SEQUENCE - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
200500.9966Chromosomal 16S Ribosomal RNA Methyltransferase RmtE1 in Escherichia coli Sequence Type 448. We identified rmtE1, an uncommon 16S ribosomal methyltransferase gene, in an aminoglycoside- and cephalosporin-resistant Escherichia coli sequence type 448 clinical strain co-harboring bla(CMY-2). Long-read sequencing revealed insertion of a 101,257-bp fragment carrying both resistance genes to the chromosome. Our findings underscore E. coli sequence type 448 as a potential high-risk multidrug-resistant clone.201728418308
521110.9963Pediococcus pentosaceus IMI 507025 genome sequencing data. The genome sequence data for the pickled cucumbers isolate, Pediococcus pentosaceus IMI 507025, is reported. The raw reads and analysed genome reads were deposited at NCBI under Bioproject with the accession number PRJNA814992. The number of contigs before and after trimming were 17 and 12 contigs, respectively. The total size of the genome was 1,795,439 bp containing 1,811 total genes, of which 1,751 were coding sequences. IMI 507025 identity was determined via average nucleotide identity (ANI), obtaining an identity value of 99.5994% between IMI 507025 and the type strain P. pentosaceus ATCC 33316, identifying the strain as P. pentosaceus. Screening for the antimicrobial resistance (AMR) and virulence genes in the genome of IMI 507025 showed no hits, confirming the safety of the tested strain. Presence of plasmids was not found.202235864877
520920.9962Complete Nucleotide Sequence of pGA45, a 140,698-bp IncFIIY Plasmid Encoding bla IMI-3-Mediated Carbapenem Resistance, from River Sediment. Plasmid pGA45 was isolated from the sediments of Haihe River using Escherichia coli CV601 (gfp-tagged) as recipients and indigenous bacteria from sediment as donors. This plasmid confers reduced susceptibility to imipenem which belongs to carbapenem group. Plasmid pGA45 was fully sequenced on an Illumina HiSeq 2000 sequencing system. The complete sequence of plasmid pGA45 was 140,698 bp in length with an average G + C content of 52.03%. Sequence analysis shows that pGA45 belongs to IncFIIY group and harbors a backbone region which shares high homology and gene synteny to several other IncF plasmids including pNDM1_EC14653, pYDC644, pNDM-Ec1GN574, pRJF866, pKOX_NDM1, and pP10164-NDM. In addition to the backbone region, plasmid pGA45 harbors two notable features including one bla IMI-3-containing region and one type VI secretion system region. The bla IMI-3-containing region is responsible for bacteria carbapenem resistance and the type VI secretion system region is probably involved in bacteria virulence, respectively. Plasmid pGA45 represents the first complete nucleotide sequence of the bla IMI-harboring plasmid from environment sample and the sequencing of this plasmid provided insight into the architecture used for the dissemination of bla IMI carbapenemase genes.201626941718
200730.9962Novel ISCR1-linked resistance genes found in multidrug-resistant Gram-negative bacteria in southern China. Non-duplicate multidrug-resistant (MDR) Gram-negative bacteria (n=1329) isolated from southern China between January 2008 and December 2009 were investigated for the presence of ISCR1 as well as characterisation of ISCR1-linked resistance genes. Of 433 ISCR1-positive strains, 151 appeared to carry ISCR1-linked resistance genes. Seven different ISCR1-linked resistance gene arrays were identified by restriction fragment length polymorphism (RFLP) and DNA sequencing analysis. Many of these arrays are reported in some species for the first time. A total of 12 genes, including a novel ABC transporter (GenBank accession no. GU944725), qnrA1, qnrB2, qnrB6, bla(DHA-1), ampR, bla(CTX-M-9), bla(PER-1), insB, sapA-like peptide transport periplasmic protein, putative glutathione S-transferase and short-chain dehydrogenase/reductase, were detected. This study was the first to employ PCR-RFLP using HinfI and RsaI to analyse ISCR1-linked genes. ISCR1 was widely disseminated among MDR Gram-negative bacteria and was in close association with quinolone resistance and β-lactamase genes (class A and class C) in southern China.201222890194
587240.9961Characterization of the plasmids harbouring the florfenicol resistance gene floR in Glaesserella parasuis and Actinobacillus indolicus. OBJECTIVES: The aim of this study was to characterize the floR-carrying plasmids originating from Glaesserella parasuis and Actinobacillus indolicus isolated from pigs with respiratory disease in China. METHODS: A total of 125 G. parasuis and 28 A. indolicus strains collected between 2009 and 2022 were screened for florfenicol resistance. Characterization of floR-positive isolates and plasmids were determined by antimicrobial susceptibility testing, serotyping, multilocus sequence typing (MLST), conjugation and transformation assays, whole-genome sequencing (WGS), and phylogenetic analysis. RESULTS: One A. indolicus and six G. parasuis were identified as positive for floR. The six G. parasuis were assigned to four different serovars, including serovars 6, 7, 9, and unknown. In addition to strain XP11, six floR genes were located on plasmids. The six floR-bearing plasmids could be transformed into Pasteurella multocida and divided into two different types, including ∼5000 bp and ∼6000 bp plasmids. The ∼5000 bp plasmids consisting of rep, lysR, mobB, and floR genes, exhibited high similarity among Pasteurellaceae bacteria. Furthermore, the ∼6000 bp plasmids, consisting of rep, lysR, mobC, mobA/L, and floR genes, showed high similarity between G. parasuis and Actinobacillus Spp. Notably, WGS results showed that the floR modules of the two types of plasmids could be transferred and integrated into the diverse Pasteurellaceae- origined plasmids. CONCLUSION: This study firstly reported the characterization of floR-carrying plasmids from A. indolicus and a non-virulent serovar of G. parasuis in pigs in China and elucidated the transmission mechanism of the floR resistance gene among the Pasteurellaceae family.202337726088
199050.9961Genomic Analysis of Aeromonas veronii C198, a Novel Mcr-3.41-Harboring Isolate from a Patient with Septicemia in Thailand. The resistance of Gram-negative bacteria to colistin, mediated by plasmid-borne mcr genes, is an emerging public health concern. The complete genome sequence (4.55 Mb) of a clinical isolate of Aeromonas veronii biovar veronii obtained from a patient with septicemia was determined using short-read and long-read platforms. This isolate (C198) was found to harbor a novel mcr-3 gene, designated mcr-3.41. Isolate C198 revealed adjacent mcr-3.41 and mcr-3-like genes. It contained one chromosome and two plasmids, both of which encoded a RepB replication protein. Other antimicrobial resistance genes, including bla(cphA3), bla(OXA-12), tetA, rsmA, and adeF, were also present. Isolate C198 was resistant to amoxicillin-clavulanate, ampicillin-sulbactam and tetracycline, and showed intermediate resistance to trimethoprim-sulfamethoxazole. The isolate was susceptible to piperacillin-tazobactam, carbapenem, third-generation cephalosporins, fluoroquinolones, chloramphenicol, and aminoglycosides. Putative virulence genes in the C198 genome encoded type II, III, and VI secretion systems; type IV Aeromonas pili; and type I fimbria, flagella, hemagglutinin, aerolysin, and hemolysins. Multilocus sequence typing revealed a novel sequence type (ST), ST720 for C198. Phylogenetic analysis of the single nucleotide polymorphisms in C198 demonstrated that the strain was closely related to A. veronii 17ISAe. The present study provides insights into the genomic characteristics of human A. veronii isolates.202033317051
520360.9961Draft genome sequence analysis of a novel MLST (ST5028) and multidrug-resistant Klebsiella quasipneumoniae subsp. similipneumoniae (Kp4) strain 456S1 isolated from a pig farm in China. OBJECTIVES: The avian breeding industry is an important element in exposing bacteria to antibiotics. As one of the major animal welfare and economic problems for the poultry industry, multidrug-resistant Klebsiella spp. have become a substantial source of antibiotic resistance genes. In the present work, we reported the draft genome sequence of a novel multilocus sequence type (MLST) (ST5028) Klebsiella quasipneumoniae subsp. similipneumoniae (Kp4) strain 456S1, which was isolated from a pig farm in China with broad-spectrum antimicrobial activities. METHODS: Classical microbiological methods were applied to isolate and identify the strain, genomic DNA was sequenced using an Illumina HiSeq platform, and the reads were de novo assembled into contigs using CLC Genomics Workbench. The assembled contigs were annotated, and whole-genome sequencing (WGS) analysis was performed. RESULTS: WGS analysis revealed that the genome of strain 456S1 comprised a circular chromosome of 5,419,059 bp (GC content, 57.8%), harbouring 12 important antibiotic resistance genes: aac(6')-ib-cr, aadA16, floR, dfrA27, fosA, tet(D), blaOKP-B-3, oqxA, oqxB, qnrB6, sul1 and arr-3. The Klebsiella quasipneumoniae subsp. similipneumoniae (Kp4) 456S1 was also found to belong to a novel sequence type (ST5028) determined by MLST. CONCLUSION: The genome sequence reported herein will provide useful information for antibiotic resistance and pathogenic mechanisms in Klebsiella quasipneumoniae and will be a reference for comparative analysis with genomic features among different sources of clinically important multidrug-resistant strains, especially among bacteria of animal and human origin.202133516893
521070.9960Whole genome sequence data of Lactiplantibacillus plantarum IMI 507027. Here we report the draft genome sequence of the Lactiplantibacillus plantarum IMI 507027 strain. The genome consists of 37 contigs with a total size of 3,235,614 bp and a GC% of 44.51. After sequence trimming, 31 contigs were annotated, revealing 3,126 genes, of which 3,030 were coding sequences. The Average Nucleotide Identity (ANI) gave a value of 99.9926% between IMI 507027 and L. plantarum JDM1, identifying the strain as L. plantarum. No genes of concern for safety-related traits such as antimicrobial resistance or virulence factors were found. The annotated genome and raw sequence reads were deposited at NCBI under Bioproject with the accession number PRJNA791753.202235310818
150580.9959New insights on mcr-1-harboring plasmids from human clinical Escherichia coli isolates. Mobile colistin resistance (mcr) genes were described recently in Gram-negative bacteria including carbapenem-resistant Enterobacterales. There are ten mcr genes described in different Gram-negative bacteria, however, Escherichia coli harboring mcr-1 gene is by far the most frequent combination. In Argentina, mcr-1 gene was characterized only on plasmids belonging to IncI2 group. The aim of this work was to get new insights of mcr-1-harboring plasmids from E. coli. Eight E. coli isolates from a larger collection of 192 clinical E. coli isolates carrying the mcr-1 gene were sequenced using next generation technologies. Three isolates belonged to ST131 high-risk clone, and five to single ST, ST38, ST46, ST226, ST224, and ST405. Eight diverse mcr-1-harboring plasmids were analyzed: IncI2 (1), IncX4 (3), IncHI2/2A (3) and a hybrid IncFIA/HI1A/HI1B (1) plasmid. Plasmids belonging to the IncI2 (n = 1) and IncX4 (n = 3) groups showed high similarity with previously described plasmids. Two IncHI2/HI2A plasmids, showed high identity between them, while the third, showed several differences including additional resistance genes like tet(A) and floR. One IncFIA/H1A/H1B hybrid plasmid was characterized, highly similar to pSRC27-H, a prototype plasmid lacking mcr genes. mcr-1.5 variant was found in four plasmids with three different Inc groups: IncI2, IncHI2/HI2A and the hybrid FIA/HI1A/HI1B plasmid. mcr-1.5 variant is almost exclusively described in our country and with a high frequency. In addition, six E. coli isolates carried three allelic variants codifying for CTX-M-type extended-spectrum-β-lactamases: blaCTX-M-2 (3), blaCTX-M-65 (2), and blaCTX-M-14 (1). It is the first description of mcr-1 harboring plasmids different to IncI2 group in our country. These results represents new insights about mcr-1 harboring plasmids recovered from E. coli human samples from Argentina, showing different plasmid backbones and resistance gene combinations.202438408071
519990.9959Whole genome sequencing uncovers a novel IND-16 metallo-β-lactamase from an extensively drug-resistant Chryseobacterium indologenes strain J31. BACKGROUND: Chryseobacterium indologenes is an emerging opportunistic pathogen in hospital-acquired infection, which is intrinsically resistant to most antimicrobial agents against gram-negative bacteria. In the purpose of extending our understanding of the resistance mechanism of C. indologenes, we sequenced and analyzed the genome of an extensively antibiotic resistant C. indologenes strain, isolated from a Chinese prostate cancer patient. We also investigated the presence of antibiotic resistance genes, particularly metallo-β-lactamase (MBL) genes, and performed a comparative genomic analysis with other Chryseobacterium species. RESULTS: 16s rRNA sequencing indicated the isolate belongs to C. indologenes. We assembled a total of 1095M bp clean-filtered reads into 171 contigs by de novo assembly. The draft genome of C. indologenes J31 consisted of 5,830,795 bp with a GC content of 36.9 %. RAST analysis revealed the genome contained 5196 coding sequences (CDSs), 28 rRNAs, 81 tRNAs and 114 pseudogenes. We detected 90 antibiotic resistance genes from different drug classes in the whole genome. Notably, a novel bla(IND) allele bla(IND-16) was identified, which shared 99 % identity with bla(IND-8) and bla(IND-10). By comparing strain J31 genome to the closely four related neighbors in the genus Chryseobacterium, we identified 2634 conserved genes, and 1449 unique genes. CONCLUSIONS: In this study, we described the whole genome sequence of C. indologenes strain J31. Numerous resistance determinants were detected in the genome and might be responsible for the extensively antibiotic resistance of this strain. Comparative genomic analysis revealed the presence of considerable strain-specific genes which would contribute to the distinctive characteristics of strain J31. Our study provides the insight of the multidrug resistance mechanism in genus Chryseobacterium.201627785154
1517100.9959Co-occurrence of blaNDM-1, rmtC, and mcr-9 in multidrug-resistant Enterobacter kobei strain isolated from an infant with urinary tract infection. OBJECTIVES: The co-emergence of mcr and carbapenem resistance genes in Gram-negative bacteria is a serious problem. This study aims to clarify the genetic characteristic of one novel multidrug-resistant Enterobacter kobei EC1382 with mcr-9 causing urinary tract inflammation in an infant. METHODS: Antimicrobial drug susceptibility testing was performed for this isolate using the broth microdilution method. Whole-genome sequencing was performed using the Illumina PacBio RS II platform and HiSeq platform, and the antimicrobial resistance genes, mobile elements, and plasmid replicon types were identified. Conjugation analysis was performed using Escherichia coli C600 as recipients. RESULTS: Enterobacter kobei EC1382 was resistant to carbapenem, aminoglycoside, and cephalosporin. Twenty-five antimicrobial resistance genes were identified, including genes conferring resistance to carbapenem (blaNDM-1), colistin (mcr-9), and aminoglycosides (rmtC). The blaNDM-1 gene, accompanied by bleMBL and rmtC located downstream of an ISCR14 element, was detected in the IncFII(Yp) type plasmid pEC1382-2. Interestingly, although E. kobei EC1382 was susceptible to colistin, it had three identical mcr-9 genes (two in the chromosome and one in the IncHI2-type plasmid pEC1382-1). The backbone (∼12.2-kb genetic fragment) of these mcr-9 (flanked by IS903B and IS481-IS26) regions were conserved in this strain, and they were found to be present in various bacteria as three types, implying a silent distribution. CONCLUSIONS: To the best of our knowledge, this is the first study to demonstrate the coexistence of blaNDM-1, rmtC, and mcr-9 in E. kobei. The silent prevalence of mcr-9 in bacteria may be a threat to public health.202337062506
5201110.9959Complete genome of Enterobacter sichuanensis strain SGAir0282 isolated from air in Singapore. BACKGROUND: Enterobacter cloacae complex (ECC) bacteria, such as E. cloacae, E. sichuanensis, E. kobei, and E. roggenkampii, have been emerging as nosocomial pathogens. Many strains isolated from medical clinics were found to be resistant to antibiotics, and in the worst cases, acquired multidrug resistance. We present the whole genome sequence of SGAir0282, isolated from the outdoor air in Singapore, and its relevance to other ECC bacteria by in silico genomic analysis. RESULTS: Complete genome assembly of E. sichuanensis strain SGAir0282 was generated using PacBio RSII and Illumina MiSeq platforms, and the datasets were used for de novo assembly using Hierarchical Genome Assembly Process (HGAP) and error corrected with Pilon. The genome assembly consisted of a single contig of 4.71 Mb and with a G+C content of 55.5%. No plasmid was detected in the assembly. The genome contained 4371 coding genes, 83 tRNA and 25 rRNA genes, as predicted by NCBI's Prokaryotic Genome Annotation Pipeline (PGAP). Among the genes, the antibiotic resistance related genes were included: Streptothricin acetdyltransferase (SatA), fosfomycin resistance protein (FosA) and metal-dependent hydrolases of the beta-lactamase superfamily I (BLI). CONCLUSION: Based on whole genome alignment and phylogenetic analysis, the strain SGAir0282 was identified to be Enterobacter sichuanensis. The strain possesses gene clusters for virulence, disease and defence, that can also be found in other multidrug resistant ECC type strains.202032127921
3036120.9959Complete nucleotide sequences of 84.5- and 3.2-kb plasmids in the multi-antibiotic resistant Salmonella enterica serovar Typhimurium U302 strain G8430. The multi-antibiotic resistant (MR) Salmonella enterica serovar Typhimurium phage type U302 strain G8430 exhibits the penta-resistant ACSSuT-phenotype (ampicillin, chloramphenicol, streptomycin, sulfonamides and tetracycline), and is also resistant to carbenicillin, erythromycin, kanamycin, and gentamicin. Two plasmids, 3.2- and 84.5-kb in size, carrying antibiotic resistance genes were isolated from this strain, and the nucleotide sequences were determined and analyzed. The 3.2-kb plasmid, pU302S, belongs to the ColE1 family and carries the aph(3')-I gene (Kan(R)). The 84.5-kb plasmid, pU302L, is an F-like plasmid and contains 14 complete IS elements and multiple resistance genes including aac3, aph(3')-I, sulII, tetA/R, strA/B, bla(TEM-1), mph, and the mer operon. Sequence analyses of pU302L revealed extensive homology to various plasmids or transposons, including F, R100, pHCM1, pO157, and pCTX-M3 plasmids and TnSF1 transposon, in regions involved in plasmid replication/maintenance functions and/or in antibiotic resistance gene clusters. Though similar to the conjugative plasmids F and R100 in the plasmid replication regions, pU302L does not contain oriT and the tra genes necessary for conjugal transfer. This mosaic pattern of sequence similarities suggests that pU302L acquired the resistance genes from a variety of enteric bacteria and underscores the importance of a further understanding of horizontal gene transfer among the enteric bacteria.200716828159
820130.9959Nucleotide sequence analysis of a transposon (Tn5393) carrying streptomycin resistance genes in Erwinia amylovora and other gram-negative bacteria. A class II Tn3-type transposable element, designated Tn5393 and located on plasmid pEa34 from streptomycin-resistant strain CA11 of Erwinia amylovora, was identified by its ability to move from pEa34 to different sites in plasmids pGEM3Zf(+) and pUCD800. Nucleotide sequence analysis reveals that Tn5393 consists of 6,705 bp with 81-bp terminal inverted repeats and generates 5-bp duplications of the target DNA following insertion. Tn5393 contains open reading frames that encode a putative transposase (tnpA) and resolvase (tnpR) of 961 and 181 amino acids, respectively. The two open reading frames are separated by a putative recombination site (res) consisting of 194 bp. Two streptomycin resistance genes, strA and strB, were identified on the basis of their DNA sequence homology to streptomycin resistance genes in plasmid RSF1010. StrA is separated from tnpR by a 1.2-kb insertion element designated IS1133. The tnpA-res-tnpR region of Tn5393 was detected in Pseudomonas syringae pv. papulans Psp36 and in many other gram-negative bacteria harboring strA and strB. Except for some strains of Erwinia herbicola, these other gram-negative bacteria lacked insertion sequence IS1133. The prevalence of strA and strB could be accounted for by transposition of Tn5393 to conjugative plasmids that are then disseminated widely among gram-negative bacteria.19938380801
2006140.9959Genetic characterization of a novel sequence type of multidrug-resistant Citrobacter freundii strain recovered from wastewater treatment plant. A multidrug-resistant Citrobacter freundii strain R17 was isolated from a wastewater treatment plant in China. Whole-genome sequencing of strain R17 revealed a new sequence type (ST412) chromosome (length 5,124,258 bp) and an Inc FII (Yp) group plasmid pCFR17_1 (length 206,820 bp). A total of 13 antibiotic-resistance genes (ARGs) that confer resistance to eight different antibiotic groups were encoded by strain R17 and 12 of them were carried by plasmid pCFR17_1. These data and analysis suggest that the environment-derived C. freundii strains may serve as potential sources of ARGs and highlight the need of further surveillance of this bacteria in the future.201931564927
5874150.9958Comparative genomics analysis of Raoultella planticola S25 isolated from duck in China, with florfenicol resistance. To characterize the florfenicol resistance gene and analyze the structure of the resistance gene-related sequence of an Raoultella planticola strain S25 isolated from a duck fecal sample from a farm in South China. Molecular cloning was performed to clone the resistance genes such as mdfA, floR and so on, and the minimum inhibitory concentrations (MICs) were quantified to determine the resistance levels generated by the cloned genes and the related strains. Sequencing and comparative genomics methods were used to analyze the structure of the resistance gene-related sequence. The result showed that the genome of R. planticola S25 consists of a 5.47 Mb chromosome encoding 4962 predicted coding sequence (CDS) and a 68,566 bp plasmid, pS25-68, encoding 84 ORFs. The plasmid sharing the greatest sequence identity with the floR-carrying plasmid pS25-68 is plasmid1 in Klebsiella pneumoniae strain blaNDM-1, which was isolated from a patient in Canada. The mdfA1 gene encoded on the chromosome generated resistance to florfenicol in addition to chloramphenicol. Comparative genomic analysis of the floR-related transposon-like fragment of pS25-68 showed that an approximately 3 kb sequence encoding IS91-virD2-floR-lysR was conserved and presented in the majority of the sequences (84.5 %, 169/200) collected from the database. The results of this work demonstrated that horizontal transfer of the florfenicol resistance gene floR occurred widely between the bacteria of different species and with different origins and that additional florfenicol resistance genes may be present in the bacterial population.202031775114
3009160.9958Identification of a novel conjugative plasmid carrying the multiresistance gene cfr in Proteus vulgaris isolated from swine origin in China. The multiresistance gene cfr has a broad host range encompassing both Gram-positive and Gram-negative bacteria, and can be located on the chromosomes or on plasmids. In this study, a novel conjugative plasmid carrying cfr, designated as pPvSC3, was characterized in a Proteus vulgaris strain isolated from swine in China. Plasmid pPvSC3 is 284,528 bp in size and harbors 10 other antimicrobial resistance genes, making it a novel plasmid that differs from all known plasmids due to its unique backbone and repA gene. BLAST analysis of the plasmid sequence shows no significant homology to any known plasmid backbone, but shows high level homology to Providencia rettgeri strain CCBH11880 Contig_9, a strain isolated from surgical wound in Brazil, 2014. There are two resistance-determining regions in pPvSC3, a cfr-containing region and a multidrug-resistant (MDR) region. The cfr-containing region is flanked by IS26, which could be looped out via IS26-mediated recombination. The MDR region harbors 10 antimicrobial resistance genes carried by various DNA segments that originated from various sources. Plasmid pPvSC3 could be successfully transferred to Escherichia coli by conjugation. In summary, we have characterized a novel conjugative plasmid pPvSC3 carrying the multiresistance gene cfr and 10 other antimicrobial resistance genes, and consider that this novel type of plasmid deserves attention.201931499097
1529170.9958Emergence and Characterization of a Novel IncP-6 Plasmid Harboring bla (KPC-2) and qnrS2 Genes in Aeromonas taiwanensis Isolates. The dissemination of Klebsiella pneumoniae carbapenemases (KPCs) among Gram-negative bacteria is an important threat to global health. However, KPC-producing bacteria from environmental samples are rarely reported. This study aimed to elucidate the underlying resistance mechanisms of three carbapenem-resistant Aeromonas taiwanensis isolates recovered from river sediment samples. Pulsed-field gel electrophoresis (PFGE) and whole genome sequencing (WGS) analysis indicated a close evolutionary relationship among A. taiwanensis isolates. S1-PFGE, Southern blot and conjugation assays confirmed the presence of bla (KPC-) (2) and qnrS2 genes on a non-conjugative plasmid in these isolates. Plasmid analysis further showed that pKPC-1713 is an IncP-6 plasmid with a length of 53,205 bp, which can be transformed into DH5α strain and mediated carbapenems and quinolones resistance. The plasmid backbone of p1713-KPC demonstrated 99% sequence identity to that of IncP-6-type plasmid pKPC-cd17 from Aeromonas spp. and IncP-6-type plasmid: 1 from Citrobacter freundii at 74% coverage. A 14,808 bp insertion sequence was observed between merT gene and hypothetical protein in p1713-KPC, which include the quinolone resistance qnrS2 gene. Emergence of plasmid-borned bla (KPC) and qnrS2 genes from A. taiwanensis isolates highlights their possible dissemination into the environment. Therefore, potential detection of such plasmids from clinical isolates should be closely monitored.201931572337
1515180.9958A novel transposon Tn7540 carrying bla(NDM-9) and fosA3 in chromosome of a pathogenic multidrug-resistant Salmonella enterica serovar Indiana isolated from human faeces. OBJECTIVES: Emergence of multidrug-resistant (MDR) Salmonella enterica serovar Indiana has raised global concern. Mobile genetic elements (MGEs) play vital roles in accelerating the dissemination of resistance genes in bacteria communities. The study aims to improve our understanding of the underlying resistance mechanisms and characterize the MGEs in a MDR S. Indiana isolate. METHODS: Here, we report the characteristics of a MDR pathogenic S. Indiana isolate. The antimicrobial susceptibility pattern of S. Indiana QT6365 was determined. The genomic structure of the chromosome and the plasmid, serotype, and multi-locus sequence type were analysed by whole genome sequencing. The circular form derived from IS26-flanked transposon was confirmed by reverse polymerase chain reaction and sequencing. RESULTS: S. Indiana QT6365 exhibited resistance to all tested antimicrobials except for aztreonam, amikacin, polymyxin, and tigecycline, was defined as MDR, and belonged to ST17. S. Indiana QT6365 was closely related with food resource S. Indiana C629 with similar resistance gene profiles. Multiple resistance genes are mainly carried by a novel transposon Tn7540 located on the chromosome and an IncHI2/HI2A/N plasmid. Sequence analysis and the formed circular intermediate suggested Tn7540 might be generated through homologous recombination by IS26-bounded translocatable units (IS26-fosA-IS26-intI1-dfrA12-aadA2-sul1-ISCR1-bla(NDM-9)-IS26). CONCLUSIONS: To the best of our knowledge, this is the first report of the novel chromosomal transposon possessing bla(NDM-9) and fosA3 in S. Indiana isolated from human specimen, which might facilitate the dissemination of resistance genes and should arouse serious awareness.202336854357
5867190.9958Molecular analysis of florfenicol-resistant Pasteurella multocida isolates in Germany. OBJECTIVES: Three florfenicol-resistant Pasteurella multocida isolates from Germany, two from swine and one from a calf, were investigated for the genetics and transferability of florfenicol resistance. METHODS: The isolates were investigated for susceptibility to antimicrobial agents and plasmid content. Florfenicol resistance plasmids carrying the gene floR were identified by transformation and PCR. Plasmids were mapped, and a novel plasmid type was sequenced completely. PFGE served to determine the clonality of the isolates. RESULTS: In one porcine and the bovine P. multocida isolate, florfenicol resistance was associated with the plasmid pCCK381 previously described in a bovine P. multocida isolate from the UK. The remaining porcine isolate harboured a new type of floR-carrying plasmid, the 10 226 bp plasmid pCCK1900. Complete sequence analysis identified an RSF1010-like plasmid backbone with the mobilization genes mobA, mobB and mobC, the plasmid replication genes repA, repB and repC, the sulphonamide resistance gene sul2 and the streptomycin resistance genes strA and strB. The floR gene area was integrated into a region downstream of strB, which exhibited homology to the floR flanking regions found in various bacteria. PFGE revealed that the floR-carrying P. multocida strains from Germany were unrelated and also different from the UK strain. CONCLUSIONS: After the UK and France, floR-mediated florfenicol resistance has now also been identified in target bacteria from Germany. PFGE data and the analysis of plasmids strongly suggested that the spread of florfenicol resistance is due to the horizontal transfer of plasmids rather than the clonal dissemination of a resistant P. multocida isolate.200818786941