SETTINGS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
250000.9953The crisis of carbapenemase-mediated carbapenem resistance across the human-animal-environmental interface in India. Carbapenems are the decision-making antimicrobials used to combat severe Gram-negative bacterial infections in humans. Carbapenem resistance poses a potential public health emergency, especially in developing countries such as India, accounting for high morbidity, mortality, and healthcare cost. Emergence and transmission of plasmid-mediated "big five" carbapenemase genes including KPC, NDM, IMP, VIM and OXA-48-type among Gram-negative bacteria is spiralling the issue. Carbapenemase-producing carbapenem-resistant organisms (CP-CRO) cause multi- or pan-drug resistance by co-harboring several antibiotic resistance determinants. In addition of human origin, animals and even environmental sites are also the reservoir of CROs. Spillage in food-chains compromises food safety and security and increases the chance of cross-border transmission of these superbugs. Metallo-β-lactamases, mainly NDM-1 producing CROs, are commonly shared between human, animal and environmental interfaces worldwide, including in India. Antimicrobial resistance (AMR) surveillance using the One Health approach has been implemented in Europe, the United-Kingdom and the United-States to mitigate the crisis. This concept is still not implemented in most developing countries, including India, where the burden of antibiotic-resistant bacteria is high. Lack of AMR surveillance in animal and environmental sectors underestimates the cumulative burden of carbapenem resistance resulting in the silent spread of these superbugs. In-depth indiscriminate AMR surveillance focusing on carbapenem resistance is urgently required to develop and deploy effective national policies for preserving the efficacy of carbapenems as last-resort antibiotics in India. Tracking and mapping of international high-risk clones are pivotal for containing the global spread of CP-CRO.202336241158
252710.9948A Systematic Review and Comprehensive Analysis of mcr Gene Prevalence in Bacterial Isolates in Arab Countries. BACKGROUND: The resurgence of colistin has become critical in combating multidrug-resistant Gram-negative bacteria. However, the emergence of mobilized colistin resistance (mcr) genes presents a crucial global challenge, particularly in the Arab world, which includes regions with unique conditions and ongoing conflicts in some parts. METHODS: To address this issue, a systematic review was conducted using multiple databases, including Cochrane, PubMed, Scopus, Web of Science, and Arab World Research Source. RESULTS: A total of 153 studies were included, revealing substantial heterogeneity in the prevalence of mcr genes across 15 Arab countries, with notable findings indicating that Egypt and Lebanon reported the highest number of cases. The analysis indicated that the most prevalent sequence types were ST10, ST101, and ST1011, all of which are Escherichia coli strains linked to significant levels of colistin resistance and multiple antimicrobial resistance profiles. CONCLUSIONS: By analyzing the diverse findings from different Arab countries, this review lays a critical foundation for future research and highlights the necessity for enhanced surveillance and targeted interventions to address the looming threat of colistin resistance in the region. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42024584379.202439452224
259020.9947Combining stool and stories: exploring antimicrobial resistance among a longitudinal cohort of international health students. BACKGROUND: Antimicrobial resistance (AMR) is a global public health concern that requires transdisciplinary and bio-social approaches. Despite the continuous calls for a transdisciplinary understanding of this problem, there is still a lack of such studies. While microbiology generates knowledge about the biomedical nature of bacteria, social science explores various social practices related to the acquisition and spread of these bacteria. However, the two fields remain disconnected in both methodological and conceptual levels. Focusing on the acquisition of multidrug resistance genes, encoding extended-spectrum betalactamases (CTX-M) and carbapenemases (NDM-1) among a travelling population of health students, this article proposes a methodology of 'stool and stories' that combines methods of microbiology and sociology, thus proposing a way forward to a collaborative understanding of AMR. METHODS: A longitudinal study with 64 health students travelling to India was conducted in 2017. The study included multiple-choice questionnaires (n = 64); a collection of faecal swabs before travel (T0, n = 45), in the first week in India (T1, n = 44), the second week in India (T2, n = 41); and semi-structured interviews (n = 11). Stool samples were analysed by a targeted metagenomic approach. Data from semi-structured interviews were analysed using the method of thematic analysis. RESULTS: The incidence of ESBL- and carbapenemase resistance genes significantly increased during travel indicating it as a potential risk; for CTX-M from 11% before travel to 78% during travel and for NDM-1 from 2% before travel to 11% during travel. The data from semi-structured interviews showed that participants considered AMR mainly in relation to individual antibiotic use or its presence in a clinical environment but not to travelling. CONCLUSION: The microbiological analysis confirmed previous research showing that international human mobility is a risk factor for AMR acquisition. However, sociological methods demonstrated that travellers understand AMR primarily as a clinical problem and do not connect it to travelling. These findings indicate an important gap in understanding AMR as a bio-social problem raising a question about the potential effectiveness of biologically driven AMR stewardship programs among travellers. Further development of the 'stool and stories' approach is important for a transdisciplinary basis of AMR stewardship.202134579656
500830.9946Genetic diversity and risk factors for the transmission of antimicrobial resistance across human, animals and environmental compartments in East Africa: a review. BACKGROUND: The emergence and spread of antimicrobial resistance (AMR) present a challenge to disease control in East Africa. Resistance to beta-lactams, which are by far the most used antibiotics worldwide and include the penicillins, cephalosporins, monobactams and carbapenems, is reducing options for effective control of both Gram-positive and Gram-negative bacteria. The World Health Organization, Food and Agricultural Organization and the World Organization for Animal Health have all advocated surveillance of AMR using an integrated One Health approach. Regional consortia also have strengthened collaboration to address the AMR problem through surveillance, training and research in a holistic and multisectoral approach. This review paper contains collective information on risk factors for transmission, clinical relevance and diversity of resistance genes relating to extended-spectrum beta-lactamase-producing (ESBL) and carbapenemase-producing Enterobacteriaceae, and Methicillin-resistant Staphylococcus aureus (MRSA) across the human, animal and environmental compartments in East Africa. MAIN BODY: The review of the AMR literature (years 2001 to 2019) was performed using search engines such as PubMed, Scopus, Science Direct, Google and Web of Science. The search terms included 'antimicrobial resistance and human-animal-environment', 'antimicrobial resistance, risk factors, genetic diversity, and human-animal-environment' combined with respective countries of East Africa. In general, the risk factors identified were associated with the transmission of AMR. The marked genetic diversity due to multiple sequence types among drug-resistant bacteria and their replicon plasmid types sourced from the animal, human and environment were reported. The main ESBL, MRSA and carbapenem related genes/plasmids were the (bla)CTX-Ms (45.7%), SCCmec type III (27.3%) and IMP types (23.8%), respectively. CONCLUSION: The high diversity of the AMR genes suggests there may be multiple sources of resistance bacteria, or the possible exchange of strains or a flow of genes amongst different strains due to transfer by mobile genetic elements. Therefore, there should be harmonized One Health guidelines for the use of antibiotics, as well as regulations governing their importation and sale. Moreover, the trend of ESBLs, MRSA and carbapenem resistant (CAR) carriage rates is dynamic and are on rise over time period, posing a public health concern in East Africa. Collaborative surveillance of AMR in partnership with regional and external institutions using an integrated One Health approach is required for expert knowledge and technology transfer to facilitate information sharing for informed decision-making.202032762743
253540.9946Mobile Colistin Resistance (mcr) Genes in Cats and Dogs and Their Zoonotic Transmission Risks. Background: Pets, especially cats and dogs, represent a great potential for zoonotic transmission, leading to major health problems. The purpose of this systematic review was to present the latest developments concerning colistin resistance through mcr genes in pets. The current study also highlights the health risks of the transmission of colistin resistance between pets and humans. Methods: We conducted a systematic review on mcr-positive bacteria in pets and studies reporting their zoonotic transmission to humans. Bibliographic research queries were performed on the following databases: Google Scholar, PubMed, Scopus, Microsoft Academic, and Web of Science. Articles of interest were selected using the PRISMA guideline principles. Results: The analyzed articles from the investigated databases described the presence of mcr gene variants in pets including mcr-1, mcr-2, mcr-3, mcr-4, mcr-5, mcr-8, mcr-9, and mcr-10. Among these articles, four studies reported potential zoonotic transmission of mcr genes between pets and humans. The epidemiological analysis revealed that dogs and cats can be colonized by mcr genes that are beginning to spread in different countries worldwide. Overall, reported articles on this subject highlight the high risk of zoonotic transmission of colistin resistance genes between pets and their owners. Conclusions: This review demonstrated the spread of mcr genes in pets and their transmission to humans, indicating the need for further measures to control this significant threat to public health. Therefore, we suggest here some strategies against this threat such as avoiding zoonotic transmission.202235745552
661650.9946The menace of colistin resistance across globe: Obstacles and opportunities in curbing its spread. Colistin-resistance in bacteria is a big concern for public health, since it is a last resort antibiotic to treat infectious diseases of multidrug resistant and carbapenem resistant Gram-negative pathogens in clinical settings. The emergence of colistin resistance in aquaculture and poultry settings has escalated the risks associated with colistin resistance in environment as well. The staggering number of reports pertaining to the rise of colistin resistance in bacteria from clinical and non-clinical settings is disconcerting. The co-existence of colistin resistant genes with other antibiotic resistant genes introduces new challenges in combatting antimicrobial resistance. Some countries have banned the manufacture, sale and distribution of colistin and its formulations for food producing animals. However, to tackle the issue of antimicrobial resistance, a one health approach initiative, inclusive of human, animal, and environmental health needs to be developed. Herein, we review the recent reports in colistin resistance in bacteria of clinical and non-clinical settings, deliberating on the new findings obtained regarding the development of colistin resistance. This review also discusses the initiatives implemented globally in mitigating colistin resistance, their strength and weakness.202336812837
668660.9946The Impact of Wastewater on Antimicrobial Resistance: A Scoping Review of Transmission Pathways and Contributing Factors. BACKGROUND/OBJECTIVES: Antimicrobial resistance (AMR) is a global issue driven by the overuse of antibiotics in healthcare, agriculture, and veterinary settings. Wastewater and treatment plants (WWTPs) act as reservoirs for antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). The One Health approach emphasizes the interconnectedness of human, animal, and environmental health in addressing AMR. This scoping review analyzes wastewater's role in the AMR spread, identifies influencing factors, and highlights research gaps to guide interventions. METHODS: This scoping review followed the PRISMA-ScR guidelines. A comprehensive literature search was conducted across the PubMed and Web of Science databases for articles published up to June 2024, supplemented by manual reference checks. The review focused on wastewater as a source of AMR, including hospital effluents, industrial and urban sewage, and agricultural runoff. Screening and selection were independently performed by two reviewers, with conflicts resolved by a third. RESULTS: Of 3367 studies identified, 70 met the inclusion criteria. The findings indicated that antibiotic residues, heavy metals, and microbial interactions in wastewater are key drivers of AMR development. Although WWTPs aim to reduce contaminants, they often create conditions conducive to horizontal gene transfer, amplifying resistance. Promising interventions, such as advanced treatment methods and regulatory measures, exist but require further research and implementation. CONCLUSIONS: Wastewater plays a pivotal role in AMR dissemination. Targeted interventions in wastewater management are essential to mitigate AMR risks. Future studies should prioritize understanding AMR dynamics in wastewater ecosystems and evaluating scalable mitigation strategies to support global health efforts.202540001375
660670.9945Comprehensive analysis of antimicrobial resistance in the Southwest Indian Ocean: focus on WHO critical and high priority pathogens. The spread of antimicrobial resistance (AMR) is a major global concern, and the islands of the Southwest Indian Ocean (SWIO) are not exempt from this phenomenon. As strategic crossroads between Southern Africa and the Indian subcontinent, these islands are constantly threatened by the importation of multidrug-resistant bacteria from these regions. In this systematic review, our aim was to assess the epidemiological situation of AMR in humans in the SWIO islands, focusing on bacterial species listed as priority by the World Health Organization. Specifically, we examined Enterobacterales, Acinetobacter spp., Pseudomonas spp. resistant to carbapenems, and Enterococcus spp. resistant to vancomycin. Our main objectives were to map the distribution of these resistant bacteria in the SWIO islands and identify the genes involved in their resistance mechanisms. We conducted literature review focusing on Comoros, Madagascar, Maldives, Mauritius, Mayotte, Reunion Island, Seychelles, Sri Lanka, and Zanzibar. Our findings revealed a growing interest in the investigation of these pathogens and provided evidence of their active circulation in many of the territories investigated. However, we also identified disparities in terms of data availability between the targeted bacteria and among the different territories, emphasizing the need to strengthen collaborative efforts to establish an efficient regional surveillance network.202438628847
187180.9945Phylogeographical Landscape of Citrobacter portucalensis Carrying Clinically Relevant Resistomes. During a surveillance study conducted to assess the occurrence and genomic landscape of critical priority pathogens circulating at the human-animal-environment interface in Brazil, as part of the Grand Challenges Explorations-New Approaches to Characterize the Global Burden of Antimicrobial Resistance program, two multidrug-resistant (MDR) Citrobacter portucalensis carrying bla(CTX-M-15) extended-spectrum β-lactamase (ESBL) genes, isolated from green sea turtles, were characterized. Genomic and phylogeographical analysis of C. portucalensis genomes available in public databases revealed the intercontinental dissemination of clades carrying different arrays of clinically relevant genes conferring resistance to carbapenems, broad-spectrum cephalosporins, cephamycins, aminoglycosides and fluoroquinolones, disinfectants, and heavy metals. Our observations suggest that C. portucalensis could be emerging as critical priority bacteria of both public and One Health importance worldwide. IMPORTANCE The global spread of antibiotic-resistant priority pathogens beyond the hospital setting is a critical issue within a One Health context that integrates the human-animal-environment interfaces. On the other hand, next-generation sequencing technologies along with user-friendly and high-quality bioinformatics tools have improved the identification of bacterial species, and bacterial resistance surveillance. The novel Citrobacter portucalensis species was proposed in 2017 after taxonomic reclassification and definition of the strain A60(T) isolated in 2008. Here, we presented genomic data showing the occurrence of multidrug-resistant C. portucalensis isolates carrying bla(CTX-M-15) ESBL genes in South America. Additionally, we observed the intercontinental dissemination of clades harboring a broad resistome to clinically relevant antibiotics. Therefore, these findings highlight that C. portucalensis is a global MDR bacteria that carries intrinsic bla(CMY)- and qnrB-type genes and has become a critical priority pathogen due to the acquisition of clinically relevant resistance determinants, such as ESBL and carbapenemase-encoding genes.202235357225
669090.9945Antimicrobial resistance situation in animal health of Bangladesh. Antimicrobial resistance (AMR) is a crucial multifactorial and complex global problem and Bangladesh poses a regional and global threat with a high degree of antibiotic resistance. Although the routine application of antimicrobials in the livestock industry has largely contributed to the health and productivity, it correspondingly plays a significant role in the evolution of different pathogenic bacterial strains having multidrug resistance (MDR) properties. Bangladesh is implementing the National Action Plan (NAP) for containing AMR in human, animal, and environment sectors through "One Health" approach where the Department of Livestock Services (DLS) is the mandated body to implement NAP strategies in the animal health sector of the country. This review presents a "snapshot" of the predisposing factors, and current situations of AMR along with the weakness and strength of DLS to contain the problem in animal farming practices in Bangladesh. In the present review, resistance monitoring data and risk assessment identified several direct and/or indirect predisposing factors to be potentially associated with AMR development in the animal health sector of Bangladesh. The predisposing factors are inadequate veterinary healthcare, monitoring and regulatory services, intervention of excessive informal animal health service providers, and farmers' knowledge gap on drugs, and AMR which have resulted in the misuse and overuse of antibiotics, ultimate in the evolution of antibiotic-resistant bacteria and genes in all types of animal farming settings of Bangladesh. MDR bacteria with extreme resistance against antibiotics recommended to use in both animals and humans have been reported and been being a potential public health hazard in Bangladesh. Execution of extensive AMR surveillance in veterinary practices and awareness-building programs for stakeholders along with the strengthening of the capacity of DLS are recommended for effective containment of AMR emergence and dissemination in the animal health sector of Bangladesh.202033487990
2586100.9945A Scoping Review Unveiling Antimicrobial Resistance Patterns in the Environment of Dairy Farms Across Asia. Antimicrobial resistance (AMR) poses a significant "One Health" challenge in the farming industry attributed to antimicrobial misuse and overuse, affecting the health of humans, animals, and the environment. Recognizing the crucial role of the environment in facilitating the transmission of AMR is imperative for addressing this global health issue. Despite its urgency, there remains a notable gap in understanding resistance levels in the environment. This scoping review aims to consolidate and summarize available evidence of AMR prevalence and resistance genes in dairy farm settings. This study was conducted following the PRISMA Extension checklist to retrieve relevant studies conducted in Asian countries between 2013 and 2023. An electronic literature search involving PubMed, ScienceDirect, Embase, and Scopus resulted in a total of 1126 unique articles that were identified. After a full-text eligibility assessment, 39 studies were included in this review. The findings indicate that AMR studies in dairy farm environments have primarily focused on selective bacteria, especially Escherichia coli and other bacteria such as Staphylococcus aureus, Klebsiella spp., and Salmonella spp. Antimicrobial resistance patterns were reported across 24 studies involving 78 antimicrobials, which predominantly consisted of gentamicin (70.8%), ampicillin (58.3%), and tetracycline (58.3%). This review emphasizes the current state of AMR in the environmental aspects of dairy farms across Asia, highlighting significant gaps in regional coverage and bacterial species studied. It highlights the need for broader surveillance, integration with antimicrobial stewardship, and cross-sector collaboration to address AMR through a One Health approach.202540426503
2525110.9944Review of antimicrobial resistance surveillance programmes in livestock and meat in EU with focus on humans. OBJECTIVES: In this review, we describe surveillance programmes reporting antimicrobial resistance (AMR) and resistance genes in bacterial isolates from livestock and meat and compare them with those relevant for human health. METHODS: Publications on AMR in European countries were assessed. PubMed was reviewed and AMR monitoring programmes were identified from reports retrieved by Internet searches and by contacting national authorities in EU/European Economic Area (EEA) member states. RESULTS: Three types of systems were identified: EU programmes, industry-funded supranational programmes and national surveillance systems. The mandatory EU-financed programme has led to some harmonization in national monitoring and provides relevant information on AMR and extended-spectrum β-lactamase/AmpC- and carbapenemase-producing bacteria. At the national level, AMR surveillance systems in livestock apply heterogeneous sampling, testing and reporting modalities, resulting in results that cannot be compared. Most reports are not publicly available or are written in a local language. The industry-funded monitoring systems undertaken by the Centre Européen d'Etudes pour la Santé Animale (CEESA) examines AMR in bacteria in food-producing animals. CONCLUSIONS: Characterization of AMR genes in livestock is applied heterogeneously among countries. Most antibiotics of human interest are included in animal surveillance, although results are difficult to compare as a result of lack of representativeness of animal samples. We suggest that EU/EEA countries provide better uniform AMR monitoring and reporting in livestock and link them better to surveillance systems in humans. Reducing the delay between data collection and publication is also important to allow prompt identification of new resistance patterns.201828970159
1874120.9944Potential sources and characteristic occurrence of mobile colistin resistance (mcr) gene-harbouring bacteria recovered from the poultry sector: a literature synthesis specific to high-income countries. Understanding the sources, prevalence, phenotypic and genotypic characteristics of mcr gene-harbouring bacteria (MGHB) in the poultry sector is crucial to supplement existing information. Through this, the plasmid-mediated colistin resistance (PMCR) could be tackled to improve food safety and reduce public health risks. Therefore, we conducted a literature synthesis of potential sources and characteristic occurrence of MGHB recovered from the poultry sector specific to the high-income countries (HICs). Colistin (COL) is a last-resort antibiotic used for treating deadly infections. For more than 60 years, COL has been used in the poultry sector globally, including the HICs. The emergence and rapid spread of mobile COL resistance (mcr) genes threaten the clinical use of COL. Currently, ten mcr genes (mcr-1 to mcr-10) have been described. By horizontal and vertical transfer, the mcr-1, mcr-2, mcr-3, mcr-4, mcr-5, and mcr-9 genes have disseminated in the poultry sector in HICs, thus posing a grave danger to animal and human health, as harboured by Escherichia coli, Klebsiella pneumoniae, Salmonella species, and Aeromonas isolates. Conjugative and non-conjugative plasmids are the major backbones for mcr in poultry isolates from HICs. The mcr-1, mcr-3 and mcr-9 have been integrated into the chromosome, making them persist among the clones. Transposons, insertion sequences (IS), especially ISApl1 located downstream and upstream of mcr, and integrons also drive the COL resistance in isolates recovered from the poultry sector in HICs. Genes coding multi-and extensive-drug resistance and virulence factors are often co-carried with mcr on chromosome and plasmids in poultry isolates. Transmission of mcr to/among poultry strains in HICs is clonally unrestricted. Additionally, the contact with poultry birds, manure, meat/egg, farmer's wears/farm equipment, consumption of contaminated poultry meat/egg and associated products, and trade of poultry-related products continue to serve as transmission routes of MGHB in HICs. Indeed, the policymakers, especially those involved in antimicrobial resistance and agricultural and poultry sector stakeholders-clinical microbiologists, farmers, veterinarians, occupational health clinicians and related specialists, consumers, and the general public will find this current literature synthesis very useful.202134707919
1839130.9944Environmental mediation of colistin resistance in the African context. A systematic scoping review. OBJECTIVES: The prevalence of antimicrobial resistance (AMR) among Gram-negative bacteria is a major global health concern. Resistance to last-resort antibiotics like colistin is particularly alarming. This study reviews how environmental factors have contributed to colistin resistance in the African context, where reports of colistin-resistant Gram-negative organisms are emerging. METHODS: A systematic review was conducted using multiple databases to identify articles on environmental mediation of colistin resistance in Africa. Search terms included "environment," "colistin," "mobile colistin resistance gene," and related keywords. Articles from 2015 to 2021 focusing on Africa were included. Data on country, genes detected, methods used, and bacterial species were extracted. RESULTS: Out of 847 articles identified, 26 were included in the final review. Studies were predominantly from Tunisia, Algeria, South Africa, Egypt, Nigeria, and Congo. The mobile colistin resistance (mcr-1) gene was the most common genetic variant detected. Escherichia coli (E. coli) was the predominant organism spreading mcr genes. Colistin-resistant genes were found in humans, animals, and environmental samples including manure, soil, water bodies, and wildlife. CONCLUSIONS: This review confirms the rapid spread of plasmid-mediated colistin-resistant genes in humans, animals, and the environment across Africa. The movement of resistant genes between these reservoirs is alarming. There is a need for more research into colistin resistance mechanisms and implementation of continent-wide antibiotic stewardship programs to address this emerging threat in Africa. © 2024 The Author(s). Published by Elsevier Ltd on behalf of International Society for Antimicrobial Chemotherapy.202539681218
2499140.9944The threat of carbapenem-resistant bacteria in the environment: Evidence of widespread contamination of reservoirs at a global scale. Environmental reservoirs of antibiotic resistance (AR) are a growing concern that are gathering more attention as potential sources for human infection. Carbapenem-resistant Enterobacteriaceae (CRE) are extremely dangerous, as carbapenems are often drugs of last resort that are used to treat multi-drug resistant infections. Among the genes capable of conferring carbapenem resistance to bacteria, the most transferrable are those that produce carbapenemase, an enzyme that hydrolyzes carbapenems and other β-lactam antibiotics. The goal of this review was to comprehensively identify global environmental reservoirs of carbapenemase-producing genes, as well as identify potential routes of transmission to humans. The genes of interest were Klebsiella pneumoniae carbapenemase (KPC), New Delhi Metallo-β-lactamase (NDM), Oxacillinase-48-type carbapenemases (OXA-48), and Verona Integron-Mediated Metallo-β-lactamase (VIM). Carbapenemase genes have been reported in the environment on almost every continent. Hospital and municipal wastewater, drinking water, natural waterways, sediments, recreational waters, companion animals, wildlife, agricultural environments, food animals, and retail food products were identified as current reservoirs of carbapenemase-producing bacteria and genes. Humans have been recorded as carrying CRE, without recent admittance to a hospital or long-term care facility in France, Egypt, and China. CRE infections from the environment have been reported in patients in Montpellier, France and Cairo, Egypt. This review demonstrates the need for 1) comprehensive monitoring of AR not only in waterways, but also other types of environmental matrices, such as aerosol, dusts, periphyton, and surfaces in indoor environments; and 2) action to reduce the prevalence and mitigate the effects of these potentially deadly resistance genes. In order to develop an accurate quantitative model for environmental dimensions of AR, longitudinal sampling and quantification of AR genes and bacteria are needed, using a One Health approach.201931541827
6507150.9944What Are the Drivers Triggering Antimicrobial Resistance Emergence and Spread? Outlook from a One Health Perspective. Antimicrobial resistance (AMR) has emerged as a critical global public health threat, exacerbating healthcare burdens and imposing substantial economic costs. Currently, AMR contributes to nearly five million deaths annually worldwide, surpassing mortality rates of any single infectious disease. The economic burden associated with AMR-related disease management is estimated at approximately $730 billion per year. This review synthesizes current research on the mechanisms and multifaceted drivers of AMR development and dissemination through the lens of the One Health framework, which integrates human, animal, and environmental health perspectives. Intrinsic factors, including antimicrobial resistance genes (ARGs) and mobile genetic elements (MGEs), enable bacteria to evolve adaptive resistance mechanisms such as enzymatic inactivation, efflux pumps, and biofilm formation. Extrinsic drivers span environmental stressors (e.g., antimicrobials, heavy metals, disinfectants), socioeconomic practices, healthcare policies, and climate change, collectively accelerating AMR proliferation. Horizontal gene transfer and ecological pressures further facilitate the spread of antimicrobial-resistant bacteria across ecosystems. The cascading impacts of AMR threaten human health and agricultural productivity, elevate foodborne infection risks, and impose substantial economic burdens, particularly in low- and middle-income countries. To address this complex issue, the review advocates for interdisciplinary collaboration, robust policy implementation (e.g., antimicrobial stewardship), and innovative technologies (e.g., genomic surveillance, predictive modeling) under the One Health paradigm. Such integrated strategies are essential to mitigate AMR transmission, safeguard global health, and ensure sustainable development.202540558133
1866160.9943Drivers of the emergence and dissemination of high-risk resistance genes in cattle farm. Extended spectrum β-lactamase (ESBL)- and carbapenemase-producing Enterobacterales (CPE) are recognized by WHO as critical concerns. The high cephalosporin resistance rate in a cattle farm in 2018 prompted us to conduct long-term (2019-2023) and extensive monitoring to explore risk factors for the import and transmission of ESBLs and CPE in this farm. Among 1288 samples from cattle, the environment, milk, and biological vectors, 48.8 % carried bla(CTX-M)-positive Enterobacterales with bla(CTX-M-55) being dominant (76.4 %), and bla(NDM-5)-positive strains emerged in 2022 with a 1.9 % detection rate. bla(CTX-M-55) and bla(NDM-5) were likely introduced through various routes, especially wild birds, and have persisted due to overuse of cephalosporins in the farm. The spread of these genes was driven by the horizontal transmission of IncHI2 and IncX3 plasmids and clonal dissemination of certain clones. Cross-regional and cross-border transmission of bla(CTX-M-55)- and/or bla(NDM-5)-bearing bacteria and plasmids possibly occurred via wild birds, animal trade, and other means. Our findings suggest that the import, persistence, and dissemination of these genes within and beyond this farm, were fueled by suboptimal biosecurity practices and inadequate antibiotic stewardship, highlighting the urgency for integrated public and ecosystem health policies to prevent the spread of resistance genes as part of a holistic One Health strategy. ENVIRONMENTAL IMPLICATION: The high prevalence and long-term persistence of extended-spectrum β-lactamases and the emergence of carbapenemases in cattle and the environment signify a critical risk of transmitting high-risk resistance genes, posing a significant threat to human health. Consequently, bacteria carrying these genes in animal farms should be regarded as "hazardous materials". Import, persistence, and dissemination of these genes within and beyond this farm were exacerbated by suboptimal biosecurity practices and inadequate antibiotic stewardship, highlighting the urgency for integrated public and ecosystem health policies to mitigate the environmental risks associated with gene transmission as part of a comprehensive One Health strategy.202539899930
5012170.9943Extended-spectrum beta-lactamases-producing gram-negative bacteria in companion animals: action is clearly warranted! Extended-spectrum beta-lactamases (ESBL)-producing Gram-negative bacteria pose a serious threat to Public Health in human medicine as well as increasingly in the veterinary context worldwide. Several studies reported the transmission of zoonotic multidrug resistant bacteria between food-producing animals and humans, whilst the contribution of companion animals to this scenario is rather unknown. Within the last decades a change in the social role of companion animals has taken place, resulting in a very close contact between owners and their pets. As a consequence, humans may obtain antimicrobial resistant bacteria or the corresponding resistance genes not only from food-producing animals but also via close contact to their pets.This may give rise to bacterial infections with limited therapeutic options and an increased risk of treatment failure. As beta-lactams constitute one of the most important groups of antimicrobial agents in veterinary medicine, retaliatory actions in small animal and equine practices are urgently needed. This review addresses the increasing burden of extended-spectrum beta-lactam resistance among Enterobacteriaceae isolated from companion animals. It should emphasize the urgent need for the implementation of antibiotic stewardship as well as surveillance and monitoring programs of multi resistant bacteria in particular in view of new putative infection cycles between humans and their pets.201121462862
4888180.9943A Review of Carbapenem Resistance in Enterobacterales and Its Detection Techniques. Infectious disease outbreaks have caused thousands of deaths and hospitalizations, along with severe negative global economic impacts. Among these, infections caused by antimicrobial-resistant microorganisms are a major growing concern. The misuse and overuse of antimicrobials have resulted in the emergence of antimicrobial resistance (AMR) worldwide. Carbapenem-resistant Enterobacterales (CRE) are among the bacteria that need urgent attention globally. The emergence and spread of carbapenem-resistant bacteria are mainly due to the rapid dissemination of genes that encode carbapenemases through horizontal gene transfer (HGT). The rapid dissemination enables the development of host colonization and infection cases in humans who do not use the antibiotic (carbapenem) or those who are hospitalized but interacting with environments and hosts colonized with carbapenemase-producing (CP) bacteria. There are continuing efforts to characterize and differentiate carbapenem-resistant bacteria from susceptible bacteria to allow for the appropriate diagnosis, treatment, prevention, and control of infections. This review presents an overview of the factors that cause the emergence of AMR, particularly CRE, where they have been reported, and then, it outlines carbapenemases and how they are disseminated through humans, the environment, and food systems. Then, current and emerging techniques for the detection and surveillance of AMR, primarily CRE, and gaps in detection technologies are presented. This review can assist in developing prevention and control measures to minimize the spread of carbapenem resistance in the human ecosystem, including hospitals, food supply chains, and water treatment facilities. Furthermore, the development of rapid and affordable detection techniques is helpful in controlling the negative impact of infections caused by AMR/CRE. Since delays in diagnostics and appropriate antibiotic treatment for such infections lead to increased mortality rates and hospital costs, it is, therefore, imperative that rapid tests be a priority.202337374993
2517190.9943The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. Carbapenem-resistant Enterobacteriaceae (CRE) are a serious public health threat. Infections due to these organisms are associated with significant morbidity and mortality. Mechanisms of drug resistance in gram-negative bacteria (GNB) are numerous; β-lactamase genes carried on mobile genetic elements are a key mechanism for the rapid spread of antibiotic-resistant GNB worldwide. Transmissible carbapenem-resistance in Enterobacteriaceae has been recognized for the last 2 decades, but global dissemination of carbapenemase-producing Enterobacteriaceae (CPE) is a more recent problem that, once initiated, has been occurring at an alarming pace. In this article, we discuss the evolution of CRE, with a focus on the epidemiology of the CPE pandemic; review risk factors for colonization and infection with the most common transmissible CPE worldwide, Klebsiella pneumoniae carbapenemase-producing K. pneumoniae; and present strategies used to halt the striking spread of these deadly pathogens.201728375512