# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1382 | 0 | 0.9830 | Surveillance of antimicrobial-resistant Escherichia coli in Sheltered dogs in the Kanto Region of Japan. There is a lack of an established antimicrobial resistance (AMR) surveillance system in animal welfare centers. Therefore, the AMR prevalence in shelter dogs is rarely known. Herein, we conducted a survey in animal shelters in Chiba and Kanagawa prefectures, in the Kanto Region, Japan, to ascertain the AMR status of Escherichia coli (E. coli) prevalent in shelter dogs. E. coli was detected in the fecal samples of all 61 and 77 shelter dogs tested in Chiba and Kanagawa, respectively. The AMR was tested against 20 antibiotics. E. coli isolates derived from 16.4% and 26.0% of samples from Chiba and Kanagawa exhibited resistance to at least one antibiotic, respectively. E. coli in samples from Chiba and Kanagawa prefectures were commonly resistant to ampicillin, piperacillin, streptomycin, kanamycin, tetracycline, and nalidixic acid; that from the Kanagawa Prefecture to cefazolin, cefotaxime, aztreonam, ciprofloxacin, and levofloxacin and that from Chiba Prefecture to chloramphenicol and imipenem. Multidrug-resistant bacteria were detected in 18 dogs from both regions; β-lactamase genes (blaTEM, blaDHA-1, blaCTX-M-9 group CTX-M-14), quinolone-resistance protein genes (qnrB and qnrS), and mutations in quinolone-resistance-determining regions (gyrA and parC) were detected. These results could partially represent the AMR data in shelter dogs in the Kanto Region of Japan. | 2022 | 35031646 |
| 1233 | 1 | 0.9820 | Prevalence, Antibiogram, and Resistance Profile of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates from Pig Farms in Luzon, Philippines. This cross-sectional study was conducted to determine the prevalence, antibiogram, and resistance profile of extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) isolates from healthy pigs and pig farms in Luzon, Philippines. A total of 162 rectal samples from healthy finisher and breeder pigs and boot swab samples from pig houses were collected from 54 randomly selected pig farms. Bacteria were isolated and screened using MacConkey agar plate supplemented with 1 mg/L cefotaxime. Identification of bacteria and antimicrobial susceptibility test were carried out through Vitek(®) 2 and combined disk test. PCR amplifications were carried out in all isolates targeting bla(CTX-M) and its five major groupings, bla(TEM), and bla(SHV). The farm prevalence of ESBL-EC was 57.41% (95% confidence interval [CI] = 43.21-70.77). A total of 48 (29.63%) ESBL-EC isolates were isolated from samples that showed 14 different phenotypic multidrug resistance patterns. The prevalence of bla(CTX-M) gene was 91.67% (95% CI = 80.02-97.68). All major bla(CTX-M-groups) except bla(CTX-M-25group) were detected. The bla(CTX-M-1) was the most prevalent bla(CTX-M) gene, 75.0% (95% CI = 60.40-86.36). The prevalence of bla(TEM) and bla(SHV) genes was 91.67% (95% CI = 80.02-97.68) and 60.42% (95% CI = 45.27-74.23), respectively. Coexistence of different bla(CTX-M), bla(TEM), and bla(SHV) genes was observed in 44 isolates with 20 different genotypic patterns. High prevalence, diverse antibiogram profile, and genotypic resistance pattern of ESBL-EC isolates from healthy pigs and pig farms were observed in this study that could result in possible transmission to farm workers, susceptible bacteria, and the environment. | 2020 | 31532307 |
| 1229 | 2 | 0.9817 | Detection of multi-drug resistance and AmpC β-lactamase/extended-spectrum β-lactamase genes in bacterial isolates of loggerhead sea turtles (Caretta caretta) from the Mediterranean Sea. Sea turtles are useful sentinels to monitor the dissemination of antimicrobial resistance (AMR) in the marine coastal ecosystems. Forty Gram negative bacteria were isolated from wounds of 52 injured Caretta caretta, living in the Mediterranean Sea. Bacteria were identified using 16S rRNA gene sequencing and tested for susceptibility to 15 antibiotics. In addition, NGS amplicon sequencing was performed to detect the presence of AmpC β-lactamase genes (bla(AmpC)) and extended-spectrum β-lactamase (ESBL) genes (bla(CTX-M,)bla(SHV,)bla(TEM)). Seventy-five percent of the isolates (30/40 isolates) exhibited multidrug resistance (MDR) phenotypes and 32.5% (13/40 isolates) were confirmed to be positive for at least one gene. The variants of ESBLs genes were bla(CTX-M-3,)bla(TEM-236) and bla(SHV-12). Variants of the bla(AmpC)β-lactamase gene i.e., bla(ACT-24), bla(ACT-2), bla(ACT-17), bla(DHA-4) and bla(CMY-37), were also detected. In addition, 4 isolates were found simultaneously harboring CTX and AmpC genes while 2 strains harbored 3 genes (bla(ACT-2+TEM-236+SHV-12), and bla(CTX-M-3+ACT-24+TEM-236)). | 2021 | 33513540 |
| 2991 | 3 | 0.9815 | Occurrence and antimicrobial resistance of Salmonella species and potentially pathogenic Escherichia coli in free-living seals of Canadian Atlantic and eastern Arctic waters. Seal populations in Canadian waters provide sustenance to coastal communities. There is potential for pathogenic and/or antimicrobial-resistant bacteria to transfer to humans through inadvertent faecal contamination of seal products. The objective of this study was to investigate the occurrence and potential antimicrobial resistance of Salmonella spp., Escherichia coli and Listeria monocytogenes in faecal samples collected from grey seals (Halichoerus grypus) in the Gulf of St. Lawrence and from ringed seals (Pusa hispida) in Frobisher Bay and Eclipse Sound, Nunavut, Canada. Grey seals were harvested during commercial hunts or during scientific sampling; ringed seals were collected by Inuit hunters during subsistence harvests. Virulence genes defining pathogenic E. coli were identified by PCR, and antimicrobial susceptibility testing was performed on recovered isolates. In grey seals, E. coli was detected in 34/44 (77%) samples, and pathogenic E. coli (extraintestinal E. coli [ExPEC], enteropathogenic E. coli [EPEC] or ExPEC/EPEC) was detected in 13/44 (29%) samples. Non-susceptibility to beta-lactams and quinolones was observed in isolates from 18 grey seals. In ringed seals from Frobisher Bay, E. coli was detected in 4/45 (9%) samples; neither virulence genes nor antimicrobial resistance was detected in these isolates. In ringed seals from Eclipse Sound, E. coli was detected in 8/50 (16%) samples and pathogenic E. coli (ExPEC and ExPEC/EPEC) in 5/50 (10%) samples. One seal from Eclipse Sound had an E. coli isolate resistant to beta-lactams. A monophasic Salmonella Typhimurium was recovered from 8/50 (16%) seals from Eclipse Sound. All Salmonella isolates were resistant to ampicillin, streptomycin, sulfisoxazole and tetracycline. L. monocytogenes was not detected in any sample. These findings suggest that seals may act as important sentinel species and as reservoirs or vectors for antimicrobial-resistant and virulent E. coli and Salmonella species. Further characterization of these isolates would provide additional insights into the source and spread of antimicrobial resistance and virulence genes in these populations of free-living seals. | 2023 | 37317052 |
| 961 | 4 | 0.9813 | Predominance of CTX-M-15 among ESBL Producers from Environment and Fish Gut from the Shores of Lake Victoria in Mwanza, Tanzania. Extended-Spectrum Beta-Lactamase (ESBL)-producing bacteria are a common cause of healthcare and community-associated infections worldwide. The distribution of such isolates in the environment and their presence in fish as a result of sewage contamination is not well-studied. Here we examined fish and environmental samples from Mwanza city for the presence of ESBL-producing bacteria. From 196 fish sampled from local markets, 26 (13.3%) contained lactose-fermenting ESBL-producing bacteria, while 39/73 (53.4%) environmental samples from the same area were ESBL producers. Antibiotic resistance genes, multi locus sequence types (MLST) and plasmid replicon types in 24 selected isolates from both populations were identified with whole genome sequencing using Illumina MiSeq. Nine of eleven sequenced fish isolates had the bla(CTX-M-15) gene whereas 12/13 from environment carried bla(CTX-M-15). Antibiotic resistance genes encoding resistance to sulfonamides (sul1/sul2), tetracyclines [tet(A)/tet(B)] fluoroquinolones [e.g., aac(6')-Ib-cr, qnrS1], aminoglycosides [e.g., aac(3)-lld, strB, strA,] and trimethoprim (e.g., dfrA14) were detected. E. coli sequence type ST-38 (2) and ST-5173 (2) were detected in isolates both from the environment and fish. IncY plasmids carrying bla(CTX-M-15), qnrS1, strA, and strB were detected in five environmental E. coli isolates and in one E. coli isolate from fish. Our data indicate spillage of resistant environmental isolates into Lake Victoria through the sewage system. Persistence of bla(CTX-M-15) in the Mwanza city environment is complex, and involves both clonal spread of resistant strains as well as dissemination by commonly occurring IncY plasmids circulating in isolates present in humans, the environment as well as in the food chain. | 2016 | 27990135 |
| 1388 | 5 | 0.9813 | Snapshot Study of Whole Genome Sequences of Escherichia coli from Healthy Companion Animals, Livestock, Wildlife, Humans and Food in Italy. Animals, humans and food are all interconnected sources of antimicrobial resistance (AMR), allowing extensive and rapid exchange of AMR bacteria and genes. Whole genome sequencing (WGS) was used to characterize 279 Escherichia coli isolates obtained from animals (livestock, companion animals, wildlife), food and humans in Italy. E. coli predominantly belonged to commensal phylogroups B1 (46.6%) and A (29%) using the original Clermont criteria. One hundred and thirty-six sequence types (STs) were observed, including different pandemic (ST69, ST95, ST131) and emerging (ST10, ST23, ST58, ST117, ST405, ST648) extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Eight antimicrobial resistance genes (ARGs) and five chromosomal mutations conferring resistance to highest priority critically important antimicrobials (HP-CIAs) were identified (qnrS1, qnrB19, mcr-1, bla(CTX-M1,15,55), bla(CMY-2), gyrA/parC/parE, ampC and pmrB). Twenty-two class 1 integron arrangements in 34 strains were characterized and 11 ARGs were designated as intI1 related gene cassettes (aadA1, aadA2, aadA5, aad23, ant2_Ia, dfrA1, dfrA7, dfrA14, dfrA12, dfrA17, cmlA1). Notably, most intI1 positive strains belonged to rabbit (38%) and poultry (24%) sources. Three rabbit samples carried the mcr-1 colistin resistance gene in association with IS6 family insertion elements. Poultry meat harbored some of the most prominent ExPEC STs, including ST131, ST69, ST10, ST23, and ST117. Wildlife showed a high average number of virulence-associated genes (VAGs) (mean = 10), mostly associated with an ExPEC pathotype and some predominant ExPEC lineages (ST23, ST117, ST648) were identified. | 2020 | 33172096 |
| 1385 | 6 | 0.9812 | GENOMIC CHARACTERIZATION OF MULTIDRUG-RESISTANT EXTENDED-SPECTRUM β-LACTAMASE-PRODUCING ESCHERICHIA COLI AND KLEBSIELLA PNEUMONIAE FROM CHIMPANZEES (PAN TROGLODYTES) FROM WILD AND SANCTUARY LOCATIONS IN UGANDA. Farm and wild animals may serve as reservoirs of antimicrobial-resistant bacteria of human health relevance. We investigated the occurrence and genomic characteristics of extended spectrum β-lactamase (ESBL)-producing bacteria in Ugandan chimpanzees (Pan troglodytes) residing in two environments with or without close contact to humans. The ESBL-producing Escherichia coli and Klebsiella pneumoniae were isolated from fecal material of chimpanzees from Budongo Forest and Ngamba Island Chimpanzee Sanctuary in Uganda and were more commonly isolated from chimpanzees in Ngamba Island Chimpanzee Sanctuary, where animals have close contact with humans. Selected ESBL isolates (E. coli n=9, K. pneumoniae n=7) were analyzed by whole-genome sequencing to determine the presence of resistance genes, as well as sequence type and virulence potential; the blaCTX-M-15 gene was present in all strains. Additionally, the ESBL genes blaSHV-11 and blaSHV-12 were found in strains in the study. All strains were found to be multidrug resistant. The E. coli strains belonged to four sequence types (ST2852, ST215, ST405, and ST315) and the K. pneumoniae strains to two sequence types (ST1540 and ST597). Virulence genes did not indicate that strains were of common E. coli pathotype, but strains with the same sequence types as isolated in the current study have previously been reported from clinical cases in Africa. The findings indicate that chimpanzees in close contact with humans may carry ESBL bacteria at higher frequency than those in the wild, indicating a potential anthropogenic transmission. | 2022 | 35255126 |
| 1386 | 7 | 0.9811 | ESBL/pAmpC-producing Enterobacterales in common leopard geckos (Eublepharis macularius) and central bearded dragons (Pogona vitticeps) from Portugal. Common leopard geckos (Eublepharis macularius) and central bearded dragon (Pogona vitticeps) are widely kept as pets but can harbor pathogenic bacteria, including antimicrobial-resistant (AMR) bacteria. This study aimed to research the frequency of β-lactamase-producing Enterobacterales in these two reptile species. A total of 132 samples were collected from the oral and cloacal cavities of healthy common leopard geckos and central bearded dragons in the Lisbon area, Portugal. Antimicrobial resistance was assessed for third-generation cephalosporin (3GC)-resistant Enterobacterales. The results revealed that 3GC-resistant Enterobacterales were observed in 17.9% (n = 14/78) of the reptiles. The most commonly identified species were: Citrobacter freundii and Klebsiella aerogenes. Furthermore, some isolates produced extended-spectrum β-lactamases (ESBLs) and AmpC β-lactamases (AmpC) encoding genes such as bla (CMY-2), bla (CTX-M-15,) and bla (TEM-1). These findings emphasize the potential role of these reptiles in the spread of AMR bacteria, particularly in urban settings where human- animal interactions are frequent. Given the zoonotic risks, this study emphasizes the importance of continued surveillance and responsible antimicrobial use in both veterinary and human medicine to mitigate the spread of AMR bacteria. | 2025 | 40370835 |
| 1346 | 8 | 0.9811 | High prevalence of multidrug resistant Escherichia coli isolated from fresh vegetables sold by selected formal and informal traders in the most densely populated Province of South Africa. Contaminated fresh produce has increasingly been implicated in foodborne disease outbreaks. As microbiological safety surveillance in South Africa is limited, a total of 545 vegetable samples (spinach, tomato, lettuce, cucumber, and green beans) were purchased from retailers, street traders, trolley vendors and farmers' markets. Escherichia coli, coliforms and Enterobacteriaceae were enumerated and the prevalence of Escherichia coli, Salmonella spp. and Listeria monocytogenes determined. E. coli isolates were characterized phenotypically (antibiotic resistance) and genotypically (diarrheagenic virulence genes). Coliforms, E. coli and Enterobacteriaceae counts were mostly not significantly different between formal and informal markets, with exceptions noted on occasion. When compared to international standards, 90% to 98% tomatoes, 70% to 94% spinach, 82% cucumbers, 93% lettuce, and 80% green bean samples, had satisfactory (≤ 100 CFU/g) E. coli counts. Of the 545 vegetable samples analyzed, 14.86% (n = 81) harbored E. coli, predominantly from leafy green vegetables. Virulence genes (lt, st, bfpA, eagg, eaeA, stx1, stx2, and ipaH) were not detected in the E. coli isolates (n = 67) characterized, however 40.30% were multidrug-resistant. Resistance to aminoglycosides (neomycin, 73.13%; gentamycin, < 10%), penicillins (ampicillin, 38.81%; amoxicillin, 41.79%; augmentin, < 10%), sulfonamides (cotrimoxazole, 22.39%), tetracycline (19.4%), chloramphenicol (11.94%), cephalosporins (cefepime, 34.33%), and carbapenemases (imipenem, < 10%) were observed. This study highlights the need for continued surveillance of multidrug resistant foodborne pathogens in fresh produce retailed formally and informally for potential consumer health risks. PRACTICAL APPLICATION: The results indicate that the microbiological quality of different vegetables were similar per product type, regardless of being purchased from formal retailers or informal street traders, trolley vendors or farmers' markets. Although no pathogenic bacteria (diarrheagenic E. coli, Salmonella spp. or L. monocytogenes) were isolated, high levels of multidrug-resistance was observed in the generic E. coli isolates. These findings highlight the importance of microbiological quality surveillance of fresh produce in formal and informal markets, as these products can be a reservoir of multidrug resistant bacteria harboring antibiotic resistance and virulence genes, potentially impacting human health. | 2021 | 33294974 |
| 1383 | 9 | 0.9811 | Detection of Tetracycline Resistance Genes in European Hedgehogs (Erinaceus europaeus) and Crested Porcupines (Hystrix cristata). Relatively little is known regarding the role of wildlife in the development of antibiotic resistance. Our aim was to assess the presence of the tetracycline resistance genes, tet(A), tet(B), tet(C), tet(D), tet(E), tet(G), tet(K), tet(L), tet(M), tet(O), tet(P), tet(Q), tet(S), and tet(X), in tissue samples of 14 hedgehogs (Erinaceus europaeus) and 15 crested porcupines (Hystrix cristata) using PCR assays. One or more tet genes were found in all but three hedgehogs and one crested porcupine. Of the 14 tetracycline resistance genes investigated, 13 were found in at least one sample; tet(G) was not detected. We confirmed the potential role of wild animals as bioindicators, reservoirs, or vectors of antibiotic-resistant bacteria in the environment. | 2020 | 31526277 |
| 1192 | 10 | 0.9811 | Enteric pathogenic bacteria and resistance gene carriage in the homeless population in Marseille, France. We aimed to assess the prevalence of pathogenic bacteria and resistance genes in rectal samples collected among homeless persons in Marseille, France. In February 2014 we enrolled 114 sheltered homeless adults who completed questionnaires and had rectal samples collected. Eight types of enteric bacteria and 15 antibiotic resistance genes (ARGs) were sought by real-time polymerase chain reaction (qPCR) performed directly on rectal samples. ARG-positive samples were further tested by conventional PCR and sequencing. We evidenced a 17.5% prevalence of gastrointestinal symptoms, a 9.6% prevalence of enteric pathogenic bacteria carriage, including Escherichia coli pathotypes (8.7%) and Tropheryma whipplei (0.9%). Only 2 persons carried blaCTX-M-15 resistance genes (1.8%), while other genes, including carbapenemase-encoding genes and colistin-resistance genes, (mcr-1 to mcr-6, mcr-8) were not detected. Our results suggest that sheltered homeless persons in Marseille do not have a high risk of harbouring gastrointestinal antibiotic resistant bacteria. | 2021 | 33512334 |
| 943 | 11 | 0.9811 | Occurrence, Antimicrobial Resistance Profile, and Characterization of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates from Minced Meat at Local Markets in Thailand. Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli exhibits strong multidrug resistance (MDR) to ampicillin and third-generation cephalosporins. This study examined the occurrence, antimicrobial susceptibility, and molecular genetic features of ESBL-producing E. coli isolates from three commonly consumed minced meat varieties, namely pork, chicken, and beef. In total, 150 samples were collected from 10 local markets in Thailand. ESBL-producing E. coli was identified in 78 samples (52%), and minced chicken meat was most contaminated (79.17%). The isolates exhibited potential susceptibility to amikacin (96.16%) and carbapenems (91-95%). However, ESBL-producing E. coli displayed strong resistance to ampicillin and cefpodoxime (100%) and high MDR to 3-5 antibiotic classes (94.87%). Most presumptive ESBL producers harbored ESBL resistance genes (97.44%), most commonly bla(TEM) (78.21%). Indeed, our results demonstrated that raw minced meat has a high occurrence of ESBL-producing E. coli harboring ESBL resistance genes, highlighting the importance of implementation of sanitary handling practices to reduce microbial contamination in commercial meat as well as the need for consumer education on safe handling and cooking of meat products. | 2022 | 34941425 |
| 1238 | 12 | 0.9810 | Lineages, Virulence Gene Associated and Integrons among Extended Spectrum β-Lactamase (ESBL) and CMY-2 Producing Enterobacteriaceae from Bovine Mastitis, in Tunisia. Extended Spectrum Beta-Lactamase (ESBL) Enterobacteriaceae are becoming widespread enzymes in food-producing animals worldwide. Escherichia coli and Klebseilla pneumoniae are two of the most significant pathogens causing mastitis. Our study focused on the characterization of the genetic support of ESBL/pAmpC and antibiotic resistance mechanisms in cefotaxime-resistant (CTXR) and susceptible (CTXS) Enterobacteriaceae isolates, recovered from bovine mastitis in Tunisia, as well as the analyses of their clonal lineage and virulence-associated genes. The study was carried out on 17 ESBL/pAmpC E. coli and K. pneumoniae and 50 CTXS E. coli. Detection of resistance genes and clonal diversity was performed by PCR amplification and sequencing. The following β-lactamase genes were detected: blaCTX-M-15 (n = 6), blaCTX-M-15 + blaOXA-1 (2), bla CTX-M-15 + blaOXA-1 + blaTEM-1b (2), blaCTX-M-15 + blaTEM-1b (4), blaCMY-2 (3). The MLST showed the following STs: ST405 (n = 4 strains); ST58 (n = 3); ST155 (n = 3); ST471 (n = 2); and ST101 (n = 2). ST399 (n = 1) and ST617 (n = 1) were identified in p(AmpC) E. coli producer strains. The phylogroups A and B1 were the most detected ones, followed by the pathogenic phylogroup B2 that harbored the shigatoxin genes stx1/stx2, associated with the cnf, fimA, and aer virulence factors. The qnrA/qnrB, aac(6′)-Ib-cr genes and integrons class 1 with different gene cassettes were detected amongst these CTXR/S isolated strains. The presence of different genetic lineages, associated with resistance and virulence genes in pathogenic bacteria in dairy farms, may complicate antibiotic therapies and pose a potential risk to public health. | 2022 | 36015067 |
| 1223 | 13 | 0.9809 | Characterization of Escherichia coli virulence genes, pathotypes and antibiotic resistance properties in diarrheic calves in Iran. BACKGROUND: Calf diarrhea is a major economic concern in bovine industry all around the world. This study was carried out in order to investigate distribution of virulence genes, pathotypes, serogroups and antibiotic resistance properties of Escherichia coli isolated from diarrheic calves. RESULTS: Totally, 76.45% of 824 diarrheic fecal samples collected from Isfahan, Chaharmahal, Fars and Khuzestan provinces, Iran were positive for E. coli and all of them were also positive for cnf2, hlyA, cdtIII, f17c, lt, st, stx1, eae, ehly, stx2 and cnf1 virulence genes. Chaharmahal had the highest prevalence of STEC (84.61%), while Isfahan had the lowest (71.95%). E. coli serogroups had the highest frequency in 1-7 days old calves and winter season. Distribution of ETEC, EHEC, AEEC and NTEC pathotypes among E. coli isolates were 28.41%, 5.07%, 29.52% and 3.49%, respectively. Statistical analyses were significant for presence of bacteria between various seasons and ages. All isolates had the high resistance to penicillin (100%), streptomycin (98.25%) and tetracycline (98.09%) antibiotics. The most commonly detected resistance genes were aadA1, sul1, aac[3]-IV, CITM, and dfrA1. The most prevalent serogroup among STEC was O26. CONCLUSIONS: Our findings should raise awareness about antibiotic resistance in diarrheic calves in Iran. Clinicians should exercise caution when prescribing antibiotics. | 2014 | 25052999 |
| 2996 | 14 | 0.9808 | Presence and antimicrobial resistance profiles of Escherichia coli, Enterococcusspp. and Salmonellasp. in 12 species of Australian shorebirds and terns. Antibiotic resistance is an ongoing threat to both human and animal health. Migratory birds are a potential vector for the spread of novel pathogens and antibiotic resistance genes. To date, there has been no comprehensive study investigating the presence of antibiotic resistance (AMR) in the bacteria of Australian shorebirds or terns. In the current study, 1022 individual birds representing 12 species were sampled across three states of Australia (Victoria, South Australia, and Western Australia) and tested for the presence of phenotypically resistant strains of three bacteria with potential to be zoonotic pathogens; Escherichia coli, Enterococcusspp., and Salmonellasp. In total, 206 E. coli, 266 Enterococcusspp., and 20 Salmonellasp. isolates were recovered, with AMR detected in 42% of E. coli, 85% of Enterococcusspp., and 10% of Salmonellasp. Phenotypic resistance was commonly detected to erythromycin (79% of Enterococcusspp.), ciprofloxacin (31% of Enterococcusspp.) and streptomycin (21% of E. coli). Resident birds were more likely to carry AMR bacteria than migratory birds (p ≤ .001). Bacteria isolated from shorebirds and terns are commonly resistant to at least one antibiotic, suggesting that wild bird populations serve as a potential reservoir and vector for AMR bacteria. However, globally emerging phenotypes of multidrug-resistant bacteria were not detected in Australian shorebirds. This study provides baseline data of the carriage of AMR bacteria in Australian shorebirds and terns. | 2022 | 35460193 |
| 1167 | 15 | 0.9808 | Investigating the virulence-associated genes and antimicrobial resistance of Escherichia fergusonii Isolated from diseased ostrich chicks. This study investigates the presence of virulence-associated genes and antimicrobial resistance (AMR) in Escherichia fergusonii isolates obtained from ostrich chicks. A total of 287 isolates were recovered from 106 fecal samples from ostrich chicks suffering from diarrhea and subjected to molecular identification and biochemical characterization. E. fergusonii was detected in 10 samples (9.4 %) using two PCR-detection protocols. Notably, the isolates lacked various virulence genes commonly associated with pathogenic E. coli including elt, est, stx, eae, ehly, cdt, iss, iutA, iroN, hlyA, ompT, except for one isolate harboring the astA gene. Antimicrobial susceptibility testing revealed that all isolates were susceptible to ciprofloxacin, while high resistance was observed against amoxicillin clavulanate (AMC), trimethoprim-sulfamethoxazole (SXT), and doxycycline (D). Moreover, eight isolates displayed multidrug resistance (MDR) and four exhibited resistance to 9-11 antimicrobials. The most frequent resistance gene was sul2, which was present in all isolates; the other resistance genes detected consisted of int1 (4/10), int2 (3/10), bla(CMY) (2/10), and qnrS, bla(TEM), bla(CMY), bla(CTX-M), and flo each were detected only in one E. fergusonii Isolate. Plasmid replicon typing identified the presence of I1 (7/10), N (5/10), and Y (1/10). This study provides valuable insights into the virulence and antimicrobial resistance of E. fergusonii isolates from ostrich chicks, highlighting the complexity of antimicrobial resistance mechanisms exhibited by these bacteria. Further research is essential to understand the transmission dynamics and clinical implications of these findings in veterinary and public health settings. | 2024 | 39168034 |
| 948 | 16 | 0.9808 | Multidrug-Resistant Bacteria in Aquaculture Systems in Accra, Ghana. BACKGROUND: Antibiotic resistance (ABR) poses a critical global health challenge, necessitating its surveillance across both human and animal health sectors. This study evaluated ABR in bacteria harboured in reared inland fishes sold in Accra and the pond water from which they originated. METHOD: The study was cross-sectional, involving fishes and water sampled from 80 ponds. The gastrointestinal organs of the fishes were homogenised and cultured for bacteria, as were the water samples. The bacteria were identified using matrix-assisted laser desorption/ionisation time of flight mass spectrometry (MALDI-TOF-MS). Antimicrobial susceptibility test was done using the Kirby-Bauer method. Multidrug-resistant (MDR) bacteria were selected for further testing. The double disc diffusion method was used to detect extended-spectrum beta-lactamase (ESBL) production in isolates that were resistant to third-generation cephalosporins. Whole genome sequencing was performed on the ESBL-positive isolates using the Illumina Miseq platform. RESULTS: In total, 39 different bacterial species, with their individual numbers totalling 391, were isolated. The bacteria were predominantly Escherichia coli (17%), Aeromonas veronii (11%), Citrobacter freundii (8%), Bacillus cereus (5%), and Klebsiella pneumoniae (5%). The overall ABR rates were cefotaxime (32%), gentamicin (1%), ciprofloxacin (4%), chloramphenicol (19%), tetracycline (37%), meropenem (0%), and ertapenem (0%). Overall MDR and ESBL bacteria prevalence were 13.6% and 1.3%, respectively. The sequence types of the ESBL isolates were ST4684 (80%, n = 4) and ST2005 (20%, n = 1), and the serotypes were H34:09 (80%, n = 4) and H7 (20%, n = 1); the ABR genes were blaCTX-M-15, fosA7, and qnrS1. CONCLUSION: The fishes and the pond water were contaminated with a diverse range of bacteria, mainly Escherichia coli and Aeromonas veronii. The ABR, MDR, and ESBL rates were low to moderate. Moreover, the main sequence type and serotype of the ESBL isolates were ST4684 and H34:09, respectively, and the ABR genes were blaCTX-M-15, fosA7, and qnrS1. | 2024 | 39600552 |
| 960 | 17 | 0.9808 | Beta-lactamase genes in bacteria from food animals, retail meat, and human surveillance programs in the United States from 2002 to 2021. The spread of beta-lactamase-producing bacteria is a global public-health concern. This study aimed to explore the distribution of beta-lactamases reported in three sampling sources (cecal, retail meat, and human) collected as part of integrated surveillance in the United States. We retrieved and analyzed data from the United States National Antimicrobial Resistance Monitoring Systems (NARMS) from 2002 to 2021. A total of 115 beta-lactamase genes were detected in E. coli, Salmonella enterica, Campylobacter, Shigella and Vibrio: including 35 genes from cecal isolates, 32 genes from the retail meat isolates, and 104 genes from the human isolates. Three genes in E. coli (bla(CMY-2,)bla(TEM-1A), and bla(TEM-1B)), 6 genes in Salmonella enterica (bla(CARB-2), bla(CMY-2), bla(CTXM-65), bla(TEM-1A), bla(TEM-1B), and bla(HERA-3)), and 2 genes in Campylobacter spp. (bla(OXA-61) and bla(OXA-449)) have been detected across food animals (cattle, chicken, swine, and turkey) and humans over the study period. bla(CTXM-55) has been detected in E. coli isolates from the four food animal sources while bla(CTXM-15) and bla(CTXM-27) were found only in cattle and swine. In Salmonella enterica, bla(CTXM-2), bla(CTXM-9), bla(CTXM-14), bla(CTXM-15), bla(CTXM-27), bla(CTXM-55), and bla(NDM-1) were only detected among human isolates. bla(OXAs) and bla(CARB) were bacteria-specific and the only beta-lactamase genes detected in Campylobacter spp. and Vibrio spp respectively. The proportions of beta-lactamase genes detected varies from bacteria to bacteria. This study provided insights on the beta-lactamase genes detected in bacteria in food animals and humans in the United States. This is necessary for better understanding the molecular epidemiology of clinically important beta-lactamases in one health interface. | 2024 | 38325128 |
| 944 | 18 | 0.9807 | Fecal shedding of extended-spectrum beta-lactamase-producing Enterobacterales in cats admitted to an animal shelter. OBJECTIVES: The objective of this study was to evaluate shedding of extended-spectrum beta-lactamase (ESBL)-producing bacteria in cats admitted to an animal shelter. METHODS: Fecal samples were collected from cats admitted to an animal shelter between 12 June and 23 August 2018. Selective enrichment culture for ESBL-producing bacteria was performed and isolates were speciated and tested for selected ESBL genes using PCR. RESULTS: ESBL-producing Enterobacterales were identified in fecal samples from 2/87 (2.3%; 95% confidence interval 0.6-8.0) cats. One isolate was an Escherichia coli that possessed bla(CTX-M-1), bla(CMY-2) and bla(TEM) genes. The other was Enterobacter cloacae possessing bla(CTX-M-1) and bla(CMY-2). CONCLUSIONS AND RELEVANCE: While the study sample size and prevalence rate for ESBL-producing bacteria were low, these data document that cats admitted to similar shelters could harbor these agents. The risk posed by ESBL-producing bacterium shedding in cats, both to cats and other species, is currently unclear. However, these findings support the need for more investigation of interspecies transmission of ESBL-producing bacteria and ESBL genes, as well as the importance of antimicrobial stewardship and routine infection control measures. | 2022 | 35133182 |
| 1216 | 19 | 0.9807 | Coexistence of multidrug resistance and ESBL encoding genes - bla(TEM), bla(SHV), and bla(CTX-M); its amplification and dispersion in the environment via municipal wastewater treatment plant. Municipal wastewater treatment plants (MWWTPs) are a global source of antibiotic resistance genes (ARGs), collecting wastewater from a variety of sources, including hospital wastewater, domestic wastewater, runoff from agricultural and livestock farms, etc. These sources are contaminated with organic and inorganic pollutants, ARGs and antibiotic-resistant bacteria (ARB). Such pollutants aided eutrophication and encouraged bacterial growth. During bacterial growth horizontal gene transfer (HGT) and vertical gene transfer (VGT) of ARGs and extended-spectrum β-lactamase (ESBL) encoding genes may facilitate, resulting in the spread of antibiotic resistance exponentially. The current study investigated the prevalence of multidrug resistance (MDR) and ESBL encoding genes in various treatment units of MWWTP and their spread in the environment. A total of three sampling sites (BUT, BRO, and BFB) were chosen, and 33 morphologically distinct bacterial colonies were isolated. 14 of the 33 isolates tested positive for antibiotic resistance and were further tested for the coexistence of MDR and ESBL production. The selected 14 isolates showed the highest resistance to trimethoprim (85.71%), followed by ciprofloxacin, azithromycin, and ampicillin (71.42%), tetracycline (57.14%), and vancomycin, gentamicin, and colistin sulphate (50%). A total of 9 isolates (64.28%) were phenotypically positive for ESBL production (BUT2, BUT3, BUT5, BRO1, BRO2, BRO3, BRO4, BRO5 and BFB1). The molecular detection of ESBL encoding genes, i.e. bla(TEM), bla(SHV), and bla(CTX-M) was carried out. The most prevalent gene was bla(TEM) (69.23%), followed by bla(SHV) (46.15%), and bla(CTX-M) (23.07%). In this study, 9 isolates (64.28%) out of 14 showed the coexistence of MDR and ESBL encoding genes, namely BUT3, BUT4, BUT5, BUT6, BUT7, BRO1, BRO2, BRO4, and BFB1. The coexistence of ESBL encoding genes and resistance to other antibiotic classes exacerbates human health and the environment. | 2024 | 38992444 |