# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3095 | 0 | 0.9962 | Bacterial Genes Encoding Resistance Against Antibiotics and Metals in Well-Maintained Drinking Water Distribution Systems in Finland. Information on the co-occurrence of antibiotic resistance genes (ARGs) and metal resistance genes (MRGs) among bacterial communities in drinking water distribution systems (DWDSs) is scarce. This study characterized ARGs and MRGs in five well-maintained DWDSs in Finland. The studied DWDSs had different raw water sources and treatment methods. Two of the waterworks employed artificially recharged groundwater (ARGW) and used no disinfection in the treatment process. The other three waterworks (two surface and one groundwater source) used UV light and chlorine during the treatment process. Ten bulk water samples (two from each DWDS) were collected, and environmental DNA was extracted and then sequenced using the Illumina HiSeq platform for high-throughput shotgun metagenome sequencing. A total of 430 ARGs were characterized among all samples with the highest diversity of ARGs identified from samples collected from non-disinfected DWDSs. Furthermore, non-disinfected DWDSs contained the highest diversity of bacterial communities. However, samples from DWDSs using disinfectants contained over double the ratio of ARG reads to 16S rRNA gene reads and most of the MRG (namely mercury and arsenic resistance genes). The total reads and types of ARGs conferring genes associated with antibiotic groups namely multidrug resistance, and bacitracin, beta-lactam, and aminoglycoside and mercury resistance genes increased in waterworks treating surface water with disinfection. The findings of this study contribute toward a comprehensive understanding of ARGs and MRGs in DWDSs. The occurrence of bacteria carrying antibiotic or metal resistance genes in drinking water causes direct exposure to people, and thus, more systematic investigation is needed to decipher the potential effect of these resistomes on human health. | 2021 | 35197945 |
| 7777 | 1 | 0.9962 | Fate of antibiotic resistant cultivable heterotrophic bacteria and antibiotic resistance genes in wastewater treatment processes. Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are emerging contaminants of environmental concern. Heterotrophic bacteria in activated sludge have an important role in wastewater treatment plants (WWTPs). However, the fate of cultivable heterotrophic ARB and ARGs in WWPTs process remains unclear. In the present study, we investigated the antibiotic-resistant phenotypes of cultivable heterotrophic bacteria from influent and effluent water of three WWTPs and analysed thirteen ARGs in ARB and in activated sludge from anoxic, anaerobic and aerobic compartments. From each influent or effluent sample of the three plants, 200 isolates were randomly tested for susceptibility to 12 antibiotics. In these samples, between 5% and 64% isolates showed resistance to >9 antibiotics and the proportion of >9-drug-resistant bacteria was lower in isolates from effluent than from influent. Eighteen genera were identified in 188 isolates from influent (n=94) and effluent (n=94) of one WWTP. Six genera (Aeromonas, Bacillus, Lysinibacillus, Microbacterium, Providencia, and Staphylococcus) were detected in both influent and effluent samples. Gram-negative and -positive isolates dominated in influent and effluent, respectively. The 13 tetracycline-, sulphonamide-, streptomycin- and β-lactam-resistance genes were detected at a higher frequency in ARB from influent than from effluent, except for sulA and CTX-M, while in general, the abundances of ARGs in activated sludge from two of the three plants were higher in aerobic compartments than in anoxic ones, indicating abundant ARGs exit in the excess sledges and/or in uncultivable bacteria. These findings may be useful for elucidating the effect of WWTP on ARB and ARGs. | 2015 | 25950407 |
| 7209 | 2 | 0.9962 | Role of a typical swine liquid manure treatment plant in reducing elements of antibiotic resistance. Biological treatment of swine liquid manure may be a favorable environment for the enrichment of bacteria carrying antibiotic resistance genes (ARGs), raising the alert about this public health problem. The present work sought to investigate the performance of a swine wastewater treatment plant (SWWTP), composed of a covered lagoon biodigester (CLB) followed by three facultative ponds, in the removal of usual pollutants, antibiotics, ARGs (blaTEM, ermB, qnrB, sul1, and tetA), and intI1. The SWWTP promoted a 70% of organic matter removal, mainly by the digester unit. The facultative ponds stood out in the solids' retention carried from the anaerobic stage and contributed to ammonia volatilization. The detected antibiotic in the raw wastewater was norfloxacin (< 0.79 to 60.55 μg L(-1)), and the SWWTP seems to equalize peaks of norfloxacin variation probably due to sludge adsorption. CLB reduced the absolute abundance of ARGs by up to 2.5 log, while the facultative stage does not seem to improve the quality of the final effluent in terms of resistance elements. Considering the relative abundances, the reduction rates of total and ARG-carrying bacteria appear to be similar. Finally, correlation tests also revealed that organic matter and solids control in liquid manure treatment systems could help reduce the spread of ARGs after the waste final disposal. | 2023 | 37477815 |
| 7208 | 3 | 0.9962 | Occurrence and removal of antibiotics and the corresponding resistance genes in wastewater treatment plants: effluents' influence to downstream water environment. In this study, the occurrence of 8 antibiotics [3 tetracyclines (TCs), 4 sulfonamides, and 1 trimethoprim (TMP)], 12 antibiotic resistance genes (ARGs) (10 tet, 2 sul), 4 types of bacteria [no antibiotics, anti-TC, anti-sulfamethoxazole (SMX), and anti-double], and intI1 in two wastewater treatment plants (WWTPs) were assessed and their influences in downstream lake were investigated. Both WWTPs' effluent demonstrated some similarities, but the abundance and removal rate varied significantly. Results revealed that biological treatment mainly removed antibiotics and ARGs, whereas physical techniques were found to eliminate antibiotic resistance bacteria (ARBs) abundance (about 1 log for each one). UV disinfection did not significantly enhance the removal efficiency, and the release of the abundantly available target contaminants from the excess sludge may pose threats to human and the environment. Different antibiotics showed diverse influences on the downstream lake, and the concentrations of sulfamethazine (SM2) and SMX were observed to increase enormously. The total ARG abundance ascended about 0.1 log and some ARGs (e.g., tetC, intI1, tetA) increased due to the high input of the effluent. In addition, the abundance of ARB variation in the lake also changed, but the abundance of four types of bacteria remained stable in the downstream sampling sites. | 2016 | 26658782 |
| 7231 | 4 | 0.9962 | Metagenomic insights into chlorination effects on microbial antibiotic resistance in drinking water. This study aimed to investigate the chlorination effects on microbial antibiotic resistance in a drinking water treatment plant. Biochemical identification, 16S rRNA gene cloning and metagenomic analysis consistently indicated that Proteobacteria were the main antibiotic resistant bacteria (ARB) dominating in the drinking water and chlorine disinfection greatly affected microbial community structure. After chlorination, higher proportion of the surviving bacteria was resistant to chloramphenicol, trimethoprim and cephalothin. Quantitative real-time PCRs revealed that sulI had the highest abundance among the antibiotic resistance genes (ARGs) detected in the drinking water, followed by tetA and tetG. Chlorination caused enrichment of ampC, aphA2, bla(TEM-1), tetA, tetG, ermA and ermB, but sulI was considerably removed (p < 0.05). Metagenomic analysis confirmed that drinking water chlorination could concentrate various ARGs, as well as of plasmids, insertion sequences and integrons involved in horizontal transfer of the ARGs. Water pipeline transportation tended to reduce the abundance of most ARGs, but various ARB and ARGs were still present in the tap water, which deserves more public health concerns. The results highlighted prevalence of ARB and ARGs in chlorinated drinking water and this study might be technologically useful for detecting the ARGs in water environments. | 2013 | 23084468 |
| 3514 | 5 | 0.9962 | Potential risks of microplastics combined with superbugs: Enrichment of antibiotic resistant bacteria on the surface of microplastics in mariculture system. Microplastics have become emerging pollutants and served as potential vectors for harmful bacteria, while rare information on the emergency and propagation of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) on the surface of microplastics is available. This study investigated the enrichment of ARB, especially multi-antibiotic resistant bacteria (MARB), on the surface of microplastics in mariculture system. Polyethylene terephthalate accounted for the highest proportion (75%) in the collected microplastics. The counts of cultivable ARB in microplastic samples were 6.40 × 10(6)-2.48 × 10(8) cfu/g, which were 100-5000 times higher than those in water samples. The ratios of cultivable ARB to total cultivable bacteria from microplastic samples were higher than those from water samples. High-throughput sequencing showed that the diversity and abundance of cultivable ARB in the microplastic samples was high with the predominant bacterial genera of Vibrio, Muricauda and Ruegeria. Total 160 MARB isolates were obtained and most of isolates were obtained from the microplastic samples. MARB isolates resisting or intermediating to four and three antibiotics accounted for much higher proportions in the microplastic samples, and the higher percentage of antibiotic resistance was to penicillin, sulfafurazole, erythromycin and tetracycline. The dominant multiple antibiotic resistance profile was TET-SFX-ERY-PEN, which accounted for 25.4% in microplastic samples and 23.9% in water samples. In typical MARB isolates, the positive detection rate of ARGs was up to 80.0% in microplastic samples while that was 65.3% in water samples. Five types of class 1 integrons (intI1) associated gene cassette arrays and seven types of gene cassettes were detected in microplastic samples, which were more than those in water samples. These results revealed that microplastics were hazardous pollutants for the enrichment of ARB, especially superbugs, and the spread of antibiotic resistance. | 2020 | 31670243 |
| 7236 | 6 | 0.9961 | The variation of antibiotic resistance genes and their links with microbial communities during full-scale food waste leachate biotreatment processes. The prevalence of antibiotic resistance genes (ARGs) has been widely reported in various environments. However, little is known of them in food waste (FW) leachate with high organic content and how their distribution is influenced by biotreatment processes. Here, twelve ARGs, two integrase genes and bacterial communities were investigated during two full-scale FW biotreatment processes. High ARGs abundances (absolute: 1.03 × 10(7)-2.82 × 10(9)copies/mL; relative: 0.076-2.778copies/16S rRNA) were observed across all samples. Although biotreatment effectively reduced absolute abundance of ARGs, additional bacteria acquiring ARGs caused an increase in their relative abundance, which further increased the transmission risk of ARGs. mexF, blaCTX-M, sul1 played crucial roles and sul1 might be considered as an indicator for the prediction of total ARGs. It is worrying that the discharge (effluent and sludge) included highly abundant ARGs (5.09 × 10(14)-4.83 × 10(15)copies/d), integrons (1.11 × 10(14)-6.04 × 10(14)copies/d) and potential pathogens (such as Pseudomonas and Streptococcus), which should be given more attentions. blaCTX-M and tetQ possessed most potential hosts, Proteobacteria-L and Firmicutes-W were predominant contributors of ARGs-hosts at genus level. This study suggested FW leachate biotreatment systems could be reservoirs of ARGs and facilitated the proliferation of them. The exploration of effective removal methods and formulation of emission standard are necessary for future ARGs mitigation. | 2021 | 33862482 |
| 7088 | 7 | 0.9961 | Small-scale wastewater treatment plants as a source of the dissemination of antibiotic resistance genes in the aquatic environment. Wastewater treatment plants (WWTPs) are significant source of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which can spread further in the environment by reaching rivers together with effluents discharged from WWTPs. In this study untreated and treated wastewater (UWW, TWW), upstream and downstream river water (URW, DRW) were collected from 4 WWTPs, in the winter and autumn seasons. The occurrence of ARB resistant to beta-lactams and tetracyclines as well as the presence of antibiotics from these classes were analysed in water and wastewater samples. Additionally, the amounts of 12 ARGs, 2 genes of mobile genetic elements (MGEs), gene uidA identifying E. coli and 16S rRNA were also determined. Resistance to beta-lactams prevailed among ARB in water and wastewater samples (constituting 82-88% of total counts of bacteria). The dominant genes in water and wastewater samples were bla(TEM), tetA, sul1. The gene bla(OXA) demonstrated high variability of its concentration in samples collected in both seasons. Despite the high per cent reduction of ARB and ARGs concentration observed during the wastewater treatment processes, their large quantities are still transmitted into the environment. The research focuses on WWTPs' role in the dissemination of ARGs and MGEs in the aquatic environment. | 2020 | 31561123 |
| 7779 | 8 | 0.9961 | Metagenomic and Resistome Analysis of a Full-Scale Municipal Wastewater Treatment Plant in Singapore Containing Membrane Bioreactors. Reclaimed water provides a water supply alternative to address problems of scarcity in urbanized cities with high living densities and limited natural water resources. In this study, wastewater metagenomes from 6 stages of a wastewater treatment plant (WWTP) integrating conventional and membrane bioreactor (MBR) treatment were evaluated for diversity of antibiotic resistance genes (ARGs) and bacteria, and relative abundance of class 1 integron integrases (intl1). ARGs confering resistance to 12 classes of antibiotics (ARG types) persisted through the treatment stages, which included genes that confer resistance to aminoglycoside [aadA, aph(6)-I, aph(3')-I, aac(6')-I, aac(6')-II, ant(2″)-I], beta-lactams [class A, class C, class D beta-lactamases (bla (OXA))], chloramphenicol (acetyltransferase, exporters, floR, cmIA), fosmidomycin (rosAB), macrolide-lincosamide-streptogramin (macAB, ereA, ermFB), multidrug resistance (subunits of transporters), polymyxin (arnA), quinolone (qnrS), rifamycin (arr), sulfonamide (sul1, sul2), and tetracycline (tetM, tetG, tetE, tet36, tet39, tetR, tet43, tetQ, tetX). Although the ARG subtypes in sludge and MBR effluents reduced in diversity relative to the influent, clinically relevant beta lactamases (i.e., bla (KPC), bla (OXA)) were detected, casting light on other potential point sources of ARG dissemination within the wastewater treatment process. To gain a deeper insight into the types of bacteria that may survive the MBR removal process, genome bins were recovered from metagenomic data of MBR effluents. A total of 101 close to complete draft genomes were assembled and annotated to reveal a variety of bacteria bearing metal resistance genes and ARGs in the MBR effluent. Three bins in particular were affiliated to Mycobacterium smegmatis, Acinetobacter Iwoffii, and Flavobacterium psychrophila, and carried aquired ARGs aac(2')-Ib, bla (OXA-278), and tet36 respectively. In terms of indicator organisms, cumulative log removal values (LRV) of Escherichia coli, Enterococci, and P. aeruginosa from influent to conventional treated effluent was lower (0-2.4), compared to MBR effluent (5.3-7.4). We conclude that MBR is an effective treatment method for reducing fecal indicators and ARGs; however, incomplete removal of P. aeruginosa in MBR treated effluents (<8 MPN/100 mL) and the presence of ARGs and intl1 underscores the need to establish if further treatment should be applied prior to reuse. | 2019 | 30833934 |
| 6858 | 9 | 0.9961 | Antibiotic resistance genes risks in relation to host pathogenicity and mobility in a typical hospital wastewater treatment process. Hospital wastewaters (HWWs) serve as critical reservoirs for disseminating antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB). However, the dynamics and noteworthy shifts of ARGs and their associated pathogenicity, mobility, and resistome risks during HWWs treatment processes remain poorly understood. Utilizing metagenomic sequencing and assembly, we identified 817 ARG subtypes conferring resistance to 20 classes of antibiotics across 18 HWW samples from influent to effluent. Genes encoding resistance to multidrug, aminoglycoside and beta_lactam were the most prevalent ARG types, reflecting patterns observed in clinical settings. On-site treatment efforts decreased the relative abundance of ARGs by 77.4% from influent to secondary sedimentation, whereas chlorine disinfection significantly increased their abundance in the final effluent. Deterministic processes primarily drove the taxonomic assembly, with Proteobacteria being the most abundant phylum and serving as the primary host for 15 ARG types. Contig-based analysis further revealed 114 pathogenic ARB, with Escherichia coli, Pseudomonas alcaligenes, and Pseudomonas aeruginosa exhibiting multidrug-resistant. The contributions of host bacteria and pathogenic ARB varied throughout wastewater treatment. In addition, 7.10%-31.0 % ARGs were flanked by mobile genetic elements (MGEs), predominantly mediated by transposase (74.1%). Notably, tnpA exhibited the highest potential for ARG dissemination, frequently co-occurring with beta-lactam resistance genes (35.2%). Considering ARG profiles, pathogenic hosts, and transferability, raw influent exhibited the highest antibiotic resistome risk index (ARRI), followed by the final effluent. Chlorine disinfection exacerbated resistome risks by inducing potential pathogenic ARB and mobile ARGs, posing threats to the receiving environment. This study delineates ARG occurrence patterns, highlights mechanisms of ARG carriage and horizontal gene transfer, and provides insights for assessing resistance risks and prioritizing interventions in clinical settings. | 2024 | 38964571 |
| 5351 | 10 | 0.9961 | Bacterial hosts of clinically significant beta-lactamase genes in Croatian wastewaters. Wastewater treatment plants (WWTPs) provide a suitable environment for the interaction of antibiotic resistant bacteria and antibiotic-resistance genes (ARGs) from human, animal, and environmental sources. The aim was to study the influent and effluent of two WWTPs in Croatia to identify bacterial hosts of clinically important beta-lactamase genes (blaTEM, blaVIM, blaOXA-48-like) and observe how their composition changes during the treatment process. A culture-independent epicPCR (Emulsion, Paired isolation and Concatenation Polymerase Chain Reaction) was used to identify the ARG hosts, and 16S rRNA amplicon sequencing to study the entire bacterial community. Different wastewater sources contributed to the significant differences in bacterial composition of the wastewater between the two WWTPs studied. A total of 167 genera were detected by epicPCR, with the Arcobacter genus, in which all ARGs studied were present, dominating in both WWTPs. In addition, the clinically important genera Acinetobacter and Aeromonas contained all ARGs examined. The blaOXA-48-like gene had the highest number of hosts, followed by blaVIM, while blaTEM had the narrowest host range. Based on 16S rRNA gene sequencing, ARG hosts were detected in both abundant and rare taxa. The number of hosts carrying investigated ARGs was reduced by wastewater treatment. EpicPCR provided valuable insights into the bacterial hosts of horizontally transmissible beta-lactamase genes in Croatian wastewater. | 2024 | 38796694 |
| 3434 | 11 | 0.9961 | Insights into microbial contamination and antibiotic resistome traits in pork wholesale market: An evaluation of the disinfection effect of sodium hypochlorite. Chlorine and its derivatives, such as sodium hypochlorite (NaClO) and chlorine dioxide, are frequently employed as disinfectants throughout the pork supply chain in China. Nevertheless, the extensive use of NaClO has the potential to cause the creation of 'chlorine-tolerant bacteria' and accelerate the evolution of antibiotic resistance. This study evaluated the efficacy of NaClO disinfection by examining alterations in the microbiome and resistome of a pork wholesale market (PWM), and bacteria isolation and analysis were performed to validate the findings. As expected, the taxonomic compositions of bacteria was significantly different before and after disinfection. Notably, Salmonella enterica (S. enterica), Salmonella bongori (S. bongori), Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneumoniae), and Pseudomonas aeruginosa (P. aeruginosa) were observed on all surfaces, indicating that the application of NaClO disinfection treatment in PWM environments for pathogenic bacteria is limited. Correlations were identified between antibiotic resistance genes (ARGs) associated with aminoglycosides (aph(3'')-I, aph(6')-I), quinolone (qnrB, abaQ), polymyxin (arnA, mcr-4) and disinfectant resistance genes (emrA/BD, mdtA/B/C/E/F). Furthermore, correlations were found between risk Rank I ARGs associated with aminoglycoside (aph(3')-I), tetracycline (tetH), beta_lactam (TEM-171), and disinfectant resistance genes (mdtB/C/E/F, emrA, acrB, qacG). Importantly, we found that Acinetobacter and Salmonella were the main hosts of disinfectant resistance genes. The resistance mechanisms of the ARGs identified in PWM were dominated by antibiotic deactivation (38.7%), antibiotic efflux (27.2%), and antibiotic target protection (14.4%). The proportion of genes encoding efflux pumps in the PWM resistome increased after disinfection. Microbial cultures demonstrated that the traits of microbial contamination and antibiotic resistane were consistent with those observed by metagenomic sequencing. This study highlights the possibility of cross-resistance between NaClO disinfectants and antibiotics, which should not be ignored. | 2024 | 38382341 |
| 3512 | 12 | 0.9961 | Profiling of intracellular and extracellular antibiotic resistance genes in tap water. Antibiotic resistance genes (ARGs) have gained global attention due to their public health threat. Extracelluar ARGs (eARGs) can result in the dissemination of antibiotic resistance via free-living ARGs in natural environments, where they promote ARB transmission in drinking water distribution systems. However, eARG pollution in tap water has not been well researched. In this study, concentrations of eARGs and intracellular ARGs (iARGs) in tap water, sampled at Tianjin, China, were investigated for one year. Fourteen eARG types were found at the highest concentration of 1.3 × 10(5) gene copies (GC)/L. TetC was detected in 66.7% of samples, followed by sul1, sul2, and qnrA with the same detection frequency of 41.7%. Fifteen iARGs (including tetA, tetB, tetM, tetQ, tetX, sul1, sul2, sul3, ermB, blaTEM, and qnrA) were continuously detected in all collected tap water samples with sul1 and sul2 the most abundant. Additionally, both eARG and iARG concentrations in tap water presented a seasonal pattern with most abundant prevalence in summer. The concentration of observed intracellular sulfonamide resistance genes showed a significantly positive correlation with total nitrogen concentrations. This study suggested that eARG and iARG pollution of drinking water systems pose a potential risk to human public health. | 2019 | 30448547 |
| 7094 | 13 | 0.9961 | Prevalence of sulfonamide and tetracycline resistance genes in drinking water treatment plants in the Yangtze River Delta, China. The occurrence and distribution of antibiotic resistance genes (ARGs) in drinking water treatment plants (DWTPs) and finished water are not well understood, and even less is known about the contribution of each treatment process to resistance gene reduction. The prevalence of ten commonly detected sulfonamide and tetracycline resistance genes, namely, sul I, sul II, tet(C), tet(G), tet(X), tet(A), tet(B), tet(O), tet(M) and tet(W) as well as 16S-rRNA genes, were surveyed in seven DWTPs in the Yangtze River Delta, China, with SYBR Green I-based real-time quantitative polymerase chain reaction. All of the investigated ARGs were detected in the source waters of the seven DWTPs, and sul I, sul II, tet(C) and tet(G) were the four most abundant ARGs. Total concentrations of ARGs belonging to either the sulfonamide or tetracycline resistance gene class were above 10(5) copies/mL. The effects of a treatment process on ARG removal varied depending on the overall treatment scheme of the DWTP. With combinations of the treatment procedures, however, the copy numbers of resistance genes were reduced effectively, but the proportions of ARGs to bacteria numbers increased in several cases. Among the treatment processes, the biological treatment tanks might serve as reservoirs of ARGs. ARGs were found in finished water of two plants, imposing a potential risk to human health. The results presented in this study not only provide information for the management of antibiotics and ARGs but also facilitate improvement of drinking water quality. | 2014 | 24984233 |
| 7846 | 14 | 0.9961 | Removal of antibiotic resistance genes and inactivation of antibiotic-resistant bacteria by oxidative treatments. The persistence of antibiotics in the environment because of human activities, such as seafood cultivation, has attracted great attention as they can give rise to antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). In this study, we explored the inactivation and removal efficiencies of Escherichia coli SR1 and sul1 (plasmid-encoded ARGs), respectively, in their extracellular and intracellular forms (eARGs and iARGs) by three commonly used fishery oxidants, namely chlorine, bromine, and potassium permanganate (KMnO(4)), at the practical effective concentration range (0.5, 5, and 15 mg/L). Kinetics data were obtained using laboratory phosphate-buffered saline (PBS). Following the same fishery oxidation methods, the determined kinetics models were tested by studying the SR1 and sul1 disinfection efficiencies in (sterilized) pond water matrix. At concentrations of 5 and 15 mg/L, all three oxidants achieved sufficient cumulative integrated exposure (CT values) to completely inactivate SR1 and efficiently remove sul1 (up to 4.0-log). The oxidation methods were then applied to an unsterilized pond water matrix in order to study and evaluate the indigenous ARB and ARGs disinfection efficiencies in aquaculture, which reached 1.4-log and 1.0-log during treatment with fishery oxidants used in pond preparation at high concentrations before stocking (5-15 mg/L), respectively. A high chlorine concentration (15 mg/L) could efficiently remove ARGs (or iARGs) from pond water, and the iARG removal efficiency was higher than that of eARGs in pond water. The method and results of this study could aid in guiding future research and practical disinfection to control the spread of ARGs and ARB in aquaculture. | 2021 | 34030387 |
| 8047 | 15 | 0.9961 | Simultaneous elimination of antibiotics and antibiotics resistance genes in nitritation of source-separated urine. Antibiotics in human urine could accelerate dissemination of antibiotics resistance genes (ARGs), posing potential threat to sewage. The nitritation of source-separated urine was a critical step to realize the urine resourcelization and nitrogen stabilization. However, the synergic control on antibiotics and ARGs during urine nitritation was unrevealed. This study investigated the removal profiles of five typical antibiotics and the shifts of microbial community and ARGs during stable nitritation. The result showed that sulfamethoxazole and roxithromycin were effectively eliminated with high removal efficiency of (95 ± 5) % and (90 ± 10) %, followed by enrofloxacin with removal efficiency of (60 ± 5) %, whereas trimethoprim and chloramphenicol showed low removal efficiency of less than 40 %. Ammonia oxidation bacteria and heterotrophic bacteria equally contributed to elimination of sulfamethoxazole with a high biodegradation rate of 0.1534 L/gVSS·h, while sorption and biodegradation jointly promoted other antibiotics removal. The total relative abundance of top 25 bacteria genera was decreased by 10 %. The total relative abundance of top 30 ARGs was decreased by more than 20 %, which was corresponding to the variation of bacterial community. The findings in this research would get a deeper insight into the eliminating antibiotics and controlling ARGs dissemination during nitritation of source-separated urine. | 2022 | 35897182 |
| 5358 | 16 | 0.9961 | Abundance of antibiotics, antibiotic resistance genes and bacterial community composition in wastewater effluents from different Romanian hospitals. Antimicrobial resistance represents a growing and significant public health threat, which requires a global response to develop effective strategies and mitigate the emergence and spread of this phenomenon in clinical and environmental settings. We investigated, therefore, the occurrence and abundance of several antibiotics and antibiotic resistance genes (ARGs), as well as bacterial community composition in wastewater effluents from different hospitals located in the Cluj County, Romania. Antibiotic concentrations ranged between 3.67 and 53.05 μg L(-1), and the most abundant antibiotic classes were β-lactams, glycopeptides, and trimethoprim. Among the ARGs detected, 14 genes confer resistance to β-lactams, aminoglycosides, chloramphenicol, macrolide-lincosamide-streptogramin B (MLSB) antibiotics, sulfonamides, and tetracyclines. Genes encoding quaternary ammonium resistance and a transposon-related element were also detected. The sulI and qacEΔ1 genes, which confer resistance to sulfonamides and quaternary ammonium, had the highest relative abundance with values ranging from 5.33 × 10(-2) to 1.94 × 10(-1) and 1.94 × 10(-2) to 4.89 × 10(-2) copies/16 rRNA gene copies, respectively. The dominant phyla detected in the hospital wastewater samples were Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. Among selected hospitals, one of them applied an activated sludge and chlorine disinfection process before releasing the effluent to the municipal collector. This conventional wastewater treatment showed moderate removal efficiency of the studied pollutants, with a 55-81% decrease in antibiotic concentrations, 1-3 order of magnitude lower relative abundance of ARGs, but with a slight increase of some potentially pathogenic bacteria. Given this, hospital wastewaters (raw or treated) may contribute to the spread of these emerging pollutants in the receiving environments. To the best of our knowledge, this study quantified for the first time the abundance of antibiotics and ARGs in wastewater effluents from different Romanian hospitals. | 2017 | 28347610 |
| 5333 | 17 | 0.9961 | Antibiotic resistance profile of wastewater treatment plants in Brazil reveals different patterns of resistance and multi resistant bacteria in final effluents. Wastewater treatment plants (WWTPs) are recognized as important sources of Antibiotic Resistant Bacteria (ARBs) and Antibiotic Resistant Genes (ARGs), and might play a role in the removal and dissemination of antimicrobial resistance (AMR) in the environment. Detailed information about AMR removal by the different treatment technologies commonly applied in urban WWTPs is needed. This study investigated the occurrence, removal and characterization of ARBs in WWTPs employing different technologies: WWTP-A (conventional activated sludge-CAS), WWTP-B (UASB reactor followed by biological trickling filter) and WWTP-C (modified activated sludge followed by UV disinfection-MAS/UV). Samples of raw sewage (RI) and treated effluent (TE) were collected and, through the cultivation-based method using 11 antibiotics, the antibiotic resistance profiles were characterized in a one-year period. MAS was effective in reducing ARB counts (2 to 3 log units), compared to CAS (1 log unit) and UASB/BTF (0.5 log unit). The composition of cultivable ARB differed between RI and TE samples. Escherichia was predominant in RI (56/118); whilst in TE Escherichia (31/118) was followed by Bacillus (22/118), Shigella (14/118) and Enterococcus (14/118). Most of the isolates identified (370/394) harboured at least two ARGs and in over 80 % of the isolates, 4 or more ARG (int1, blaTEM, TetA, sul1 and qnrB) were detected. A reduction in the resistance prevalence was observed in effluents after CAS and MAS processes; whilst a slight increase was observed in treated effluents from UASB/BTF and after UV disinfection stage. The multi-drug resistance (MDR) phenotype was attributed to 84.3 % of the isolates from RI (27/32) and 63.6 % from TE (21/33) samples and 52.3 % of the isolates (34/65) were resistant to carbapenems (imipenem, meropenem, ertapenem). The results indicate that treated effluents are still a source for MDR bacteria and ARGs dissemination to aquatic environments. The importance of biological sewage treatment was reinforced by the significant reductions in ARB counts observed. However, implementation of additional treatments is needed to mitigate MDR bacteria release into the environment. | 2023 | 36240935 |
| 7770 | 18 | 0.9961 | Mitigation of antibiotic resistance in a pilot-scale system treating wastewater from high-speed railway trains. Wastewater from high-speed railway trains represents a mobile reservoir of microorganisms with antibiotic resistance. It harbors abundant and diverse antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). This study investigated the removal of ARB and ARGs in a pilot-scale reactor, which consisted of an anaerobic/anoxic/oxic process, anaerobic/anoxic/aerobic process, and ozone-based disinfection to treat 1 m(3)/day wastewater from an electric multiple unit high-speed train. Further, the high prevalence of two mobile genetic elements (intI1 and Tn916/615) and five ARGs (tetA, tetG, qnrA, qnrS, bla(NDM-1), and ermF) was investigated using quantitative PCR. Significant positive correlations between ARGs (tetA, bla(NDM-1), and qnrA) and intI1 were identified (R(2) of 0.94, 0.85, and 0.70, respectively, P < 0.01). Biological treatment could significantly reduce Tn916/1545 (2.57 logs reduction) and Enterococci (2.56 logs reduction of colony forming unit (CFU)/mL), but the qnrS abundance increased (1.19 logs increase). Ozonation disinfection could further significantly decrease ARGs and Enterococci in wastewater, with a reduction of 1.67-2.49 logs and 3.16 logs CFU/mL, respectively. Moreover, food-related bacteria families which may contain opportunistic or parasitic pathogens (e.g., Moraxellaceae, Carnobacteriaceae, and Ruminococcaceae) were detected frequently. Enterococci filtered in this study shows multi-antibiotic resistance. Our study highlights the significance to mitigate antibiotic resistance from wastewater generated from high-speed railway trains, as a mobile source. | 2020 | 31864053 |
| 7235 | 19 | 0.9960 | Unveiling the characteristics of free-living and particle-associated antibiotic resistance genes associated with bacterial communities along different processes in a full-scale drinking water treatment plant. Antibiotic resistance genes (ARGs) as emerging contaminants, often co-occur with mobile genetic elements (MGEs) and are prevalent in drinking water treatment plants (DWTPs). In this study, the characteristics of free-living (FL) and particle-associated (PA) ARGs associated with bacterial communities were investigated along two processes within a full-scale DWTP. A total of 13 ARGs and two MGEs were detected. FL-ARGs with diverse subtypes and PA-ARGs with high abundances displayed significantly different structures. PA-MGEs showed a strong positive correlation with PA-ARGs. Chlorine dioxide disinfection achieved 1.47-log reduction of FL-MGEs in process A and 0.24-log reduction of PA-MGEs in process B. Notably, PA-fraction virtually disappeared after treatment, while blaTEM, sul2, mexE, mexF and IntI1 of FL-fraction remained in the finished water. Moreover, Acinetobacter lwoffii (0.04 % ∼ 45.58 %) and Acinetobacter schindleri (0.00 % ∼ 18.54 %) dominated the 16 pathogens, which were more abundant in FL than PA bacterial communities. PA bacteria exhibited a more complex structure with more keystone species than FL bacteria. MGEs contributed 20.23 % and 19.31 % to the changes of FL-ARGs and PA-ARGs respectively, and water quality was a key driver (21.73 %) for PA-ARGs variation. This study provides novel insights into microbial risk control associated with size-fractionated ARGs in drinking water. | 2024 | 39003808 |