# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7893 | 0 | 0.9817 | Removal of ofloxacin and inhibition of antibiotic resistance gene spread during the aerobic biofilm treatment of rural domestic sewage through the micro-nano aeration technology. Micro-nano aeration (MNA) has great potential for emerging contaminant removal. However, the mechanism of antibiotic removal and antibiotic resistance gene (ARG) spread, and the impact of the different aeration conditions remain unclear. This study investigated the adsorption and biodegradation of ofloxacin (OFL) and the spread of ARGs in aerobic biofilm systems under MNA and conventional aeration (CVA) conditions. Results showed that the MNA increased OFL removal by 17.27 %-40.54 % and decreased total ARG abundance by 36.37 %-54.98 %, compared with CVA. MNA-induced biofilm rough morphology, high zeta potential, and reduced extracellular polymeric substance (EPS) secretion enhanced OFL adsorption. High dissolved oxygen and temperature, induced by MNA-enriched aerobic bacteria and their carrying OFL-degrading genes, enhanced OFL biodegradation. MNA inhibited the enrichment of ARG host bacteria, which acquired ARGs possibly via horizontal gene transfer (HGT). Functional profiles involved in the HGT process, including reactive oxygen species production, membrane permeability, mobile genetic elements (MGEs), adenosine triphosphate synthesis, and EPS secretion, were down-regulated by MNA, inhibiting ARG spread. Partial least-squares path modeling revealed that MGEs might be the main factor inhibiting ARG spread. This study provides insights into the mechanisms by which MNA enhances antibiotic removal and inhibits ARG spread in aerobic biofilm systems. | 2025 | 39733752 |
| 7829 | 1 | 0.9814 | Insights into capture-inactivation/oxidation of antibiotic resistance bacteria and cell-free antibiotic resistance genes from waters using flexibly-functionalized microbubbles. The spread of antibiotic resistance in the aquatic environment severely threatens the public health and ecological security. This study investigated simultaneously capturing and inactivating/oxidizing the antibiotic resistant bacteria (ARB) and cell-free antibiotic resistance genes (ARGs) in waters by flexibly-functionalized microbubbles. The microbubbles were obtained by surface-modifying the bubbles with coagulant (named as coagulative colloidal gas aphrons, CCGAs) and further encapsulating ozone in the gas core (named as coagulative colloidal ozone aphrons, CCOAs). CCGAs removed 92.4-97.5% of the sulfamethoxazole-resistant bacteria in the presence of dissolved organic matter (DOM), and the log reduction of cell-free ARGs (particularly, those encoded in plasmid) reached 1.86-3.30. The ozone release from CCOAs led to efficient in-situ oxidation: 91.2% of ARB were membrane-damaged and inactivated. In the municipal wastewater matrix, the removal of ARB increased whilst that of cell-free ARGs decreased by CCGAs with the DOM content increasing. The ozone encapsulation into CCGAs reinforced the bubble performance. The predominant capture mechanism should be electrostatic attraction between bubbles and ARB (or cell-free ARGs), and DOM enhanced the sweeping and bridging effect. The functionalized microbubble technology can be a promising and effective barrier for ARB and cell-free ARGs with shortened retention time, lessened chemical doses and simplified treatment unit. | 2022 | 35063836 |
| 7875 | 2 | 0.9812 | Phenacetin enhanced the inorganic nitrogen removal performance of anammox bacteria naturally in-situ enriched system. Among the earliest synthetic antipyretic drugs, phenacetin (PNCT) could be used as the novel partial nitrification (PN) inhibitor to effectively inhibit nitrite-oxidizing bacteria (NOB). In practical application, the rapidly starting of PN could provide stable source of nitrite for anaerobic ammonium oxidation (anammox) process. However, impact of PNCT on anaerobic ammonia oxidizing bacteria (AnAOB) and its underlying mechanisms were not clear. In this research, totally 14 times of PNCT aerobic soaking treatment were performed in the AnAOB naturally enrichment system to improve total inorganic nitrogen removal efficiency (TINRE). After once of PNCT treatment, TINRE rose from 61.89 % to 79.93 %. After 14 times of PNCT treatment, NOB Nitrospira relative abundance decreased from 9.82 % to 0.71 %, though Candidatus Brocadia relative abundance also declined, it might gradually adjust to PNCT by converting the leading oligotype species. The activity and relative abundances of NOB were reduced by PNCT via decreasing the abundances of genes amoA and nxrB, enzymes NxrA and NxrB. Moreover, Candidatus Jettenia and Ca. Brocadia might be the potential host of qacH-01 and they played the crucial role in the shaping profile of antibiotic resistance genes (ARGs). The explosive propagation or transmission of ARGs might not take place after PNCT treatment. | 2024 | 39566627 |
| 7873 | 3 | 0.9811 | Wheat straw pyrochar more efficiently decreased enantioselective uptake of dinotefuran by lettuce and dissemination of antibiotic resistance genes than hydrochar in an agricultural soil. Remediation of soils pollution caused by dinotefuran, a chiral pesticide, is indispensable for ensuring human food security. In comparison with pyrochar, the effect of hydrochar on enantioselective fate of dinotefuran, and antibiotic resistance genes (ARGs) profiles in the contaminated soils remain poorly understood. Therefore, wheat straw hydrochar (SHC) and pyrochar (SPC) were prepared at 220 and 500 °C, respectively, to investigate their effects and underlying mechanisms on enantioselective fate of dinotefuran enantiomers and metabolites, and soil ARG abundance in soil-plant ecosystems using a 30-day pot experiment planted with lettuce. SPC showed a greater reduction effect on the accumulation of R- and S-dinotefuran and metabolites in lettuce shoots than SHC. This was mainly resulted from the lowered soil bioavailability of R- and S-dinotefuran due to adsorption/immobilization by chars, together with the char-enhanced pesticide-degrading bacteria resulted from increased soil pH and organic matter content. Both SPC and SHC efficiently reduced ARG levels in soils, owing to lowered abundance of ARG-carrying bacteria and declined horizontal gene transfer induced by decreased dinotefuran bioavailability. The above results provide new insights for optimizing char-based sustainable technologies to mitigate pollution of dinotefuran and spread of ARGs in agroecosystems. | 2023 | 36996986 |
| 7872 | 4 | 0.9811 | Quaternary ammonium compounds promoted anoxic sludge granulation and altered propagation risk of intracellular and extracellular antibiotic resistance genes. Surfactants could influence sludge morphology and disinfectants were linked to antibiotic resistance genes (ARGs). Thus, the response of activated sludge and ARGs to long-term quaternary ammonium compounds (QACs) exposure required further investigation, which is a popular surfactant and disinfectant. Here, three sequencing batch reactors were fed with 5 mg/L most frequently detected QACs (dodecyl trimethyl ammonium chloride (ATMAC C12), dodecyl benzyl dimethyl ammonium chloride (BAC C12) and didodecyl dimethyl ammonium chloride (DADMAC C12)) for 180 d. The long-term inhibitory effect on denitrification ranked: DADMAC C12 > BAC C12 > ATMAC C12. Besides, obvious granular sludge promoted by the increase of α-Helix/(β-Sheet + Random coil) appeared in DADMAC C12 system. Moreover, intracellular ARGs increased when denitrification systems encountered QACs acutely but decreased in systems chronically exposed to QACs. Although replication and repair metabolism in ATMAC C12 system was higher, ATMAC C12 significantly promoted proliferation of extracellular ARGs. It was noteworthy that the propagation risk of extracellular ARGs in sludge increased significantly during sludge granulation process, and intracellular sul2 genes in sludge and water both increased with the granular diameter in DADMAC C12 system. The universal utilization of QACs may enhance antibiotic resistance of bacteria in wastewater treatment plants, deserving more attention. | 2023 | 36444811 |
| 8112 | 5 | 0.9810 | Fate of antibiotic resistance bacteria and genes during enhanced anaerobic digestion of sewage sludge by microwave pretreatment. The fate of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) were investigated during the sludge anaerobic digestion (AD) with microwave-acid (MW-H), microwave (MW) and microwave-H2O2-alkaline (MW-H2O2) pretreatments. Results showed that combined MW pretreatment especially for the MW-H pretreatment could efficiently reduce the ARB concentration, and most ARG concentrations tended to attenuate during the pretreatment. The subsequent AD showed evident removal of the ARB, but most ARGs were enriched after AD. Only the concentration of tetX kept continuous declination during the whole sludge treatment. The total ARGs concentration showed significant correlation with 16S rRNA during the pretreatment and AD. Compared with unpretreated sludge, the AD of MW and MW-H2O2 pretreated sludge presented slightly better ARB and ARGs reduction efficiency. | 2016 | 26970692 |
| 7854 | 6 | 0.9808 | Removal of antibiotic resistant bacteria and plasmid-encoded antibiotic resistance genes in water by ozonation and electro-peroxone process. The electro-peroxone (EP) process is an electricity-based oxidation process enabled by electrochemically generating hydrogen peroxide (H(2)O(2)) from cathodic oxygen (O(2)) reduction during ozonation. In this study, the removal of antibiotic resistant bacteria (ARB) and plasmid-encoded antibiotic resistance genes (ARGs) during groundwater treatment by ozonation alone and the EP process was compared. Owing to the H(2)O(2)-promoted ozone (O(3)) conversion to hydroxyl radicals (•OH), higher •OH exposures, but lower O(3) exposures were obtained during the EP process than ozonation alone. This opposite change of O(3) and •OH exposures decreases the efficiency of ARB inactivation and ARG degradation moderately during the EP process compared with ozonation alone. These results suggest that regarding ARB inactivation and ARG degradation, the reduction of O(3) exposures may not be fully counterbalanced by the rise of •OH exposures when changing ozonation to the EP process. However, due to the rise of •OH exposure, plasmid DNA was more effectively cleaved to shorter fragments during the EP process than ozonation alone, which may decrease the risks of natural transformation of ARGs. These findings highlight that the influence of the EP process on ARB and ARG inactivation needs to be considered when implementing this process in water treatment. | 2023 | 36738938 |
| 7874 | 7 | 0.9808 | Phenacetin promoted the rapid start-up and stable maintenance of partial nitrification: Responses of nitrifiers and antibiotic resistance genes. Phenacetin (PNCT) belongs to one of the earliest synthetic antipyretics. However, impact of PNCT on nitrifying microorganisms in wastewater treatment plants and its potential microbial mechanism was still unclear. In this study, PN could be initiated within six days by PNCT anaerobic soaking treatment (8 mg/L). In order to improve the stable performance of PN, 21 times of PNCT aerobic soaking treatment every three days was conducted and PN was stabilized for 191 days. After PN was damaged, ten times of PNCT aerobic soaking treatment every three days was conducted and PN was recovered after once soaking, maintained over 88 days. Ammonia oxidizing bacteria might change the dominant oligotype to gradually adjust to PNCT, and the increase of abundance and activity of Nitrosomonas promoted the initiation of PN. For nitrite-oxidizing bacteria (NOB), the increase of Candidatus Nitrotoga and Nitrospira destroyed PN, but PN could be recovered after once aerobic soaking illustrating NOB was not resistant to PNCT. KEGG and COG analysis suggested PNCT might disrupt rTCA cycle of Nitrospira, resulting in the decrease of relative abundance of Nitrospira. Moreover, PNCT did not lead to the sharp increase of absolute abundances of antibiotic resistance genes (ARGs), and the risk of ARGs transmission was negligible. | 2024 | 38744392 |
| 7897 | 8 | 0.9807 | Enhanced removal of antibiotic and antibiotic resistance genes by coupling biofilm electrode reactor and manganese ore substrate up-flow microbial fuel cell constructed wetland system. Manganese ore substrate up-flow microbial fuel cell constructed wetland (UCW-MFC(Mn)) as an innovative wastewater treatment technology for purifying antibiotics and electricity generation with few antibiotic resistance genes (ARGs) generation has attracted attention. However, antibiotic purifying effects should be further enhanced. In this study, a biofilm electrode reactor (BER) that needs direct current driving was powered by a Mn ore anode (UCW-MFC(Mn)) to form a coupled system without requiring direct-current source. Removal efficiencies of sulfadiazine (SDZ), ciprofloxacin (CIP) and the corresponding ARGs in the coupled system were compared with composite (BER was powered by direct-current source) and anaerobic systems (both of BER and UCW-MFC were in open circuit mode). The result showed that higher antibiotic removal efficiency (94% for SDZ and 99.1% for CIP) in the coupled system was achieved than the anaerobic system (88.5% for SDZ and 98.2% for CIP). Moreover, electrical stimulation reduced antibiotic selective pressure and horizontal gene transfer potential in BER, and UCW-MFC further reduced ARG abundances by strengthening the electro-adsorption of ARG hosts determined by Network analysis. Bacterial community diversity continuously decreased in BER while it increased in UCW-MFC, indicating that BER mitigated the toxicity of antibiotic. Degree of modularity, some functional bacteria (antibiotic degrading bacteria, fermentative bacteria and EAB), and P450 enzyme related to antibiotic and xenobiotics biodegradation genes were enriched in electric field existing UCW-MFC, accounting for the higher degradation efficiency. In conclusion, this study provided an effective strategy for removing antibiotics and ARGs in wastewater by operating a BER-UCW-MFC coupled system. | 2023 | 37437616 |
| 8117 | 9 | 0.9806 | Composting of oxytetracycline fermentation residue in combination with hydrothermal pretreatment for reducing antibiotic resistance genes enrichment. Hydrothermal pretreatment can efficiently remove the residual antibiotics in oxytetracycline fermentation residue (OFR), but its effect on antibiotic resistance genes (ARGs) during composting remains unclear. This study compared the shifts in bacterial community and evolutions in ARGs and integrons during different composting processes of OFRs with and without hydrothermal pretreatment. The results demonstrated that hydrothermal pretreatment increased the bacterial alpha diversity at the initial phase, and increased the relative abundances of Proteobacteria and Actinobacteria but decreased that of Bacteroidetes at the final phase by inactivating mycelia and removing residual oxytetracycline. Composting process inevitably elevated the abundance and relative abundance of ARGs. However, the increase in ARGs was significantly reduced by hydrothermal pretreatment, because the removal of oxytetracycline decreased their potential host bacteria and inhibited their horizontal gene transfer. The results demonstrated that hydrothermal pretreatment is an efficient strategy to reduce the enrichment of ARGs during the OFR composting. | 2020 | 33099099 |
| 7858 | 10 | 0.9805 | Photocatalytic Reactive Ultrafiltration Membrane for Removal of Antibiotic Resistant Bacteria and Antibiotic Resistance Genes from Wastewater Effluent. Biological wastewater treatment is not effective in removal of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). In this study, we fabricated a photocatalytic reactive membrane by functionalizing polyvinylidene fluoride (PVDF) ultrafiltration (UF) membrane with titanium oxide (TiO(2)) nanoparticles for the removal of ARB and ARGs from a secondary wastewater effluent. The TiO(2)-modified PVDF membrane provided complete retention of ARB and effective photocatalytic degradation of ARGs and integrons. Specifically, the total removal efficiency of ARGs (i.e., plasmid-mediated floR, sul1, and sul2) with TiO(2)-modified PVDF membrane reached ∼98% after exposure to UV irradiation. Photocatalytic degradation of ARGs located in the genome was found to be more efficient than those located in plasmid. Excellent removal of integrons (i.e., intI1, intI2, and intI3) after UV treatment indicated that the horizontal transfer potential of ARGs was effectively controlled by the TiO(2) photocatalytic reaction. We also evaluated the antifouling properties of the TiO(2)-UF membrane to demonstrate its potential application in wastewater treatment. | 2018 | 29984583 |
| 7860 | 11 | 0.9804 | Enhanced removal of antibiotic-resistant bacteria and resistance genes by three-dimensional electrochemical process using MgFe(2)O(4)-loaded biochar as both particle electrode and catalyst for peroxymonosulfate activation. In this study, MgFe(2)O(4)-loaded biochar (MFBC) was used as a three-dimensional particle electrode to active peroxymonosulfate (EC/MFBC/PMS) for the removal of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). The results demonstrated that, under the conditions of 1.0 mM PMS concentration, 0.4 g/L material dosage, 5 V voltage intensity, and MFBC preparation temperature of 600 °C, the EC/MFBC600/PMS system achieved complete inactivation of E. coli DH5α within 5 min and the intracellular sul1 was reduced by 81.5 % after 30 min of the treatment. Compared to EC and PMS alone treatments, the conjugation transfer frequency of sul1 rapidly declined by 92.9 % within 2 min. The cell membrane, proteins, lipids, as well as intracellular and extracellular ARGs in E. coli DH5α were severely damaged by free radicals in solution and intracellular reactive oxygen species (ROS). Furthermore, up-regulation was observed in genes associated with oxidative stress, SOS response and cell membrane permeability in E. coli DH5α, however, no significant changes were observed in functional genes related to gene conjugation and transfer mechanisms. This study would contribute to the underlying of PMS activation by three-dimensional particle electrode, and provide novel insights into the mechanism of ARB inactivation and ARGs degradation under PMS advanced oxidation treatment. | 2024 | 39197284 |
| 7935 | 12 | 0.9804 | Removal of antibiotic resistance genes by Cl(2)-UV process: Direct UV damage outweighs free radicals in effectiveness. Antibiotic resistance genes (ARGs) pose significant environmental health problems and have become a major global concern. This study investigated the efficacy and mechanism of the Cl(2)-UV process (chlorine followed by UV irradiation) for removing ARGs in various forms. The Cl(2)-UV process caused irreversible damage to nearly all ARB at typical disinfectant dosages. In solutions containing only extracellular ARGs (eARGs), the Cl₂-UV process achieved over 99.0 % degradation of eARGs. When both eARGs and intracellular ARGs (iARGs) were present, the process reached a 97.2 % removal rate for iARGs. While the abundance of eARGs initially increased due to the release of iARGs from lysed cells during pre-chlorination, subsequent UV irradiation rapidly degraded the released eARGs, restoring their abundance to near-initial levels by the end of the Cl₂-UV process. Analysis of the roles in degrading eARGs and iARGs during the Cl(2)-UV process revealed that UV, rather than free radicals, was the dominant factor causing ARG damage. Pre-chlorination enhanced direct UV damage to eARGs and iARGs by altering plasmid conformation and promoting efficient damage to high UV-absorbing cellular components. Furthermore, no further natural transformation of residual ARGs occurred following the Cl(2)-UV treatment. This study demonstrated strong evidence for the effectiveness of the Cl(2)-UV process in controlling antibiotic resistance. | 2025 | 40048777 |
| 7940 | 13 | 0.9804 | Microplastics affect the ammonia oxidation performance of aerobic granular sludge and enrich the intracellular and extracellular antibiotic resistance genes. Microplastics (MPs) and antibiotic resistance genes (ARGs), as emerging pollutants, are frequently detected in wastewater treatment plants, and their threats to the environment have received extensive attentions. However, the effects of MPs on the nitrification of aerobic granular sludge (AGS) and the spread patterns of intracellular and extracellular ARGs (iARGs and eARGs) in AGS were still unknown. In this study, the responses of AGS to the exposure of 1, 10 and 100 mg/L of typical MPs (polyvinyl chloride (PVC), polyamide (PA), polystyrene (PS) and polyethylene (PE)) and tetracycline were focused on in 3 L nitrifying sequencing batch reactors. 10 mg/L MPs decreased the nitrification function, but nitrification could recover. Furthermore, MPs inhibited ammonia-oxidizing bacteria and enriched nitrite-oxidizing bacteria, leading partial nitrification to losing stability. PVC, PA and PS stimulated the secretion of extracellular polymeric substances and reactive oxygen species. PE had less negative effect on AGS than PVC, PA and PS. The abundances of iARGs and eARGs (tetW, tetE and intI1) increased significantly and the intracellular and extracellular microbial communities obviously shifted in AGS system under MPs stress. Potential pathogenic bacteria might be the common hosts of iARGs and eARGs in AGS system and were enriched in AGS and MPs biofilms. | 2021 | 33387747 |
| 7910 | 14 | 0.9803 | Tetracycline degradation by a mixed culture of halotolerant fungi-bacteria under static magnetic field: Mechanism and antibiotic resistance genes transfer. Efficient antibiotics removal lowers the transmission risk of antibiotic resistance genes (ARGs). However, low efficiency limits the application of biological methods for antibiotics removal. Herein, a mixed culture of halotolerant fungi-bacteria was used for treatment of saline wastewater containing tetracycline (TC). Furthermore, static magnetic field (SMF) was used to increase TC removal. The study examined the effectiveness of SMF in removing antibiotics from saline wastewater and the associated risk of ARGs transmission. The results demonstrated that the application of a 40 mT SMF significantly improved the TC removal efficiency by 37.09 %, compared to the control (SMF=0) The TC was mainly removed through biodegradation and adsorption. In biodegradation, SMF enhanced electron transport system activity, and activities of lignin-degrading enzymes which led to higher TC biodegradation. The activity of lactate dehydrogenase and malondialdehyde decreased, lowering the damage of microbial cell membranes by TC. During the adsorption process, higher generation of extracellular polymeric substances was observed under SMF, which caused an increase in TC removal via adsorption. Microbial community analysis revealed that SMF facilitated the enrichment of TC-degrading microorganisms. Under SMF, vertical gene transfer of ARGs increased, while horizontal gene transfer risk decreased due to a reduction in mobile genetic elements (intl1) abundance. This study demonstrates that SMF is a promising strategy for enhancing TC removal efficiency, providing a basis for improved antibiotic wastewater management. | 2025 | 40199074 |
| 7864 | 15 | 0.9802 | Simultaneous removal of antibiotics and antibiotic resistant genes using a CeO(2)@CNT electrochemical membrane-NaClO system. The simultaneous removal of antibiotic and antibiotic resistance genes (ARGs) are important to inhibit the spread of antibiotic resistance. In this study, a coupled treatment system was developed using a CeO(2) modified carbon nanotube electrochemical membrane and NaClO (denoted as CeO(2)@CNT-NaClO) to treat simulated water samples containing antibiotics and antibiotic-resistant bacteria (ARB). As the mass ratio of CeO(2) to CNT was 5:7 and the current density was 2.0 mA/cm(2), the CeO(2)@CNT-NaClO system removed 99% of sulfamethoxazole, 4.6 log sul1 genes, and 4.7 log intI1 genes from the sulfonamide-resistance water samples, and removed 98% of tetracycline, 2.0 log tetA genes, and 2.6 log intI1 genes of the tetracycline-resistance water samples. The outstanding performance of the CeO(2)@CNT-NaClO system for simultaneously removing antibiotic and ARGs was mainly ascribed to the generation of multiple reactive species, including •OH, •ClO, •O(2)(-) and (1)O(2). Antibiotics can undergo efficient degradation by •OH. However, the reaction between •OH and antibiotics reduces the availability of •OH to permeate into the cells and react with DNA. Nevertheless, the presence of •OH enhancd the effects of •ClO, •O(2)(-), and (1)O on ARG degradation. Through the coupled action of •OH, •ClO, •O(2)(-), and (1)O(2), the cell membranes of ARB experience severe damage, resulting in an increase in intracellular reactive oxygen species (ROS) and a decrease in superoxide dismutase (SOD) activity. Consequently, this coordinated mechanism leads to superior removal of ARGs. | 2023 | 37429382 |
| 7851 | 16 | 0.9802 | Breaking antibiotic resistance: Sunlight-powered calcium peroxide for dual bactericidal and genetic elimination. Antibiotic-resistant bacteria (ARB) and associated antibiotic resistance genes (ARGs) have emerged as critical waterborne contaminants, posing serious public health risks. This study proposes a disinfection strategy through sunlight powered calcium peroxide (CaO(2)) treatment that simultaneously inactivates ARB and degrades ARGs in aquatic environments. Solar irradiation combined with CaO(2) (3.0 mM) activates dual mechanisms: alkaline-driven microbial inactivation (pH increase from 6.4 to 8.2 within 30 min) and ROS-mediated oxidative damage (ROS: (•)OH, H(2)O(2), (1)O(2) and O(2)(•-)), achieving complete 5-log inactivation of tetracycline and sulfonamides-resistant E. coli (TSRE). ARGs (tetA and sul2) showed 70-80 % reduction in absolute abundance, although the log removal did not exceed 1-log. Compared to sunlight alone, the addition of CaO(2) significantly enhanced disinfection efficiency. Alkaline and ROS-induced oxidative stress caused membrane lipid breakdown, protein denaturation, and suppression of antioxidant enzymes, along with DNA damage, lipid peroxidation, and enzyme inactivation. These effects increased membrane permeability, impaired bacterial recovery by downregulating DNA repair genes, and disrupted cellular integrity, ultimately limiting ARGs persistence. These findings highlight the synergistic effect of alkaline and oxidative stress in effectively inactivating ARB and degrading ARGs, positioning sunlight powered CaO(2) as a promising, highly efficient disinfection strategy for environmental water treatment. | 2025 | 40876436 |
| 7926 | 17 | 0.9801 | Microplastics Exacerbated Conjugative Transfer of Antibiotic Resistance Genes during Ultraviolet Disinfection: Highlighting Difference between Conventional and Biodegradable Ones. Microplastics (MPs) have been confirmed as a hotspot for antibiotic resistance genes (ARGs) in wastewater. However, the impact of MPs on the transfer of ARGs in wastewater treatment remains unclear. This study investigated the roles and mechanisms of conventional (polystyrene, PS) and biodegradable (polylactic acid, PLA) MPs in the conjugative transfer of ARGs during ultraviolet disinfection. The results showed that MPs significantly facilitated the conjugative transfer of ARGs compared with individual ultraviolet disinfection, and PSMPs exhibited higher facilitation than PLAMPs. The facilitation effects were attributed to light shielding and the production of reactive oxygen species (ROS) and nanoplastics from ultraviolet irradiation of MPs. The light shielding of MPs protected the bacteria and ARGs from ultraviolet inactivation. More importantly, ROS and nanoplastics generated from irradiated MPs induced intracellular oxidative stress on bacteria and further increased the cell membrane permeability and intercellular contact, ultimately enhancing the ARG exchange. The greater fragmentation of PSMPs than PLAMPs resulted in a higher intracellular oxidative stress and a stronger enhancement. This study highlights the concerns of conventional and biodegradable MPs associated with the transfer of ARGs during wastewater treatment, which provides new insights into the combined risks of MPs and ARGs in the environment. | 2025 | 39723446 |
| 7871 | 18 | 0.9801 | Effects of different quaternary ammonium compounds on intracellular and extracellular resistance genes in nitrification systems under the pre-contamination of benzalkyl dimethylammonium compounds. As the harm of benzalkyl dimethylammonium compounds (BACs) on human health and environment was discovered, alkyltrimethyl ammonium compound (ATMAC) and dialkyldimethyl ammonium compound (DADMAC), which belong to quaternary ammonium compounds (QACs), were likely to replace BACs as the main disinfectants. This study simulated the iterative use of QACs to explore their impact on resistance genes (RGs) in nitrification systems pre-contaminated by BACs. ATMAC could initiate and maintain partial nitrification. DADMAC generated higher levels of reactive oxygen species and lactate dehydrogenase, leading to increased biological toxicity in bacteria. The abundance of intracellular RGs of sludge was higher with the stress of QACs. DADMAC also induced higher extracellular polymeric substance secretion. Moreover, it facilitated the transfer of RGs from sludge to water, with ATMAC disseminating RGs through si-tnpA-04 and DADMAC through si-intI1. Sediminibacterium might be potential hosts for RGs. This study offered insights into disinfectant usage in the post-COVID-19 era. | 2025 | 39612960 |
| 8431 | 19 | 0.9801 | A quaternary ammonium salt grafted tannin-based flocculant boosts the conjugative transfer of plasmid-born antibiotic resistance genes: The nonnegligible side of their flocculation-sterilization properties. This study developed dual-function tannin-based flocculants, namely tannin-graft-acrylamide-diallyl dimethyl ammonium chloride (TGCC-A/TGCC-C), endowed with enhanced flocculation-sterilization properties. The impacts of these flocculants on proliferation and transformation of antibiotic resistance genes (ARGs) among bacteria during the flocculation-deposition process were examined. TGCC-A/TGCC-C exhibited remarkable flocculation capacities towards both Escherichia coli and Staphylococcus aureus, encompassing a logarithmic range of initial cell density (10(8)-10(9) CFU/mL) and a broad pH spectrum (pH 2-11). The grafted quaternary ammonium salt groups played pivotal parts in flocculation through charge neutralization and bridging mechanisms, concurrently contributing to sterilization by disrupting cellular membranes. The correlation between flocculation and sterilization entails a sequential progression, where an excess of TGCC, initially employed for flocculation, is subsequently consumed for sterilization purposes. The frequencies of ARGs conjugative transfer were enhanced in bacterial flocs across all TGCC treatments, stemming from augmented bacterial aggregation and cell membrane permeability, elicited stress response, and up-regulated genes encoding plasmid transfer. These findings underscore the indispensable role of flocculation-sterilization effects in mediating the propagation of ARGs, consequently providing substantial support for the scientific evaluation of the environmental risks associated with flocculants in the context of ARGs dissemination during the treatment of raw water featuring high bacterial density. | 2023 | 37619725 |