SEVERITY - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
516800.9959Bacteriophage Resistance Affects Flavobacterium columnare Virulence Partly via Mutations in Genes Related to Gliding Motility and the Type IX Secretion System. Increasing problems with antibiotic resistance have directed interest toward phage therapy in the aquaculture industry. However, phage resistance evolving in target bacteria is considered a challenge. To investigate how phage resistance influences the fish pathogen Flavobacterium columnare, two wild-type bacterial isolates, FCO-F2 and FCO-F9, were exposed to phages (FCO-F2 to FCOV-F2, FCOV-F5, and FCOV-F25, and FCO-F9 to FCL-2, FCOV-F13, and FCOV-F45), and resulting phenotypic and genetic changes in bacteria were analyzed. Bacterial viability first decreased in the exposure cultures but started to increase after 1 to 2 days, along with a change in colony morphology from original rhizoid to rough, leading to 98% prevalence of the rough morphotype. Twenty-four isolates (including four isolates from no-phage treatments) were further characterized for phage resistance, antibiotic susceptibility, motility, adhesion, and biofilm formation, protease activity, whole-genome sequencing, and virulence in rainbow trout fry. The rough isolates arising in phage exposure were phage resistant with low virulence, whereas rhizoid isolates maintained phage susceptibility and high virulence. Gliding motility and protease activity were also related to the phage susceptibility. Observed mutations in phage-resistant isolates were mostly located in genes encoding the type IX secretion system, a component of the Bacteroidetes gliding motility machinery. However, not all phage-resistant isolates had mutations, indicating that phage resistance in F. columnare is a multifactorial process, including both genetic mutations and changes in gene expression. Phage resistance may not, however, be a challenge for development of phage therapy against F. columnare infections since phage resistance is associated with decreases in bacterial virulence. IMPORTANCE Phage resistance of infectious bacteria is a common phenomenon posing challenges for the development of phage therapy. Along with a growing world population and the need for increased food production, constantly intensifying animal farming has to face increasing problems of infectious diseases. Columnaris disease, caused by Flavobacterium columnare, is a worldwide threat for salmonid fry and juvenile farming. Without antibiotic treatments, infections can lead to 100% mortality in a fish stock. Phage therapy of columnaris disease would reduce the development of antibiotic-resistant bacteria and antibiotic loads by the aquaculture industry, but phage-resistant bacterial isolates may become a risk. However, phenotypic and genetic characterization of phage-resistant F. columnare isolates in this study revealed that they are less virulent than phage-susceptible isolates and thus not a challenge for phage therapy against columnaris disease. This is valuable information for the fish farming industry globally when considering phage-based prevention and curing methods for F. columnare infections.202134106011
603010.9955Molecular identification and probiotic potential characterization of lactic acid bacteria isolated from the pigs with superior immune responses. Lactic acid bacteria (LAB) belong to a significant group of probiotic bacteria that provide hosts with considerable health benefits. Our previous study showed that pigs with abundant LAB had more robust immune responses in a vaccination experiment. In this study, 52 isolate strains were isolated from the pigs with superior immune responses. Out of these, 14 strains with higher antibacterial efficacy were chosen. We then assessed the probiotic features of the 14 LAB strains, including such as autoaggregation, coaggregation, acid resistance, bile salt resistance, and adhesion capability, as well as safety aspects such as antibiotic resistance, hemolytic activity, and the presence or absence of virulence factors. We also compared these properties with those of an opportunistic pathogen EB1 and two commercial probiotics (cLA and cLP). The results showed that most LAB isolates exhibited higher abilities of aggregation, acid and bile salt resistance, adhesion, and antibacterial activity than the two commercial probiotics. Out of the 14 strains, only LS1 and LS9 carried virulence genes and none had hemolytic activity. We selected three LAB strains (LA6, LR6 and LJ1) with superior probiotic properties and LS9 with a virulence gene for testing their safety in vivo. Strains EB1, cLA and cLP were also included as control bacteria. The results demonstrated that mice treated LAB did not exhibit any adverse effects on weight gain, organ index, blood immune cells, and ileum morphology, except for those treated with LS9 and EB1. Moreover, the antimicrobial effect of LR6 and LA6 strains was examined in vivo. The results indicated that these strains could mitigate the inflammatory response, reduce bacterial translocation, and alleviate liver, spleen, and ileum injury caused by Salmonella typhimurium infection. In addition, the LR6 treatment group showed better outcomes than the LA6 treatment group; treatment with LR6 substantially reduced the mortality rate in mice. The study results provide evidence of the probiotic properties of the LAB isolates, in particular LR6, and suggest that oral administration of LR6 could have valuable health-promoting benefits.202438585699
476120.9954Antimicrobial resistance and biofilm formation of penile prosthesis isolates: insights from in-vitro analysis. BACKGROUND: Inflatable penile prostheses (IPPs) have been shown to harbor biofilms in the presence and absence of infection despite exposure to various antimicrobials. Microbes persisting on IPPs following antibiotic exposure have not been adequately studied to assess biofilm formation capacity and antibiotic resistance. AIM: In this study, we aimed to assess these properties of microbes obtained from explanted infected and non-infected IPPS using an in vitro model. METHODS: 35 bacterial isolates were grown and tested against various single-agent or multiple agent antibiotic regimens including: bacitracin, cefaclor, cefazolin, gentamicin, levofloxacin, trimethoprim-sulfamethoxazole, tobramycin, vancomycin, piperacillin/tazobactam, gentamicin + piperacillin/tazobactam, gentamicin + cefazolin, and gentamicin + vancomycin. Zones of inhibition were averaged for each sample site and species. Statistics were analyzed with Holm's corrected, one-sample t-tests against a null hypothesis of 0. Isolates were also allowed to form biofilms in a 96-well polyvinyl plate and absorbance was tested at 570 nm using a microplate reader. OUTCOMES: Resistance was determined via clinical guidelines or previously established literature, and the mean and standard deviation of biofilm absorbance values were calculated and normalized to the optical density600 of the bacterial inoculum. RESULTS: Every species tested was able to form robust biofilms with the exception of Staphylococcus warneri. As expected, most bacteria were resistant to common perioperative antimicrobial prophylaxis. Gentamicin dual therapy demonstrated somewhat greater efficacy. STRENGTHS AND LIMITATIONS: This study examines a broad range of antimicrobials against clinically obtained bacterial isolates. However, not all species and antibiotics tested had standardized breakpoints, requiring the use of surrogate values from the literature. The microbes included in this study and their resistance genes are expectedly biased towards those that survived antibiotic exposure, and thus reflect the types of microbes which might "survive" in vivo exposure following revisional surgery. CLINICAL TRANSLATION: Despite exposure to antimicrobials, bacteria isolated during penile prosthesis revision for both infected and non-infected cases exhibit biofilm forming capacity and extensive antibiotic resistance patterns in vitro. These microbes merit further investigation to understand when simple colonization vs re-infection might occur. CONCLUSIONS: Although increasing evidence supports the concept that all IPPs harbor biofilms, even in the absence of infection, a deeper understanding of the characteristics of bacteria that survive revisional surgery is warranted. This study demonstrated extensive biofilm forming capabilities, and resistance patterns among bacteria isolated from both non-infected and infected IPP revision surgeries. Further investigation is warranted to determine why some devices become infected while others remain colonized but non-infected.202540062463
516730.9953Decreased Antimicrobial Resistance Gene Richness Following Fecal Microbiota, Live-jslm (REBYOTA®) Administration: Post Hoc Analysis of PUNCH CD3. BACKGROUND: The human gastrointestinal microbiome helps maintain vital functions related to overall health, including resistance to pathogen colonization. Disruption of the microbiome, leading to loss of colonization resistance, can be caused by multiple factors, including antimicrobial use. The loss of colonization resistance may lead to establishment or proliferation of opportunistic bacteria that carry genes associated with antimicrobial resistance, potentially increasing the risk of infection by such antimicrobial-resistant bacteria. A potential approach to mitigating this risk involves restoration of healthier microbiota and pathogen colonization resistance. METHODS: A metagenomic sequencing method was used to conduct a post hoc analysis of antibiotic resistance gene richness among fecal samples from participants administered fecal microbiota, live-jslm (REBYOTA; abbreviated as RBL) or placebo in the PUNCH CD3 study (NCT03244644) for the prevention of recurrent Clostridioides difficile infection. RESULTS: At baseline, participants had higher antibiotic resistance gene richness than a representative healthy cohort. Over time, RBL responders had lower antibiotic resistance gene richness at the class, group, and mechanism levels as compared with placebo responders. These differences were evident as early as 1 week after administration and sustained for at least 6 months. RBL responders also had decreased richness of antibiotic resistance genes deemed high risk based on designated bacterial public health threats. CONCLUSIONS: These data support a model in which microbiota-based products, including RBL, may reduce antibiotic resistance gene richness, thereby possibly reducing the risk of antimicrobial-resistant organism infection. TRIAL REGISTRATION: NCT03244644 (https://clinicaltrials.gov/study/NCT03244644; 9 August 2017).202540672762
254140.9952Increased antibiotic resistance in preterm neonates under early antibiotic use. The standard use of antibiotics in newborns to empirically treat early-onset sepsis can adversely affect the neonatal gut microbiome, with potential long-term health impacts. Research into the escalating issue of antimicrobial resistance in preterm infants and antibiotic practices in neonatal intensive care units is limited. A deeper understanding of the effects of early antibiotic intervention on antibiotic resistance in preterm infants is crucial. This retrospective study employed metagenomic sequencing to evaluate antibiotic resistance genes (ARGs) in the meconium and subsequent stool samples of preterm infants enrolled in the Routine Early Antibiotic Use in Symptomatic Preterm Neonates study. Microbial metagenomics was conducted using a subset of fecal samples from 30 preterm infants for taxonomic profiling and ARG identification. All preterm infants exhibited ARGs, with 175 unique ARGs identified, predominantly associated with beta-lactam, tetracycline, and aminoglycoside resistance. Notably, 23% of ARGs was found in preterm infants without direct or intrapartum antibiotic exposure. Post-natal antibiotic exposure increases beta-lactam/tetracycline resistance while altering mechanisms that aid bacteria in withstanding antibiotic pressure. Microbial profiling revealed 774 bacterial species, with antibiotic-naive infants showing higher alpha diversity (P = 0.005) in their microbiota and resistome compared with treated infants, suggesting a more complex ecosystem. High ARG prevalence in preterm infants was observed irrespective of direct antibiotic exposure and intensifies with age. Prolonged membrane ruptures and maternal antibiotic use during gestation and delivery are linked to alterations in the preterm infant resistome and microbiome, which are pivotal in shaping the ARG profiles in the neonatal gut.This study is registered with ClinicalTrials.gov as NCT02784821. IMPORTANCE: A high burden of antibiotic resistance in preterm infants poses significant challenges to neonatal health. The presence of antibiotic resistance genes, along with alterations in signaling, energy production, and metabolic mechanisms, complicates treatment strategies for preterm infants, heightening the risk of ineffective therapy and exacerbating outcomes for these vulnerable neonates. Despite not receiving direct antibiotic treatment, preterm infants exhibit a concerning prevalence of antibiotic-resistant bacteria. This underscores the complex interplay of broader influences, including maternal antibiotic exposure during and beyond pregnancy and gestational complications like prolonged membrane ruptures. Urgent action, including cautious antibiotic practices and enhanced antenatal care, is imperative to protect neonatal health and counter the escalating threat of antimicrobial resistance in this vulnerable population.202439373498
883850.9950Dual RNA-seq analysis reveals the interaction between multidrug-resistant Klebsiella pneumoniae and host in a mouse model of pneumonia. BACKGROUND: Multidrug-resistant Klebsiella pneumoniae (MDR-KP) poses a significant global health threat, associated with high morbidity and mortality rates among hospitalized patients. The interaction between MDR-KP and its host is highly complex, and few studies have investigated these interactions from both the pathogen and host perspectives. Here, we explored these interactions in a mouse model of pneumonia using dual RNA-seq analysis. METHODS: PCR identification and antimicrobial susceptibility test were employed to screen for MDR-KP strains. A mouse model of pneumonia was established through aerosolized intratracheal inoculation with high-dose or low-dose bacteria. Bacterial loads, pathological changes, inflammatory cytokine expression, and immune cell infiltration were assessed post-challenge. Dual RNA-seq analysis was conducted on lung tissues following infection. RESULTS: NY13307 was identified as an MDR-KP strain with minimal virulence factor genes and broad-spectrum drug resistance. High-dose bacteria induced more severe pulmonary pathological changes, a significant increase in bacterial load, and notably elevated secretion of inflammatory cytokines compared to low-dose bacteria. Alveolar macrophages and resident interstitial macrophages were identified as the primary sources of these cytokines. Further RNA-seq analysis revealed that, compared to the low-dose group, the high-dose group significantly upregulated hypoxia and pro-inflammatory cytokine-related genes in the host, and siderophore-related genes in the bacteria. Correlation analysis demonstrated a significant association between siderophore-related genes and clusters of genes related to pro-inflammatory cytokines and hypoxia. CONCLUSIONS: In this mouse model of bacterial pneumonia, excessive siderophore expression may trigger the activation of hypoxia signaling pathways and the release of pro-inflammatory cytokines, ultimately reducing survival rates.202540702458
477060.9950Whole-genome sequencing of bacteria accountable for lactational mastitis in humans combined with an examination of their antibiotic resistance profiles. Lactational mastitis, a common condition affecting nursing mothers, is characterized by mammary gland inflammation during lactation. This inflammatory response typically occurs due to bacterial infection. The discomfort and pain associated with lactational mastitis can significantly impact a mother's ability to breastfeed comfortably and may lead to the cessation of breastfeeding altogether if left untreated. Antibiotics are commonly prescribed to target the bacteria causing the infection and alleviate symptoms, aiming to treat the infection. Nevertheless, a notable worry linked to antibiotic use is the emergence of antibiotic resistance, compounded by the possible persistence of antibiotics in milk. Additionally, lactational mastitis is characterized by its polymicrobial nature. In this study, bacteria were isolated from infected breast milk samples and whole-genome sequencing was performed on eleven isolates to accurately identify the bacteria and assess their antibiotic resistance profiles. Using Galaxy tools and the ResFinder database, we identified Bacillus paraanthracis, Bacillus altitudinis, Staphylococcus aureus, Bacillus cereus, Escherichia coli, Alcaligenes faecalis, and Bacillus licheniformis, along with antibiotic-resistant genes like fosB1, cat86, erm (D), blaZ, and mdf (A). ABRicate aided in antimicrobial resistance (AMR) gene analysis, and CARD visualized their distribution. Our study demonstrates that the severity of infection is directly proportional to an increase in somatic cell count (SCC). This research sheds light on microbial diversity in lactational mastitis milk and provides crucial insights into antibiotic-resistance genes. Utilizing bioinformatics tools, such as those employed in this study, can inform the design of effective treatment strategies for lactational mastitis infections.202439320640
510570.9950Emerging insights of Staphylococcus spp. in human mastitis. Human mastitis represents a prevalent and intricate condition that significantly challenges breastfeeding women, often exacerbated by pathogenic bacteria such as Staphylococcus aureus. A deep understanding of the interplay between human mastitis, the breast milk microbiome, and causative agents is imperative. This understanding must focus on the bacterium's virulence and resistance genes, which critically influence the severity and persistence of mastitis. Current methods for detecting these genes, including Polymerase Chain Reaction (PCR), 16S rRNA gene sequencing, shotgun metagenomic sequencing, multiplex PCR, whole genome sequencing (WGS), loop-mediated isothermal amplification (LAMP), CRISPR-based assays, and microarray technology, are vital in elucidating bacterial pathogenicity and resistance profiles. However, advanced attention is required to refine diagnostic techniques, enabling earlier detection and more effective therapeutic approaches for human mastitis. The involvement of Staphylococcus aureus in human infection should be a prime focus, especially in women's health, which deals directly with neonates. Essential virulence genes in Staphylococcus species are instrumental in infection mechanisms and antibiotic resistance, serving as potential targets for personalized treatments. Thus, this review focuses on Staphylococcusaureus-induced mastitis, examining its virulence factors and detection techniques to advance diagnostic and therapeutic strategies.202540349998
516980.9950Genetic Adaptation and Acquisition of Macrolide Resistance in Haemophilus spp. during Persistent Respiratory Tract Colonization in Chronic Obstructive Pulmonary Disease (COPD) Patients Receiving Long-Term Azithromycin Treatment. Patients with chronic obstructive pulmonary disease (COPD) benefit from the immunomodulatory effect of azithromycin, but long-term administration may alter colonizing bacteria. Our goal was to identify changes in Haemophilus influenzae and Haemophilus parainfluenzae during azithromycin treatment. Fifteen patients were followed while receiving prolonged azithromycin treatment (Hospital Universitari de Bellvitge, Spain). Four patients (P02, P08, P11, and P13) were persistently colonized by H. influenzae for at least 3 months and two (P04 and P11) by H. parainfluenzae. Isolates from these patients (53 H. influenzae and 18 H. parainfluenzae) were included to identify, by whole-genome sequencing, antimicrobial resistance changes and genetic variation accumulated during persistent colonization. All persistent lineages isolated before treatment were azithromycin-susceptible but developed resistance within the first months, apart from those belonging to P02, who discontinued the treatment. H. influenzae isolates from P08-ST107 acquired mutations in 23S rRNA, and those from P11-ST2480 and P13-ST165 had changes in L4 and L22. In H. parainfluenzae, P04 persistent isolates acquired changes in rlmC, and P11 carried genes encoding MefE/MsrD efflux pumps in an integrative conjugative element, which was also identified in H. influenzae P11-ST147. Other genetic variation occurred in genes associated with cell wall and inorganic ion metabolism. Persistent H. influenzae strains all showed changes in licA and hgpB genes. Other genes (lex1, lic3A, hgpC, and fadL) had variation in multiple lineages. Furthermore, persistent strains showed loss, acquisition, or genetic changes in prophage-associated regions. Long-term azithromycin therapy results in macrolide resistance, as well as genetic changes that likely favor bacterial adaptation during persistent respiratory colonization. IMPORTANCE The immunomodulatory properties of azithromycin reduce the frequency of exacerbations and improve the quality of life of COPD patients. However, long-term administration may alter the respiratory microbiota, such as Haemophilus influenzae, an opportunistic respiratory colonizing bacteria that play an important role in exacerbations. This study contributes to a better understanding of COPD progression by characterizing the clinical evolution of H. influenzae in a cohort of patients with prolonged azithromycin treatment. The emergence of macrolide resistance during the first months, combined with the role of Haemophilus parainfluenzae as a reservoir and source of resistance dissemination, is a cause for concern that may lead to therapeutic failure. Furthermore, genetic variations in cell wall and inorganic ion metabolism coding genes likely favor bacterial adaptation to host selective pressures. Therefore, the bacterial pathoadaptive evolution in these severe COPD patients raise our awareness of the possible spread of macrolide resistance and selection of host-adapted clones.202336475849
510390.9950Revolutionising bacteriology to improve treatment outcomes and antibiotic stewardship. LABORATORY INVESTIGATION OF BACTERIAL INFECTIONS GENERALLY TAKES TWO DAYS: one to grow the bacteria and another to identify them and to test their susceptibility. Meanwhile the patient is treated empirically, based on likely pathogens and local resistance rates. Many patients are over-treated to prevent under-treatment of a few, compromising antibiotic stewardship. Molecular diagnostics have potential to improve this situation by accelerating precise diagnoses and the early refinement of antibiotic therapy. They include: (i) the use of 'biomarkers' to swiftly distinguish patients with bacterial infection, and (ii) molecular bacteriology to identify pathogens and their resistance genes in clinical specimens, without culture. Biomarker interest centres on procalcitonin, which has given good results particularly for pneumonias, though broader biomarker arrays may prove superior in the future. PCRs already are widely used to diagnose a few infections (e.g. tuberculosis) whilst multiplexes are becoming available for bacteraemia, pneumonia and gastrointestinal infection. These detect likely pathogens, but are not comprehensive, particularly for resistance genes; there is also the challenge of linking pathogens and resistance genes when multiple organisms are present in a sample. Next-generation sequencing offers more comprehensive profiling, but obstacles include sensitivity when the bacterial load is low, as in bacteraemia, and the imperfect correlation of genotype and phenotype. In short, rapid molecular bacteriology presents great potential to improve patient treatments and antibiotic stewardship but faces many technical challenges; moreover it runs counter to the current nostrum of defining resistance in pharmacodynamic terms, rather than by the presence of a mechanism, and the policy of centralising bacteriology services.201324265945
4768100.9950Attenuating the virulence of the resistant superbug Staphylococcus aureus bacteria isolated from neonatal sepsis by ascorbic acid, dexamethasone, and sodium bicarbonate. BACKGROUND: Infections affecting neonates caused by Staphylococcus aureus are widespread in healthcare facilities; hence, novel strategies are needed to fight this pathogen. In this study, we aimed to investigate the effectiveness of the FDA-approved medications ascorbic acid, dexamethasone, and sodium bicarbonate to reduce the virulence of the resistant Staphylococcus aureus bacteria that causes neonatal sepsis and seek out suitable alternatives to the problem of multi-drug resistance. METHODS: Tested drugs were assessed phenotypically and genotypically for their effects on virulence factors and virulence-encoding genes in Staphylococcus aureus. Furthermore, drugs were tested in vivo for their ability to reduce Staphylococcus aureus pathogenesis. RESULTS: Sub-inhibitory concentrations (1/8 MIC) of ascorbic acid, dexamethasone, and sodium bicarbonate reduced the production of Staphylococcus aureus virulence factors, including biofilm formation, staphyloxanthin, proteases, and hemolysin production, as well as resistance to oxidative stress. At the molecular level, qRT-PCR was used to assess the relative expression levels of crtM, sigB, sarA, agrA, hla, fnbA, and icaA genes regulating virulence factors production and showed a significant reduction in the relative expression levels of all the tested genes. CONCLUSIONS: The current findings reveal that ascorbic acid, dexamethasone, and sodium bicarbonate have strong anti-virulence effects against Staphylococcus aureus. Thus, suggesting that they might be used as adjuvants to treat infections caused by Staphylococcus aureus in combination with conventional antimicrobials or as alternative therapies.202236348266
3761110.9949Stenotrophomonas maltophilia as an Emerging Ubiquitous Pathogen: Looking Beyond Contemporary Antibiotic Therapy. Stenotrophomonas maltophilia is a commensal and an emerging pathogen earlier noted in broad-spectrum life threatening infections among the vulnerable, but more recently as a pathogen in immunocompetent individuals. The bacteria are consistently being implicated in necrotizing otitis, cutaneous infections including soft tissue infection and keratitis, endocarditis, meningitis, acute respiratory tract infection (RTI), bacteraemia (with/without hematological malignancies), tropical pyomyositis, cystic fibrosis, septic arthritis, among others. S. maltophilia is also an environmental bacteria occurring in water, rhizospheres, as part of the animals' microflora, in foods, and several other microbiota. This review highlights clinical reports on S. maltophilia both as an opportunistic and as true pathogen. Also, biofilm formation as well as quorum sensing, extracellular enzymes, flagella, pili/fimbriae, small colony variant, other virulence or virulence-associated factors, the antibiotic resistance factors, and their implications are considered. Low outer membrane permeability, natural MDR efflux systems, and/or resistance genes, resistance mechanisms like the production of two inducible chromosomally encoded β-lactamases, and lack of carefully compiled patient history are factors that pose great challenges to the S. maltophilia control arsenals. The fluoroquinolone, some tetracycline derivatives and trimethoprim-sulphamethaxole (TMP-SMX) were reported as effective antibiotics with good therapeutic outcome. However, TMP-SMX resistance and allergies to sulfa together with high toxicity of fluoroquinolone are notable setbacks. S. maltophilia's production and sustenance of biofilm by quorum sensing enhance their virulence, resistance to antibiotics and gene transfer, making quorum quenching an imperative step in Stenotrophomonas control. Incorporating several other proven approaches like bioengineered bacteriophage therapy, Epigallocatechin-3-gallate (EGCG), essential oil, nanoemulsions, and use of cationic compounds are promising alternatives which can be incorporated in Stenotrophomonas control arsenal.201729250041
4769120.9949Human breast milk isolated lactic acid bacteria: antimicrobial and immunomodulatory activity on the Galleria mellonella burn wound model. INTRODUCTION: Managing burn injuries is a challenge in healthcare. Due to the alarming increase in antibiotic resistance, new prophylactic and therapeutic strategies are being sought. This study aimed to evaluate the potential of live Lactic Acid Bacteria for managing burn infections, using Galleria mellonella larvae as an alternative preclinical animal model and comparing the outcomes with a common antibiotic. METHODS: The antimicrobial activity of LAB isolated from human breast milk was assessed in vitro against Pseudomonas aeruginosa ATCC 27853. Additionally, the immunomodulatory effects of LAB were evaluated in vivo using the G. mellonella burn wound infection model. RESULTS AND DISCUSSION: In vitro results demonstrated the antimicrobial activity of Lactic Acid Bacteria against P. aeruginosa. In vivo results show that their prophylactic treatment improves, statistically significant, larval survival and modulates the expression of immunity-related genes, Gallerimycin and Relish/NF-κB, strain-dependently. These findings lay the foundation and suggest a promising alternative for burn wound prevention and management, reducing the risk of antibiotic resistance, enhancing immune modulation, and validating the potential G. mellonella as a skin burn wound model.202439310784
4760130.9949Antibacterial and antibiofilm effects of essential oil components, EDTA and HLE disinfectant solution on Enterococcus, Pseudomonas and Staphylococcus sp. multiresistant strains isolated along the meat production chain. The spread of multidrug resistant (MDR) bacteria and resistance genes along the food chain and the environment has become a global, but silent pandemic. To face this challenge, it is of outmost importance to develop efficient strategies to reduce potential contamination by these agents. In the present study, 30 strains of Enterococcus sp., Staphylococcus sp. and Pseudomonas sp. isolated from various surfaces throughout the meat production chain in a goat and lamb slaughterhouse were characterized as MDR bacteria harboring several antibiotic resistance genes (ARGs). The antimicrobial efficacy of natural essential oil components "EOCs" (carvacrol "CA," cinnamaldehyde "CIN," eugenol "EU," geraniol "GE," limonene "LI" and thymol "TH"), HLE disinfectant solution (3-6% H(2)O(2); 2.2-4.4% lactic acid and 12.5-25 mM EDTA in water) and EDTA was tested against these MDR bacteria. Results showed that Minimum Inhibitory Concentrations (MIC) were compound and strain dependent. In addition, the synergistic effect of these antimicrobials was evaluated at 1/2 MIC. Here our study showed particularly promising results regarding the inhibitory effect at sub-inhibitory concentrations, which were confirmed by the analysis of bacterial growth dynamics over 72 h. Furthermore, the inhibitory effect of EOCs, HLE disinfectant solution and EDTA or their combinations was studied in developing and established biofilms of MDR bacteria obtaining variable results depending on the morphological structure of the tested strain and the phenolic character of the EOCs. Importantly, the combination of EOCs with HLE or EDTA showed particularly positive results given the effective inhibition of biofilm formation. Moreover, the synergistic combinations of EU and HLE/EDTA, TH, CA, GE, LI or CIN + EDTA/HLE caused log reductions in established biofilms of several strains (1-6 log(10) CFU) depending on the species and the combination used, with Pseudomonas sp. strains being the most susceptible. Given these results, we propose novel antimicrobial formulations based on the combination of sub-inhibitory concentrations of EOCs and HLE or EDTA as a highly promising alternative to currently used approaches. This novel strategy notably shows great potential to efficiently decrease the emergence and spread of MDR bacteria and ARGs in the food chain and the environment, thus supporting the decrease of resistomes and pathogenesis in clinical and industrial areas while preserving the antibiotic therapeutic action.202236299714
8846140.9949Phage Resistance Accompanies Reduced Fitness of Uropathogenic Escherichia coli in the Urinary Environment. Urinary tract infection (UTI) is among the most common infections treated worldwide each year and is caused primarily by uropathogenic Escherichia coli (UPEC). Rising rates of antibiotic resistance among uropathogens have spurred a consideration of alternative treatment strategies, such as bacteriophage (phage) therapy; however, phage-bacterial interactions within the urinary environment are poorly defined. Here, we assess the activity of two phages, namely, HP3 and ES17, against clinical UPEC isolates using in vitro and in vivo models of UTI. In both bacteriologic medium and pooled human urine, we identified phage resistance arising within the first 6 to 8 h of coincubation. Whole-genome sequencing revealed that UPEC strains resistant to HP3 and ES17 harbored mutations in genes involved in lipopolysaccharide (LPS) biosynthesis. Phage-resistant strains displayed several in vitro phenotypes, including alterations to adherence to and invasion of human bladder epithelial HTB-9 cells and increased biofilm formation in some isolates. Interestingly, these phage-resistant UPEC isolates demonstrated reduced growth in pooled human urine, which could be partially rescued by nutrient supplementation and were more sensitive to several outer membrane-targeting antibiotics than parental strains. Additionally, phage-resistant UPEC isolates were attenuated in bladder colonization in a murine UTI model. In total, our findings suggest that while resistance to phages, such as HP3 and ES17, may arise readily in the urinary environment, phage resistance is accompanied by fitness costs which may render UPEC more susceptible to host immunity or antibiotics. IMPORTANCE UTI is one of the most common causes of outpatient antibiotic use, and rising antibiotic resistance threatens the ability to control UTI unless alternative treatments are developed. Bacteriophage (phage) therapy is gaining renewed interest; however, much like with antibiotics, bacteria can readily become resistant to phages. For successful UTI treatment, we must predict how bacteria will evade killing by phage and identify the downstream consequences of phage resistance during bacterial infection. In our current study, we found that while phage-resistant bacteria quickly emerged in vitro, these bacteria were less capable of growing in human urine and colonizing the murine bladder. These results suggest that phage therapy poses a viable UTI treatment if phage resistance confers fitness costs for the uropathogen. These results have implications for developing cocktails of phage with multiple different bacterial targets, of which each is evaded only at the cost of bacterial fitness.202235920561
9023150.9949Repositioning secnidazole as a novel virulence factors attenuating agent in Pseudomonas aeruginosa. Long-term treatment with antibiotics gives rise to the evolution of multi-drug resistant bacteria which are hard to be treated. Virulence factors inhibitors depend on disarming of microbial pathogens through reducing expression of virulence factors, abolishing the pathogen capability to harm the host. In the present study, the influence of secnidazole on Pseudomonas aeruginosa virulence factors expression was characterized. Production of Pseudomonas aeruginosa virulence factors such as pyocyanin, pyoverdin, elastase, rhamnolipids, proteases and hemolysins was examined following treatment of bacteria with sub-inhibitory concentration of secnidazole. Interestingly, secnidazole showed a powerful inhibitory effect on Pseudomonas aeruginosa virulence factors. Our results were further confirmed using qRT-PCR showing that there was a significant decrease in the expression of quorum sensing genes; lasI, lasR, rhlI, rhlR, pqsA and pqsR that regulate expression of virulence factors in Pseudomonas aeruginosa. Moreover, in vivo experiment using mice as infection model showed that secnidazole-treated bacteria were less capable to kill mice as compared to untreated bacteria. Importantly, there was a significant reduction in mortality in mice injected with secnidazole-treated bacteria relative to mice inoculated with untreated bacteria. In summary, our data showed that secnidazole could play a role in attenuating Pseudomonas aeruginosa through reducing virulence factors production. Moreover, our data clearly suggest that secnidazole could be involved in the treatment of Pseudomonas aeruginosa infections in order to control infection and lower the development of bacterial resistance to antibiotics.201930500409
4766160.9949Evaluation of ethanol and EDTA concentrations in the expression of biofilm-producing smf-1, rpfF genes in XDR clinical isolates of Stenotrophomonas maltophilia. BACKGROUND: Stenotrophomonas maltophilia is able to cause infections in immunocompromised patients, and the treatment of this opportunistic pathogen is complicated due to its virulence factors, antibiotic resistance, and the ability of the bacteria to produce biofilm. The main goals of this study were to assess the susceptibility of extensively drug-resistant (XDR) isolates to ethanol and EDTA, and evaluating the synergistic effect of these disinfectants, and also survey the effect of exposure to sub-inhibitory concentrations of ethanol and EDTA on the expression of biofilm-producing smf-1, rpfF genes. RESULTS: The results showed that EDTA significantly increased the effectiveness of the ethanol and have a synergistic effect. All of the 10 XDR isolates included in the current study harbored smf-1 and rpfF genes and produced biofilm. After exposure to MIC, sub-MIC, synergism, and sub-synergism of ethanol and EDTA, the expression of smf-1 and rpfF genes was repressed significantly. CONCLUSION: In the current study, it was indicated that the expression of biofilm-producing genes was repressed when bacteria are exposed to different concentrations of ethanol and EDTA. Future studies should include more complex microbial communities residing in the hospitals, and more disinfectants use in hospitals. Expression of other virulence genes in different conditions is suggested.202337775770
4762170.9948The Impact of Harsh Stratospheric Conditions on Survival and Antibiotic Resistance Profile of Non-Spore Forming Multidrug Resistant Human Pathogenic Bacteria Causing Hospital-Associated Infections. Bacteria are constantly being lifted to the stratosphere due to air movements caused by weather phenomena, volcanic eruptions, or human activity. In the upper parts of the atmosphere, they are exposed to extremely harsh and mutagenic conditions such as UV and space radiation or ozone. Most bacteria cannot withstand that stress, but for a fraction of them, it can act as a trigger for selective pressure and rapid evolution. We assessed the impact of stratospheric conditions on the survival and antibiotic resistance profile of common non-spore-forming human pathogenic bacteria, both sensitive and extremely dangerous multidrug-resistant variants, with plasmid-mediated mechanisms of resistance. Pseudomonas aeruginosa did not survive the exposure. In the case of strains that were recovered alive, the survival was extremely low: From 0.00001% of Klebsiella pneumoniae carrying the ndm-1 gene and methicillin-resistant Staphylococcus aureus mecA-positive with reduced susceptibility to vancomycin (MRSA/VISA), to a maximum of 0.001% of K. pneumoniae sensitive to all common antibiotics and S. aureus sensitive to vancomycin (MRSA/VSSA). We noticed a tendency towards increased antibiotic susceptibility after the stratospheric flight. Antimicrobial resistance is a current real, global, and increasing problem, and our results can inform current understandings of antibiotic resistance mechanisms and development in bacteria.202336833485
5104180.9948Microbial communities, antibiotic resistance genes, and virulence factors in urinary infectious stone-associated urinary tract infections. Urinary infectious stones are challenging due to bacterial involvement, necessitating a comprehensive understanding of these conditions. Antibiotic-resistant urease-producing bacteria further complicate clinical management. In this study, analysis of urine and stone samples from urinary tract infection (UTI) patients revealed microbial shifts, gene enrichment in stones, and metabolic pathway disparities; antibiotic resistance gene trends were phylum-specific, urease-producing bacteria are at risk of acquiring AMR carried by Enterobacteriaceae under antibiotic, emphasizing potential AMR dissemination between them; Correlations of key pathogenic species in kidney stone and urine microbial communities highlight the need for targeted therapeutic strategies to manage complexities in UTIs; Stones and urine contain a variety of deleterious genes even before antibiotic use, and piperacillin/tazobactam better reduced the abundance of antibiotic resistance genes in stones and urine. The presence of diverse antibiotic resistance and virulence genes underscores challenges in clinical management and emphasizes the need for effective treatment strategies to mitigate risks associated with UTIs and urinary infectious stone formation. Ongoing research is vital for advancing knowledge and developing innovative approaches to address these urological conditions.202438874649
2554190.9948Development of an antibiotic resistance monitoring system in Hungary. Because of the rapid development and spread of antimicrobial resistance it is important that a system be established to monitor antimicrobial resistance in pathogenic zoonotic and commensal bacteria of animal origin. Susceptibility testing of bacteria from carcasses and different samples of animal origin has been carried out in veterinary institutes for a long time but by an inconsistent methodology. The disc diffusion method proposed by the National Committee for Clinical Laboratory Standards (NCCLS) was introduced in all institutes in 1997. In order to obtain a coherent view of the antimicrobial resistance of bacteria a computer system was consulted, consisting of a central computer to store all data and some local computers attached to it through the network. At these local measuring stations computers are connected to a video camera, which displays the picture of Petri dishes on the monitor, and inhibition zone diameters of bacteria can be drawn with the mouse by the inspector. The software measures the diameters, evaluates whether or not the bacteria are sensitive, and stores the data. The evaluation is based upon the data of the NCCLS. The central computer can be connected to as many local computers with measuring stations as we wish, so it is suitable for an integrated system for monitoring trends in antimicrobial resistance of bacteria from animals, food and humans, facilitating comparison of the occurrence of resistance for each circumstance in the chain. It depends on the examiners which antibiotics they want to examine. Thirty-two different antibiotic panels were compiled, taking into consideration the active ingredients of medicinal products permitted for veterinary use in Hungary, natural resistance and cross-resistance, the mechanism of resistance and the animal species, i.e. which drugs were recommended for treatment in the given animal species, and the recommendations of the OIE Expert Group on Antimicrobial Resistance. The members of the panels can be changed any time, even during the measuring process. In addition to the inhibition zone diameters of bacteria the database also includes information about bacterial and animal species, the age of animals and the sample or organ where the bacteria are from. Since January 2001 the antibiotic susceptibility of E. coli, Salmonella, Campylobacter and Enterococcus strains isolated from the colons of slaughter cows, pigs and broiler chickens has also been examined. Each of the 19 counties of Hungary submits to the laboratory three tied colon samples from a herd of the above-mentioned animals every month.200212113174