplasm. Our previous study showed that CpxAR is necessary for the optimal growth of Actinobacillus pleuropneumoniae under heat stress. Here, we showed that mutation of the type IV pilin gene apfA rescued the growth defect of the cpxAR deletion strain under heat stress. RNA sequencing (RNA-seq) analyses revealed that 265 genes were differentially expressed in the ΔcpxAR strains grown at 42°C, including genes involved in type IV pilus biosynthesis. We also demonstrated direct binding of the CpxR protein to the promoter of the apf operon by an electrophoretic mobility shift assay and identified the binding site by a DNase I footprinting assay. In conclusion, our results revealed the important role of CpxAR in A. pleuropneumoniae resistance to heat stress by directly suppressing the expression of ApfA. IMPORTANCE Heat acts as a danger signal for pathogens, especially those infecting mammalian hosts in whom fever indicates infection. However, some bacteria have evolved exquisite mechanisms to survive under heat stress. Studying the mechanism of resistance to heat stress is crucial to understanding the pathogenesis of A. pleuropneumoniae during the acute stage of infection. Our study revealed that CpxAR plays an important role in A. pleuropneumoniae resistance to heat stress by directly suppressing expression of the type IV pilin protein ApfA.202236259970
8431180.8535A quaternary ammonium salt grafted tannin-based flocculant boosts the conjugative transfer of plasmid-born antibiotic resistance genes: The nonnegligible side of their flocculation-sterilization properties. This study developed dual-function tannin-based flocculants, namely tannin-graft-acrylamide-diallyl dimethyl ammonium chloride (TGCC-A/TGCC-C), endowed with enhanced flocculation-sterilization properties. The impacts of these flocculants on proliferation and transformation of antibiotic resistance genes (ARGs) among bacteria during the flocculation-deposition process were examined. TGCC-A/TGCC-C exhibited remarkable flocculation capacities towards both Escherichia coli and Staphylococcus aureus, encompassing a logarithmic range of initial cell density (10(8)-10(9) CFU/mL) and a broad pH spectrum (pH 2-11). The grafted quaternary ammonium salt groups played pivotal parts in flocculation through charge neutralization and bridging mechanisms, concurrently contributing to sterilization by disrupting cellular membranes. The correlation between flocculation and sterilization entails a sequential progression, where an excess of TGCC, initially employed for flocculation, is subsequently consumed for sterilization purposes. The frequencies of ARGs conjugative transfer were enhanced in bacterial flocs across all TGCC treatments, stemming from augmented bacterial aggregation and cell membrane permeability, elicited stress response, and up-regulated genes encoding plasmid transfer. These findings underscore the indispensable role of flocculation-sterilization effects in mediating the propagation of ARGs, consequently providing substantial support for the scientific evaluation of the environmental risks associated with flocculants in the context of ARGs dissemination during the treatment of raw water featuring high bacterial density.202337619725
6364190.8533Characterization of clumpy adhesion of Escherichia coli to human cells and associated factors influencing antibiotic sensitivity. Escherichia coli intestinal infection pathotypes are characterized by distinct adhesion patterns, including the recently described clumpy adhesion phenotype. Here, we identify and characterize the genetic factors contributing to the clumpy adhesion of E. coli strain 4972. In this strain, the transcriptome and proteome of adhered bacteria were found to be distinct from planktonic bacteria in the supernatant. A total of 622 genes in the transcriptome were differentially expressed in bacteria present in clumps relative to the planktonic bacteria. Seven genes targeted for disruption had variable distribution in different pathotypes and nonpathogenic E. coli, with the pilV and spnT genes being the least frequent or absent from most groups. Deletion (Δ) of five differentially expressed genes, flgH, ffp, pilV, spnT, and yggT, affected motility, adhesion, or antibiotic stress. ΔflgH exhibited 80% decrease and ΔyggT depicted 184% increase in adhesion, and upon complementation, adhesion was significantly reduced to 13%. ΔflgH lost motility and was regenerated when complemented, whereas Δffp had significantly increased motility, and reintroduction of the same gene reduced it to the wild-type level. The clumps produced by Δffp and ΔspnT were more resistant and protected the bacteria, with ΔspnT showing the best clump formation in terms of ampicillin stress protection. ΔyggT had the lowest tolerance to gentamicin, where the antibiotic stress completely eliminated the bacteria. Overall, we were able to investigate the influence of clump formation on cell surface adhesion and antimicrobial tolerance, with the contribution of several factors crucial to clump formation on susceptibility to the selected antibiotics. IMPORTANCE: The study explores a biofilm-like clumpy adhesion phenotype in Escherichia coli, along with various factors and implications for antibiotic susceptibility. The phenotype permitted the bacteria to survive the onslaught of high antibiotic concentrations. Profiles of the transcriptome and proteome allowed the differentiation between adhered bacteria in clumps and planktonic bacteria in the supernatant. The deletion mutants of genes differentially expressed between adhered and planktonic bacteria, i.e., flgH, ffp, pilV, spnT, and yggT, and respective complementations in trans cemented their roles in multiple capacities. ffp, an uncharacterized gene, is involved in motility and resistance to ampicillin in a clumpy state. The work also affirms for the first time the role of the yggT gene in adhesion and its involvement in susceptibility against another aminoglycoside antibiotic, i.e., gentamicin. Overall, the study contributes to the mechanisms of biofilm-like adhesion phenotype and understanding of the antimicrobial therapy failures and infections of E. coli.202438530058