SEVERE - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
487000.9984Emergent Polymyxin Resistance: End of an Era? Until recently, the polymyxin antibiotics were sparingly used due to dose limiting toxicities. However, the lack of therapeutic alternatives for infections caused by highly resistant Gram-negative bacteria has led to the increased use of the polymyxins. Unfortunately, in the last decade the world has witnessed increased rates of polymyxin resistance, which is likely in part due to its irrational use in human and veterinary medicine. The spread of polymyxin-resistance has been aided by the dissemination of the transferable polymyxin-resistance gene, mcr, in humans and the environment. The mortality of colistin-resistant bacteria infections varies in different reports. However, poor clinical outcome was associated with prior colistin treatment, illness severity, complications and multidrug resistance. Detection of polymyxin-resistance in the clinic is possible through multiple robust and practical tests including broth microdilution susceptibility testing, chromogenic agar testing, and molecular biology assays. There are multiple risk factors that increase a person's risk for infection with a polymyxin-resistant bacteria including age, prior colistin treatment, hospitalization and ventilator support. For patients that are determined to be infected by polymyxin-resistant bacteria, various antibiotic treatment options currently exist. The rising trend of polymyxin-resistance threatens patient care and warrants an effective control.201931420655
488410.9984Multidrug resistance efflux pump expression in uropathogenic Gram-negative bacteria in organ transplant recipients. Urinary tract infections (UTIs) are common in healthcare settings and communities; and are predominantly caused by Gram-negative bacteria, which account for > 70% of UTI cases. Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa are the most common bacterial agents responsible for UTIs. The emergence of antibiotic resistance poses a challenge for UTI treatment; and efflux pump overexpression contributes to Gram-negative bacterial resistance. This comprehensive review summarizes the current understanding of multidrug resistance (MDR) efflux pump expression in prevalent Gram-negative bacteria that demonstrate resistance to antibiotics predominantly used for UTI treatment. This review examines the available data, and offers insights into the role of efflux pumps in conferring MDR to UTI-causing bacteria. Understanding these resistance mechanisms is crucial for developing effective strategies to combat antibiotic resistance in UTI management. Furthermore, this review emphasizes the need to characterize efflux pump-mediated antimicrobial resistance in solid organ transplantation cases. Solid organ transplant recipients are particularly vulnerable to UTIs caused by MDR bacteria, posing a serious threat to their health and recovery. Identifying the efflux pump profiles of these bacterial strains can guide appropriate antibiotic choices and optimize treatment outcomes in transplant recipients. By consolidating existing knowledge on efflux pump expression in antibiotic-resistant Gram-negative bacteria associated with UTIs, this review acknowledges gaps and identifies the future scope of research that should address the growing challenge of MDR UTIs, particularly in high-risk populations such as solid organ transplant recipients.202540452526
251020.9984Diagnosis of Multidrug-Resistant Pathogens of Pneumonia. Hospital-acquired pneumonia and ventilator-associated pneumonia that are caused by multidrug resistant (MDR) pathogens represent a common and severe problem with increased mortality. Accurate diagnosis is essential to initiate appropriate antimicrobial therapy promptly while simultaneously avoiding antibiotic overuse and subsequent antibiotic resistance. Here, we discuss the main conventional phenotypic diagnostic tests and the advanced molecular tests that are currently available to diagnose the primary MDR pathogens and the resistance genes causing pneumonia.202134943524
482130.9984Enterobacter hormaechei replaces virulence with carbapenem resistance via porin loss. Pathogenic Enterobacter species are of increasing clinical concern due to the multidrug-resistant nature of these bacteria, including resistance to carbapenem antibiotics. Our understanding of Enterobacter virulence is limited, hindering the development of new prophylactics and therapeutics targeting infections caused by Enterobacter species. In this study, we assessed the virulence of contemporary clinical Enterobacter hormaechei isolates in a mouse model of intraperitoneal infection and used comparative genomics to identify genes promoting virulence. Through mutagenesis and complementation studies, we found two porin-encoding genes, ompC and ompD, to be required for E. hormaechei virulence. These porins imported clinically relevant carbapenems into the bacteria, and thus loss of OmpC and OmpD desensitized E. hormaechei to the antibiotics. Our genomic analyses suggest porin-related genes are frequently mutated in E. hormaechei, perhaps due to the selective pressure of antibiotic therapy during infection. Despite the importance of OmpC and OmpD during infection of immunocompetent hosts, we found the two porins to be dispensable for virulence in a neutropenic mouse model. Moreover, porin loss provided a fitness advantage during carbapenem treatment in an ex vivo human whole blood model of bacteremia. Our data provide experimental evidence of pathogenic Enterobacter species gaining antibiotic resistance via loss of porins and argue antibiotic therapy during infection of immunocompromised patients is a conducive environment for the selection of porin mutations enhancing the multidrug-resistant profile of these pathogens.202539977318
976040.9983Mutations leading to ceftolozane/tazobactam and imipenem/cilastatin/relebactam resistance during in vivo exposure to ceftazidime/avibactam in Pseudomonas aeruginosa. Identifying resistance mechanisms to novel antimicrobials informs treatment strategies during infection and antimicrobial development. Studying resistance that develops during the treatment of an infection can provide the most clinically relevant mutations conferring resistance, but cross-sectional studies frequently identify multiple candidate resistance mutations without resolving the driver mutation. We performed whole-genome sequencing of longitudinal Pseudomonas aeruginosa from a patient whose P. aeruginosa developed imipenem/cilastatin/relebactam and ceftolozane/tazobactam resistance during ceftazidime/avibactam treatment. This analysis determined new mutations that arose in isolates resistant to both imipenem/cilastatin/relebactam and ceftolozane/tazobactam. Mutations in penicillin-binding protein 3 ftsI, the MexAB-OprM repressor nalD, and a virulence regulator pvdS were found in resistant isolates. Importantly, drug efflux was not increased in the resistant isolate compared to the most closely related susceptible isolates. We conclude that mutations in peptidoglycan synthesis genes can alter the efficacy of multiple antimicrobials. IMPORTANCE: Antibiotic resistance is a significant challenge for physicians trying to treat infections. The development of novel antibiotics to treat resistant infections has not been prioritized for decades, limiting treatment options for infections caused by many high-priority pathogens. Cross-resistance, when one mutation provides resistance to multiple antibiotics, is most problematic. Mutations that cause cross-resistance need to be considered when developing new antibiotics to guide developers toward drugs with different targets, and thus a better likelihood of efficacy. This work was undertaken to determine the mutation that caused resistance to three antibiotics for highly resistant Pseudomonas aeruginosa infection treatment while the bacteria were exposed to only one of these agents. The findings provide evidence that drug developers should endeavor to find effective antibiotics with new targets and that medical providers should utilize medications with different mechanisms of action in bacteria that have become resistant to even one of these three agents.202539932323
883650.9983Identification of an anti-virulence drug that reverses antibiotic resistance in multidrug resistant bacteria. The persistent incidence of high levels of multidrug-resistant (MDR) bacteria seriously endangers global public health. In response to MDR-associated infections, new antibacterial drugs and strategies are particularly needed. Screening to evaluate a potential compound to reverse antibiotic resistance is a good strategy to alleviate this crisis. In this paper, using high-throughput screening methods, we identified that oxyclozanide potentiated tetracycline antibiotics act against MDR bacterial pathogens by promoting intracellular accumulation of tetracycline in resistant bacteria. Furthermore, mechanistic studies demonstrated that oxyclozanide could directly kill bacteria by disrupting bacterial membrane and inducing the overproduction of bacterial reactive oxygen species. Oxyclozanide effectively reduced the production of virulence proteins in S. aureus and neutralized the produced α-hemolysin, thereby effectively alleviating the inflammatory response caused by bacteria. Finally, oxyclozanide significantly reversed tetracycline resistance in animal infection assays. In summary, these results demonstrated the capacity of oxyclozanide as a novel antibiotic adjuvant, antibacterial and anti-virulence multifunctional compound to circumvent MDR bacteria and improve the therapeutic effect of persistent infections caused by MDR bacteria worldwide.202235797943
494060.9983Predicting Phenotypic Polymyxin Resistance in Klebsiella pneumoniae through Machine Learning Analysis of Genomic Data. Polymyxins are used as treatments of last resort for Gram-negative bacterial infections. Their increased use has led to concerns about emerging polymyxin resistance (PR). Phenotypic polymyxin susceptibility testing is resource intensive and difficult to perform accurately. The complex polygenic nature of PR and our incomplete understanding of its genetic basis make it difficult to predict PR using detection of resistance determinants. We therefore applied machine learning (ML) to whole-genome sequencing data from >600 Klebsiella pneumoniae clonal group 258 (CG258) genomes to predict phenotypic PR. Using a reference-based representation of genomic data with ML outperformed a rule-based approach that detected variants in known PR genes (area under receiver-operator curve [AUROC], 0.894 versus 0.791, P = 0.006). We noted modest increases in performance by using a bacterial genome-wide association study to filter relevant genomic features and by integrating clinical data in the form of prior polymyxin exposure. Conversely, reference-free representation of genomic data as k-mers was associated with decreased performance (AUROC, 0.692 versus 0.894, P = 0.015). When ML models were interpreted to extract genomic features, six of seven known PR genes were correctly identified by models without prior programming and several genes involved in stress responses and maintenance of the cell membrane were identified as potential novel determinants of PR. These findings are a proof of concept that whole-genome sequencing data can accurately predict PR in K. pneumoniae CG258 and may be applicable to other forms of complex antimicrobial resistance.IMPORTANCE Polymyxins are last-resort antibiotics used to treat highly resistant Gram-negative bacteria. There are increasing reports of polymyxin resistance emerging, raising concerns of a postantibiotic era. Polymyxin resistance is therefore a significant public health threat, but current phenotypic methods for detection are difficult and time-consuming to perform. There have been increasing efforts to use whole-genome sequencing for detection of antibiotic resistance, but this has been difficult to apply to polymyxin resistance because of its complex polygenic nature. The significance of our research is that we successfully applied machine learning methods to predict polymyxin resistance in Klebsiella pneumoniae clonal group 258, a common health care-associated and multidrug-resistant pathogen. Our findings highlight that machine learning can be successfully applied even in complex forms of antibiotic resistance and represent a significant contribution to the literature that could be used to predict resistance in other bacteria and to other antibiotics.202032457240
485670.9983An Overview on Phenotypic and Genotypic Characterisation of Carbapenem-Resistant Enterobacterales. Improper use of antimicrobials has resulted in the emergence of antimicrobial resistance (AMR), including multi-drug resistance (MDR) among bacteria. Recently, a sudden increase in Carbapenem-resistant Enterobacterales (CRE) has been observed. This presents a substantial challenge in the treatment of CRE-infected individuals. Bacterial plasmids include the genes for carbapenem resistance, which can also spread to other bacteria to make them resistant. The incidence of CRE is rising significantly despite the efforts of health authorities, clinicians, and scientists. Many genotypic and phenotypic techniques are available to identify CRE. However, effective identification requires the integration of two or more methods. Whole genome sequencing (WGS), an advanced molecular approach, helps identify new strains of CRE and screening of the patient population; however, WGS is challenging to apply in clinical settings due to the complexity and high expense involved with this technique. The current review highlights the molecular mechanism of development of Carbapenem resistance, the epidemiology of CRE infections, spread of CRE, treatment options, and the phenotypic/genotypic characterisation of CRE. The potential of microorganisms to acquire resistance against Carbapenems remains high, which can lead to even more susceptible drugs such as colistin and polymyxins. Hence, the current study recommends running the antibiotic stewardship programs at an institutional level to control the use of antibiotics and to reduce the spread of CRE worldwide.202236422214
569080.9983Rapid Detection of MCR-Mediated Colistin Resistance in Escherichia coli. Colistin is one of the last-resort antibiotics for infections caused by multidrug-resistant Gram-negative bacteria. However, the wide spread of novel plasmid-carrying colistin resistance genes mcr-1 and its variants substantially compromise colistin's therapeutic effectiveness and pose a severe danger to public health. To detect colistin-resistant microorganisms induced by mcr genes, rapid and reliable antibiotic susceptibility testing (AST) is imminently needed. In this study, we identified an RNA-based AST (RBAST) to discriminate between colistin-susceptible and mcr-1-mediated colistin-resistant bacteria. After short-time colistin treatment, RBAST can detect differentially expressed RNA biomarkers in bacteria. Those candidate mRNA biomarkers were successfully verified within colistin exposure temporal shifts, concentration shifts, and other mcr-1 variants. Furthermore, a group of clinical strains were effectively distinguished by using the RBAST approach during the 3-h test duration with over 93% accuracy. Taken together, our findings imply that certain mRNA transcripts produced in response to colistin treatment might be useful indicators for the development of fast AST for mcr-positive bacteria. IMPORTANCE The emergence and prevalence of mcr-1 and its variants in humans, animals, and the environment pose a global public health threat. There is a pressing urgency to develop rapid and accurate methods to identify MCR-positive colistin-resistant bacteria in the clinical samples, providing a basis for subsequent effective antibiotic treatment. Using the specific mRNA signatures, we develop an RNA-based antibiotic susceptibility testing (RBAST) for effectively distinguishing colistin-susceptible and mcr-1-mediated colistin-resistant strains. Meanwhile, the detection efficiency of these RNA biomarkers was evidenced in other mcr variants-carrying strains. By comparing with the traditional AST method, the RBAST method was verified to successfully characterize a set of clinical isolates during 3 h assay time with over 93% accuracy. Our study provides a feasible method for the rapid detection of colistin-resistant strains in clinical practice.202235616398
975890.9983Study on collateral sensitivity of tigecycline to colistin-resistant Enterobacter cloacae complex. The past decade has witnessed the emergence and spread of carbapenem-resistant Enterobacter cloacae complex (CRECC), presenting a significant clinical challenge and urgently demanding new treatment strategies against antimicrobial resistance (AMR). This study focused on the impact of tigecycline on the susceptibility of CRECC isolates to colistin and the collateral sensitivity in CRECC. Under tigecycline pressure, the resistance of five clinically isolated CRECC strains to colistin was converted from resistance to sensitivity. These mutants exhibited significantly higher expression of acrA, acrB, and ramA genes, with mutations in the ramR gene. Overexpression of ramA in certain mutants did not alter ramR expression. No mutations were identified in lipid A synthesis genes; however, phoQ was consistently downregulated, and arnA expression varied among CRECC405-resistant mutants. Low-dose colistin and tigecycline combination therapy outperformed monotherapy in antimicrobial efficacy. Overall, collateral susceptibility to tigecycline was observed in CRECC isolates with colistin resistance. The overexpression of acrA, acrB, and ramA, due to ramR mutations, led to tigecycline resistance. Inconsistent expression levels of lipid A synthesis genes affected lipid A modification, which in turn upregulated arnA expression in CRECC405-resistant mutants. Increased sensitivity to colistin was associated with the downregulation of phoQ and arnA expression. IMPORTANCE: Antimicrobial resistance (AMR) is escalating faster than our ability to manage bacterial infections, with antibiotic-resistant bacteria emerging as a significant public health risk. Innovative strategies are urgently needed to curb AMR dissemination. Our research identified collateral sensitivity in Enterobacter cloacae complex following tigecycline (TGC) resistance, resulting in newfound sensitivity to colistin (COL), a drug to which it was once resistant. Synergistic tigecycline and colistin therapy significantly suppress bacterial growth, offering a promising approach to combat infections and curb AMR progression through the strategic pairing of antibiotics with complementary sensitivities.202540407373
4880100.9983Molecular mechanisms of tigecycline-resistance among Enterobacterales. The global emergence of antimicrobial resistance to multiple antibiotics has recently become a significant concern. Gram-negative bacteria, known for their ability to acquire mobile genetic elements such as plasmids, represent one of the most hazardous microorganisms. This phenomenon poses a serious threat to public health. Notably, the significance of tigecycline, a member of the antibiotic group glycylcyclines and derivative of tetracyclines has increased. Tigecycline is one of the last-resort antimicrobial drugs used to treat complicated infections caused by multidrug-resistant (MDR) bacteria, extensively drug-resistant (XDR) bacteria or even pan-drug-resistant (PDR) bacteria. The primary mechanisms of tigecycline resistance include efflux pumps' overexpression, tet genes and outer membrane porins. Efflux pumps are crucial in conferring multi-drug resistance by expelling antibiotics (such as tigecycline by direct expelling) and decreasing their concentration to sub-toxic levels. This review discusses the problem of tigecycline resistance, and provides important information for understanding the existing molecular mechanisms of tigecycline resistance in Enterobacterales. The emergence and spread of pathogens resistant to last-resort therapeutic options stands as a major global healthcare concern, especially when microorganisms are already resistant to carbapenems and/or colistin.202438655285
4882110.9983Molecular Factors and Mechanisms Driving Multidrug Resistance in Uropathogenic Escherichia coli-An Update. The rapid emergence of multidrug-resistant (MDR) bacteria indisputably constitutes a major global health problem. Pathogenic Escherichia coli are listed among the most critical group of bacteria that require fast development of new antibiotics and innovative treatment strategies. Among harmful extraintestinal Enterobacteriaceae strains, uropathogenic E. coli (UPEC) pose a significant health threat. UPEC are considered the major causative factor of urinary tract infection (UTI), the second-most commonly diagnosed infectious disease in humans worldwide. UTI treatment places a substantial financial burden on healthcare systems. Most importantly, the misuse of antibiotics during treatment has caused selection of strains with the ability to acquire MDR via miscellaneous mechanisms resulting in gaining resistance against many commonly prescribed antibiotics like ampicillin, gentamicin, cotrimoxazole and quinolones. Mobile genetic elements (MGEs) such as transposons, integrons and conjugative plasmids are the major drivers in spreading resistance genes in UPEC. The co-occurrence of various bacterial evasion strategies involving MGEs and the SOS stress response system requires further research and can potentially lead to the discovery of new, much-awaited therapeutic targets. Here, we analyzed and summarized recent discoveries regarding the role, mechanisms, and perspectives of MDR in the pathogenicity of UPEC.202236011308
2515120.9983High-risk Pseudomonas aeruginosa clones harboring β-lactamases: 2024 update. Carbapenem-resistant Pseudomonas aeruginosa is defined by the World Health Organization as a "high priority" in developing new antimicrobials. Indeed, the emergence and spread of multidrug-resistant (MDR) or extensively drug-resistant (XDR) bacteria increase the morbidity and mortality risk of infected patients. Genomic variants of P. aeruginosa that display phenotypes of MDR/XDR have been defined as high-risk global clones. In this mini-review, we describe some international high-risk clones that carry β-lactamase genes that can produce chronic colonization and increase infected patients' morbidity and mortality rates.202539850428
4887130.9983Mechanisms of Bacterial Drug Resistance with Special Emphasis on Phenotypic and Molecular Characterization of Extended Spectrum Beta-lactamase. Antibiotics are designed to effectively treat bacterial infections while minimizing harm to the human body. They work by targeting specific components of bacteria or by disrupting essential processes such as cell wall synthesis, membrane function, protein production, and metabolic pathways. However, the misuse and overuse of antibiotics have led to the emergence of drug resistance in humans, animals, and agriculture, contributing to the global spread of this problem. Drug resistance can be either innate or acquired, with acquired resistance involving changes in the bacterial chromosomes or transferable elements. Bacterial species employ various mechanisms of drug resistance, including modifying the antibiotic targets, inactivating the drug, reducing uptake or increasing efflux, overexpressing the target, utilizing alternative pathways, and forming biofilms. One significant concern in the realm of drug resistance revolves around the emergence and proliferation of extended-spectrum beta-lactamases (ESBLs), a gene that is found in most gram-negative bacteria, primarily carried by Escherichia coli and Klebsiella pneumoniae in healthcare settings. ESBL-mediated resistance poses challenges for diagnosis, treatment, infection control, and antibiotic stewardship. Accurate detection of ESBL genes is crucial, and phenotypic methods are commonly used for initial screening. However, these methods have limitations, and confirmatory molecular techniques such as PCR and DNA sequencing are employed to accurately identify ESBL genes. Despite the significant global concerns surrounding ESBLs, they have spread worldwide, mainly facilitated by healthcare settings, inappropriate antimicrobial use, and host susceptibility. Addressing this issue requires implementing comprehensive measures, including enhanced surveillance, strict infection control practices, antibiotic stewardship programs, rapid diagnostic methods, alternative therapies, public education initiatives, and research focused on developing new drugs. Furthermore, collaboration among the healthcare, public health, and research sectors is pivotal in effectively combating the escalating threat posed by ESBL-mediated resistance. Antibiotics have revolutionized medical care by effectively treating bacterial infections. However, the emergence of ESBL gene resistance poses a global challenge that requires an integrated approach to prevent a threatening future.202438700878
4748140.9983Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections. There has been a dramatic increase in the emergence of antibiotic-resistant bacterial strains, which has made antibiotic choices for infection control increasingly limited and more expensive. In the U.S. alone, antibiotic-resistant bacteria cause at least 2 million infections and 23,000 deaths a year resulting in a $55-70 billion per year economic impact. Antibiotics are critical to the success of surgical procedures including orthopedic prosthetic surgeries, and antibiotic resistance is occurring in nearly all bacteria that infect people, including the most common bacteria that cause orthopedic infections, such as Staphylococcus aureus (S. aureus). Most clinical cases of orthopedic surgeries have shown that patients infected with antibiotic-resistant bacteria, such as methicillin-resistant S. aureus (MRSA), are associated with increased morbidity and mortality. This paper reviews the severity of antibiotic resistance at the global scale, the consequences of antibiotic resistance, and the pathways bacteria used to develop antibiotic resistance. It highlights the opportunities and challenges in limiting antibiotic resistance through approaches like the development of novel, non-drug approaches to reduce bacteria functions related to orthopedic implant-associated infections. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:22-32, 2018.201828722231
4891150.9983From food to hospital: we need to talk about Acinetobacter spp. Some species of the genus Acinetobacter are admittedly important hospital pathogens. Additionally, various animal and plant foods have been linked to the presence of Acinetobacter, including resistant strains. However, due to isolation difficulties and the lack of official standard methods, there is a dearth of work and epidemiological data on foodborne diseases caused by this microorganism. Considering that Acinetobacter spp. may represent a serious public health problem, especially because of their resistance to carbapenems and colistin, and because of the fact that these pathogens may transfer resistance genes to other bacteria, studies are needed to evaluate the pathogenicity of both food and clinical isolates and to search for them using control strategies, such as the adoption of more efficient disinfection measures and use of antimicrobial substances (AMS). In contrast, AMS production by strains of the genus Acinetobacter has already been described, and its potential for application against other Gram-negative food or clinical pathogens, reveals a new field to be explored.202033134199
5691160.9983Rapid and Accurate Antibiotic Susceptibility Determination of tet(X)-Positive E. coli Using RNA Biomarkers. The emergence and prevalence of novel plasmid-mediated tigecycline resistance genes, namely, tet(X) and their variants, pose a serious threat to public health worldwide. Rapid and accurate antibiotic susceptibility testing (AST) that can simultaneously detect the genotype and phenotype of tet(X)-positive bacteria may contribute to the deployment of an effective antibiotic arsenal, mortality reduction, and a decrease in the use of broad-spectrum antimicrobial agents. However, current bacterial growth-based AST methods, such as broth microdilution, are time consuming and delay the prompt treatment of infectious diseases. Here, we developed a rapid RNA-based AST (RBAST) assay to effectively distinguish tet(X)-positive and -negative strains. RBAST works by detecting specific mRNA expression signatures in bacteria after short-term tigecycline exposure. As a proof of concept, a panel of clinical isolates was characterized successfully by using the RBAST method, with a 3-h assay time and 87.9% accuracy (95% confidence interval [CI], 71.8% to 96.6%). Altogether, our findings suggest that RNA signatures upon antibiotic exposure are promising biomarkers for the development of rapid AST, which could inform early antibiotic choices. IMPORTANCE Infections caused by multidrug-resistant (MDR) Gram-negative pathogens are an increasing threat to global health. Tigecycline is one of the last-resort antibiotics for the treatment of these complicated infections; however, the emergence of plasmid-encoded tigecycline resistance genes, namely, tet(X), severely diminishes its clinical efficacy. Currently, there is a lack of rapid and accurate antibiotic susceptibility testing (AST) for the detection of tet(X)-positive bacteria. In this study, we developed a rapid and robust RNA-based antibiotic susceptibility determination (RBAST) assay to effectively distinguish tet(X)-negative and -positive strains using specific RNA biomarkers in bacteria after tigecycline exposure. Using this RBAST method, we successfully characterized a set of clinical strains in 3 h. Our data indicate that the RBAST assay is useful for identifying tet(X)-positive Escherichia coli.202134704829
4816170.9983Sub-inhibitory concentrations of colistin and imipenem impact the expression of biofilm-associated genes in Acinetobacter baumannii. Acinetobacter baumannii is an opportunistic pathogen that is responsible for nosocomial infections. Imipenem and colistin are drugs that are commonly used to treat severe infections caused by A. baumannii, such as sepsis, ventilator-associated pneumonia, and bacteremia. However, some strains of A. baumannii have become resistant to these drugs, which is a concern for public health. Biofilms produced by A. baumannii increase their resistance to antibiotics and the cells within the inner layers of biofilm are exposed to sub-inhibitory concentrations (sub-MICs) of antibiotics. There is limited information available regarding how the genes of A. baumannii are linked to biofilm formation when the bacteria are exposed to sub-MICs of imipenem and colistin. Thus, this study's objective was to explore this relationship by examining the genes involved in biofilm formation in A. baumannii when exposed to low levels of imipenem and colistin. The study found that exposing an isolate of A. baumannii to low levels of these drugs caused changes in their drug susceptibility pattern. The relative gene expression profiles of the biofilm-associated genes exhibited a change in their expression profile during short-term and long-term exposure. This study highlights the potential consequences of overuse and misuse of antibiotics, which can help bacteria become resistant to these drugs.202438489041
9767180.9982Metallo-β-lactamase NDM-1 serves as a universal vaccine candidate for combatting antimicrobial resistance. The rapid emergence and spread of antimicrobial resistance have become critical global health issues, leading to significant morbidity and mortality worldwide. With the increase in resistance to multiple drugs, especially frontline clinical antibiotics, there is an urgent need for novel and effective alternative strategies. Herein, we developed a vaccine targeting the antimicrobial resistance enzyme NDM-1, which was first identified in Klebsiella pneumoniae and has quickly spread to other gram-negative bacteria. Our results demonstrate that NDM-1 primarily triggers a humoral immune response and effectively protects mice from lethal Klebsiella pneumoniae infection, as evidenced by increased survival rates, reduced bacterial loads, and decreased lung inflammation in mice. The specific antibodies generated were able to inhibit the enzymatic activity of NDM-1, bacterial growth, and exhibit opsonophagocytic activity against Klebsiella pneumoniae in vitro. Both active and passive immunization with NDM-1 showed an additive effect when combined with meropenem therapy. Furthermore, NDM-1 immunization induced cross-reactivity with NDM-1 variants, potentially providing broad protection against bacteria carrying different NDM genes. Additionally, heptamerization of NDM-1 improved its immunogenicity and protective efficacy in mice. These results highlight the potential of vaccine development based on antibiotic resistance candidates for broadly combatting antimicrobial resistance.202540505900
4889190.9982The Challenge of Overcoming Antibiotic Resistance in Carbapenem-Resistant Gram-Negative Bacteria: "Attack on Titan". The global burden of bacterial resistance remains one of the most serious public health concerns. Infections caused by multidrug-resistant (MDR) bacteria in critically ill patients require immediate empirical treatment, which may not only be ineffective due to the resistance of MDR bacteria to multiple classes of antibiotics, but may also contribute to the selection and spread of antimicrobial resistance. Both the WHO and the ECDC consider carbapenem-resistant Enterobacteriaceae (CRE), carbapenem-resistant Pseudomonas aeruginosa (CRPA), and carbapenem-resistant Acinetobacter baumannii (CRAB) to be the highest priority. The ability to form biofilm and the acquisition of multiple drug resistance genes, in particular to carbapenems, have made these pathogens particularly difficult to treat. They are a growing cause of healthcare-associated infections and a significant threat to public health, associated with a high mortality rate. Moreover, co-colonization with these pathogens in critically ill patients was found to be a significant predictor for in-hospital mortality. Importantly, they have the potential to spread resistance using mobile genetic elements. Given the current situation, it is clear that finding new ways to combat antimicrobial resistance can no longer be delayed. The aim of this review was to evaluate the literature on how these pathogens contribute to the global burden of AMR. The review also highlights the importance of the rational use of antibiotics and the need to implement antimicrobial stewardship principles to prevent the transmission of drug-resistant organisms in healthcare settings. Finally, the review discusses the advantages and limitations of alternative therapies for the treatment of infections caused by these "titans" of antibiotic resistance.202337630472