# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1483 | 0 | 0.9913 | Clinical Evaluation of the iCubate iC-GPC Assay for Detection of Gram-Positive Bacteria and Resistance Markers from Positive Blood Cultures. The iC-GPC Assay (iCubate, Huntsville, AL) is a qualitative multiplex test for the detection of five of the most common Gram-positive bacteria (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Enterococcus faecalis, and Enterococcus faecium) responsible for bacterial bloodstream infections, performed directly from positive blood cultures. The assay also detects the presence of the mecA, vanA, and vanB resistance determinants. This study comparatively evaluated the performance of the iC-GPC Assay against the Verigene Gram-positive blood culture (BC-GP) assay (Luminex Corp., Austin, TX) for 1,134 patient blood culture specimens positive for Gram-positive cocci. The iC-GPC Assay had an overall percent agreement with the BC-GP assay of 95.5%. Discordant specimens were further analyzed by PCR and a bidirectional sequencing method. The results indicate that the iC-GPC Assay together with the iCubate system is an accurate and reliable tool for the detection of the five most common Gram-positive bacteria and their resistance markers responsible for bloodstream infections. | 2018 | 29899000 |
| 2341 | 1 | 0.9910 | Effect of Salicylic Acid on the gene expression of FnbA and FnbB genes in Staphylococcus hominis. BACKGROUND: Staphylococcus hominis is an opportunistic pathogen that expresses surface proteins, which are adhesive proteins that play a major role in biofilm formation. Biofilm is a protective layer that provides S. hominis bacteria with greater antibiotic resistance and promotes its adherence to biomedical surfaces, facilitating its entry into the bloodstream. OBJECTIVE: This research aimed to investigate the activity of Salicylic Acid (SA) and its effect on the gene expression of biofilm genes (FnbA and FnbB genes). METHODS: A total of 150 blood specimens were collected from patients. The specimens were cultured in broth media of the BacT/ALERT® system and subcultured on blood and chocolate agar. Bacteria were detected using the VITEK2 system. FnbA and FnbB genes were detected using PCR. The broth microdilution method performed the minimum inhibitory concentration (MIC) of Salicylic acid (SA) on S. hominis isolates with both genes. Detection of the gene expression levels of FnbA and FnbB genes was assessed using Real-Time PCR(RT-PCR). RESULTS: The results showed that out of the 150 specimens collected, 35 were S. hominis. The detection of S. hominis bacteria was performed by PCR amplification of two genes FnbA and FnbB and showed 100% and 17.14% of isolates were positive for genes FnbA and FnbB, respectively. The expression of FnbA and FnbB genes was decreased in samples treated with SA compared with untreated ones. CONCLUSION: In conclusion, there is a significant impact of SA on the prevention of biofilm formation of S. hominis through the suppression of gene expression, specifically FnbA and FnbB. This could enhance susceptibility to antimicrobial treatments. However, more research is required to determine whether SA leads to the selection of resistant bacteria. | 2024 | 38875028 |
| 2342 | 2 | 0.9906 | Correlation Analysis of Staphylococcus aureus Drug Resistance and Virulence Factors with Blood Cell Counts and Coagulation Indexes. OBJECTIVE: The influence of different Staphylococcus aureus variants on blood cells and coagulation system was evaluated by investigating the carrying status of drug resistance genes and virulence genes of methicillin-resistantStaphylococcus aureus (MRSA) and methicillin-sensitiveStaphylococcus aureus (MSSA). METHODS: A total of 105 blood culture-derivedStaphylococcus aureus strains were collected. The carrying status of drug resistance genes mecA and three virulence genes tst, pvl, and sasX was analyzed by polymerase chain reaction (PCR). The changes in routine blood routine counts and coagulation indexes of patients infected with different strains were analyzed. RESULTS: The results showed that the positive rate of mecA was consistent with that of MRSA. Virulence genes tst and sasX were detected only in MRSA. Compared with MSSA, patients infected with MRSA or MSSA patients infected with virulence factor, leukocyte count and neutrophil count in peripheral blood were significantly increased, and the platelet count decreased to a higher degree. Part thromboplastin time increased, D-dimer increased, but fibrinogen content decreased more. The changes of erythrocyte and hemoglobin had no significant correlation with whether Staphylococcus aureus carried virulence genes. CONCLUSION: The detection rate of MRSA in patients with positive Staphylococcus aureus in blood culture had exceeded 20%. The detected MRSA bacteria carried three virulence genes, tst, pvl, and sasX, which were more likely than MSSA. MRSA, which carries two virulence genes, is more likely to cause clotting disorders. | 2023 | 36846497 |
| 5798 | 3 | 0.9905 | Rapid identification of bacteria, mecA and van genes from blood cultures. The Genotype technology, a quick molecular genetic assay based on DNA multiplex amplification with biotinylated primers followed by hybridization to membrane bound probes, complies with the requirements for a fast diagnosis of sepsis. We evaluated the new Genotype BC Gram-negative and Gram-positive test kits (Hain Life Science, Germany) which respectively allow for the identification of 15 species of Gram-negative (GN) rods, and the identification of 17 Gram-positive (GP) bacteria species together with the determination of methicillin and vancomycin resistance (mecA and van genes). The study was performed on 60 positive blood cultures from BacT/ALERT bottles (aerobic, anaerobic and pediatric bottles). First, a Gram stain was carried out to select between Genotype BC GP or GN test, then identification were performed by the Genotype BC tests and by biochemical conventional tests after subculture and phenotypic susceptibility determination. The operating procedure was very easy to carry out and required a small amount of starting material (5 to 10 microL of blood culture). The results were available within 4.5 hours. For all the blood cultures, the Genotype BC results correlated with the biochemical identification and phenotypic antibiotics susceptibility. According to our results, this DNA strip technology based assay can easily be incorporated into routine diagnosis. | 2007 | 17913394 |
| 5797 | 4 | 0.9905 | PCR-reverse blot hybridization assay for screening and identification of pathogens in sepsis. Rapid and accurate identification of the pathogens involved in bloodstream infections is crucial for the prompt initiation of appropriate therapy, as this can decrease morbidity and mortality rates. A PCR-reverse blot hybridization assay for sepsis, the reverse blot hybridization assay (REBA) Sepsis-ID test, was developed; it uses pan-probes to distinguish Gram-positive and -negative bacteria and fungi. In addition, the assay was designed to identify bacteria and fungi using six genus-specific and 13 species-specific probes; it uses additional probes for antibiotic resistance genes, i.e., the mecA gene of methicillin-resistant Staphylococcus aureus (MRSA) and the vanA and vanB genes of vancomycin-resistant enterococci (VRE). The REBA Sepsis-ID test successfully identified clinical isolates and blood culture samples as containing Gram-positive bacteria, Gram-negative bacteria, or fungi. The results matched those obtained with conventional microbiological methods. For the REBA Sepsis-ID test, of the 115 blood culture samples tested, 47 (40.8%) and 49 (42.6%) samples were identified to the species and genus levels, respectively, and the remaining 19 samples (16.5%), which included five Gram-positive rods, were identified as Gram-positive bacteria, Gram-negative bacteria, or fungi. The antibiotic resistances of the MRSA and VRE strains were identified using both conventional microbiological methods and the REBA Sepsis-ID test. In conclusion, the REBA Sepsis-ID test developed for this study is a fast and reliable test for the identification of Gram-positive bacteria, Gram-negative bacteria, fungi, and antibiotic resistance genes (including mecA for MRSA and the vanA and vanB genes for VRE) in bloodstream infections. | 2013 | 23447637 |
| 5194 | 5 | 0.9905 | Evaluation of the CosmosID Bioinformatics Platform for Prosthetic Joint-Associated Sonicate Fluid Shotgun Metagenomic Data Analysis. We previously demonstrated that shotgun metagenomic sequencing can detect bacteria in sonicate fluid, providing a diagnosis of prosthetic joint infection (PJI). A limitation of the approach that we used is that data analysis was time-consuming and specialized bioinformatics expertise was required, both of which are barriers to routine clinical use. Fortunately, automated commercial analytic platforms that can interpret shotgun metagenomic data are emerging. In this study, we evaluated the CosmosID bioinformatics platform using shotgun metagenomic sequencing data derived from 408 sonicate fluid samples from our prior study with the goal of evaluating the platform vis-à-vis bacterial detection and antibiotic resistance gene detection for predicting staphylococcal antibacterial susceptibility. Samples were divided into a derivation set and a validation set, each consisting of 204 samples; results from the derivation set were used to establish cutoffs, which were then tested in the validation set for identifying pathogens and predicting staphylococcal antibacterial resistance. Metagenomic analysis detected bacteria in 94.8% (109/115) of sonicate fluid culture-positive PJIs and 37.8% (37/98) of sonicate fluid culture-negative PJIs. Metagenomic analysis showed sensitivities ranging from 65.7 to 85.0% for predicting staphylococcal antibacterial resistance. In conclusion, the CosmosID platform has the potential to provide fast, reliable bacterial detection and identification from metagenomic shotgun sequencing data derived from sonicate fluid for the diagnosis of PJI. Strategies for metagenomic detection of antibiotic resistance genes for predicting staphylococcal antibacterial resistance need further development. | 2019 | 30429253 |
| 2224 | 6 | 0.9902 | Multiplexed Signal Ion Emission Reactive Release Amplification (SIERRA) Assay for the Culture-Free Detection of Gram-Negative and Gram-Positive Bacteria and Antimicrobial Resistance Genes. The global prevalence of antibiotic-resistant bacteria has increased the risk of dangerous infections, requiring rapid diagnosis and treatment. The standard method for diagnosis of bacterial infections remains dependent on slow culture-based methods, carried out in central laboratories, not easily extensible to rapid identification of organisms, and thus not optimal for timely treatments at the point-of-care (POC). Here, we demonstrate rapid detection of bacteria by combining electrochemical immunoassays (EC-IA) for pathogen identification with confirmatory quantitative mass spectral immunoassays (MS-IA) based on signal ion emission reactive release amplification (SIERRA) nanoparticles with unique mass labels. This diagnostic method uses compatible reagents for all involved assays and standard fluidics for automatic sample preparation at POC. EC-IA, based on alkaline phosphatase-conjugated pathogen-specific antibodies, quantified down to 10(4) bacteria per sample when testing Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa lysates. EC-IA quantitation was also obtained for wound samples. The MS-IA using nanoparticles against S. aureus, E. coli, Klebsiella pneumoniae, and P. aeruginosa allowed selective quantitation of ∼10(5) bacteria per sample. This method preserves bacterial cells allowing extraction and amplification of 16S ribosomal RNA genes and antibiotic resistance genes, as was demonstrated through identification and quantitation of two strains of E. coli, resistant and nonresistant due to β-lactamase cefotaximase genes. Finally, the combined immunoassays were compared against culture using remnant deidentified patient urine samples. The sensitivities for these immunoassays were 83, 95, and 92% for the prediction of S. aureus, P. aeruginosa, and E. coli or K. pneumoniae positive culture, respectively, while specificities were 85, 92, and 97%. The diagnostic platform presented here with fluidics and combined immunoassays allows for pathogen isolation within 5 min and identification in as little as 15 min to 1 h, to help guide the decision for additional testing, optimally only on positive samples, such as multiplexed or resistance gene assays (6 h). | 2021 | 33819029 |
| 2239 | 7 | 0.9902 | The Direct Semi-Quantitative Detection of 18 Pathogens and Simultaneous Screening for Nine Resistance Genes in Clinical Urine Samples by a High-Throughput Multiplex Genetic Detection System. BACKGROUND: Urinary tract infections (UTIs) are one the most common infections. The rapid and accurate identification of uropathogens, and the determination of antimicrobial susceptibility, are essential aspects of the management of UTIs. However, existing detection methods are associated with certain limitations. In this study, a new urinary tract infection high-throughput multiplex genetic detection system (UTI-HMGS) was developed for the semi-quantitative detection of 18 pathogens and the simultaneously screening of nine resistance genes directly from the clinical urine sample within 4 hours. METHODS: We designed and optimized a multiplex polymerase chain reaction (PCR) involving fluorescent dye-labeled specific primers to detect 18 pathogens and nine resistance genes. The specificity of the UTI-HMGS was tested using standard strains or plasmids for each gene target. The sensitivity of the UTI-HMGS assay was tested by the detection of serial tenfold dilutions of plasmids or simulated positive urine samples. We also collected clinical urine samples and used these to perform urine culture and antimicrobial susceptibility testing (AST). Finally, all urine samples were detected by UTI-HMGS and the results were compared with both urine culture and Sanger sequencing. RESULTS: UTI-HMGS showed high levels of sensitivity and specificity for the detection of uropathogens when compared with culture and sequencing. In addition, ten species of bacteria and three species of fungi were detected semi-quantitatively to allow accurate discrimination of significant bacteriuria and candiduria. The sensitivity of the UTI-HMGS for the all the target genes could reach 50 copies per reaction. In total, 531 urine samples were collected and analyzed by UTI-HMGS, which exhibited high levels of sensitivity and specificity for the detection of uropathogens and resistance genes when compared with Sanger sequencing. The results from UTI-HMGS showed that the detection rates of 15 pathogens were significantly higher (P<0.05) than that of the culture method. In addition, there were 41(7.72%, 41/531) urine samples were positive for difficult-to-culture pathogens, which were missed detected by routine culture method. CONCLUSIONS: UTI-HMGS proved to be an efficient method for the direct semi-quantitative detection of 18 uropathogens and the simultaneously screening of nine antibiotic resistance genes in urine samples. The UTI-HMGS could represent an alternative method for the clinical detection and monitoring of antibiotic resistance. | 2021 | 33912478 |
| 1486 | 8 | 0.9902 | Multicenter evaluation of the Verigene Gram-negative blood culture nucleic acid test for rapid detection of bacteria and resistance determinants in positive blood cultures. The Verigene Gram-Negative Blood Culture Nucleic Acid Test (BC-GN) is a microarray-based assay that enables rapid detection of 9 common Gram-negative bacteria and 6 resistance determinants directly from positive blood cultures. We compared the performance of BC-GN with currently used automated systems, testing 141 clinical blood cultures and 205 spiked blood cultures. For identification of BC-GN target organisms in clinical and spiked blood cultures, the BC-GN assay showed 98.5% (130/132) and 98.9% (182/184) concordance, respectively. Of 140 resistance genes positively detected in clinical and spiked blood cultures with the BC-GN test, 139 (99.3%) were confirmed by PCR, and the detection results were consistent with the resistance phenotypes observed. The BC-GN assay, thus, can potentially improve care for sepsis patients by enabling timely detection and targeted antimicrobial therapy. | 2015 | 26361710 |
| 5802 | 9 | 0.9902 | Dissecting vancomycin-intermediate resistance in staphylococcus aureus using genome-wide association. Vancomycin-intermediate Staphylococcus aureus (VISA) is currently defined as having minimal inhibitory concentration (MIC) of 4-8 µg/ml. VISA evolves through changes in multiple genetic loci with at least 16 candidate genes identified in clinical and in vitro-selected VISA strains. We report a whole-genome comparative analysis of 49 vancomycin-sensitive S. aureus and 26 VISA strains. Resistance to vancomycin was determined by broth microdilution, Etest, and population analysis profile-area under the curve (PAP-AUC). Genome-wide association studies (GWAS) of 55,977 single-nucleotide polymorphisms identified in one or more strains found one highly significant association (P = 8.78 E-08) between a nonsynonymous mutation at codon 481 (H481) of the rpoB gene and increased vancomycin MIC. Additionally, we used a database of public S. aureus genome sequences to identify rare mutations in candidate genes associated with VISA. On the basis of these data, we proposed a preliminary model called ECM+RMCG for the VISA phenotype as a benchmark for future efforts. The model predicted VISA based on the presence of a rare mutation in a set of candidate genes (walKR, vraSR, graSR, and agrA) and/or three previously experimentally verified mutations (including the rpoB H481 locus) with an accuracy of 81% and a sensitivity of 73%. Further, the level of resistance measured by both Etest and PAP-AUC regressed positively with the number of mutations present in a strain. This study demonstrated 1) the power of GWAS for identifying common genetic variants associated with antibiotic resistance in bacteria and 2) that rare mutations in candidate gene, identified using large genomic data sets, can also be associated with resistance phenotypes. | 2014 | 24787619 |
| 5833 | 10 | 0.9902 | Rapid identification, virulence analysis and resistance profiling of Staphylococcus aureus by gene segment-based DNA microarrays: application to blood culture post-processing. Up to now, blood culturing systems are the method of choice to diagnose bacteremia. However, definitive pathogen identification from positive blood cultures is a time-consuming procedure, requiring subculture and biochemical analysis. We developed a microarray for the identification of Staphylococcus aureus comprising PCR generated gene-segments, which can reduce the blood culture post-processing time to a single day. Moreover, it allows concomitant identification of virulence factors and antibiotic resistance determinants directly from positive blood cultures without previous amplification by PCR. The assay unambiguously identifies most of the important virulence genes such as tsst-1, sea, seb, eta and antibiotic resistance genes such as mecA, aacA-aphD, blaZ and ermA. To obtain positive signals, 20 ng of purified genomic S. aureus DNA or 2 microg of total DNA extracted from blood culture was required. The microarray specifically distinguished S. aureus from gram-negative bacteria as well as from closely related coagulase negative staphylococci (CoNS). The microarray-based identification of S. aureus can be accomplished on the same day blood cultures become positive in the Bactec. The results of our study demonstrate the feasibility of microarray-based systems for the direct identification and characterization of bacteria from cultured clinical specimens. | 2007 | 17141897 |
| 5829 | 11 | 0.9902 | Diagnosing Antibiotic Resistance Using Nucleic Acid Enzymes and Gold Nanoparticles. The rapid and accurate detection of antimicrobial resistance is critical to limiting the spread of infections and delivering effective treatments. Here, we developed a rapid, sensitive, and simple colorimetric nanodiagnostic platform to identify disease-causing pathogens and their associated antibiotic resistance genes within 2 h. The platform can detect bacteria from different biological samples (i.e., blood, wound swabs) with or without culturing. We validated the multicomponent nucleic acid enzyme-gold nanoparticle (MNAzyme-GNP) platform by screening patients with central line associated bloodstream infections and achieved a clinical sensitivity and specificity of 86% and 100%, respectively. We detected antibiotic resistance in methicillin-resistant Staphylococcus aureus (MRSA) in patient swabs with 90% clinical sensitivity and 95% clinical specificity. Finally, we identified mecA resistance genes in uncultured nasal, groin, axilla, and wound swabs from patients with 90% clinical sensitivity and 95% clinical specificity. The simplicity and versatility for detecting bacteria and antibiotic resistance markers make our platform attractive for the broad screening of microbial pathogens. | 2021 | 33970612 |
| 2237 | 12 | 0.9901 | Evaluation of Sepsis Flow Chip for identification of Gram-negative bacilli and detection of antimicrobial resistance genes directly from positive blood cultures. Blood stream infections are serious conditions associated with high morbi-mortality. In this study, the new Sepsis Flow Chip (SFC) assay for identification of Gram-negative bacteria and their antimicrobial resistance genes was evaluated in positive blood cultures (BCs). SFC is a microarray with a broad panel comprising the most frequent causative agents of sepsis and antimicrobial resistance genes associated with them. A total of 100 prospective BCs, positive for Gram-negative bacilli, were assessed in the routine of the clinical microbiology laboratory and also applying the SFC assay. Moreover, 19 BCs spiked with well-characterized enterobacterial isolates, harboring antimicrobial resistance genes, were analyzed by the latter. Among the monomicrobial BCs (90), the concordance between SFC identification and the reference method was 94.4%; however, it achieved 100% when SFC was combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry after 4-h incubation. Regarding polymicrobial BCs (10), 15 out of the 22 bacteria present (68.2%) were correctly identified, including all contained in 50% of the cultures. With regard to antimicrobial resistance genes, 98.8%, 98.9%, and 99% concordance was obtained for bla(CTX-M), bla(OXA-48), and bla(VIM), respectively, in comparison with polymerase chain reaction amplification. SFC assay gives results in only 4 h and showed a high concordance rate with the reference method. Although further evaluation studies are necessary, SFC assay implementation, together with antimicrobial stewardship programs, could contribute to improve the therapeutic approaches and to reduce the morbi-mortality, length of hospital stay, and healthcare-associated costs in patients with sepsis. | 2018 | 29551362 |
| 5795 | 13 | 0.9901 | Direct identification of Gram-positive bacteria and resistance determinants from blood cultures using a microarray-based nucleic acid assay: in-depth analysis of microarray data for undetermined results. BACKGROUND: The Verigene Gram-Positive Blood Culture (BC-GP) nucleic acid assay (Nanosphere, Inc., Northbrook, IL, USA) is a newly developed microarray-based test with which 12 Gram-positive bacterial genes and three resistance determinants can be detected using blood culture broths. We evaluated the performance of this assay and investigated the signal characteristics of the microarray images. METHODS: At the evaluation stage, we tested 80 blood cultures that were positive for various bacteria (68 bacteria covered and 12 not covered by the BC-GP panel) collected from the blood of 36 patients and 44 spiked samples. In instances where the automated system failed and errors were called, we manually inspected microarray images, measured the signal intensities of target spots, and reclassified the results. RESULTS: With the manual analysis of the microarray images of 14 samples for which error calls were reported, we could obtain correct identification results for 12 samples without the need for retesting, because strong signals in the target spots were clearly discriminable from background noise. With our interpretation strategy, we could obtain 97.1% sensitivity and 100% specificity for bacterial identification by using the BC-GP assay. The two unidentified bacteria were viridans group streptococci, which produced weaker target signals. During the application stage, among 25 consecutive samples positive for Gram-positive bacteria, we identified two specimens with error calls as Streptococcus spp. by using manual analysis. CONCLUSIONS: With help of the manual review of the microarray images, the BC-GP assay could successfully identify species and resistance markers for many clinically important Gram-positive bacteria. | 2015 | 25536666 |
| 5824 | 14 | 0.9901 | Evaluation of a micro/nanofluidic chip platform for the high-throughput detection of bacteria and their antibiotic resistance genes in post-neurosurgical meningitis. BACKGROUND: Post-neurosurgical meningitis (PNM) is one of the most severe hospital-acquired infections worldwide, and a large number of pathogens, especially those possessing multi-resistance genes, are related to these infections. Existing methods for detecting bacteria and measuring their response to antibiotics lack sensitivity and stability, and laboratory-based detection methods are inconvenient, requiring at least 24h to complete. Rapid identification of bacteria and the determination of their susceptibility to antibiotics are urgently needed, in order to combat the emergence of multi-resistant bacterial strains. METHODS: This study evaluated a novel, fast, and easy-to-use micro/nanofluidic chip platform (MNCP), which overcomes the difficulties of diagnosing bacterial infections in neurosurgery. This platform can identify 10 genus or species targets and 13 genetic resistance determinants within 1h, and it is very simple to operate. A total of 108 bacterium-containing cerebrospinal fluid (CSF) cultures were tested using the MNCP for the identification of bacteria and determinants of genetic resistance. The results were compared to those obtained with conventional identification and antimicrobial susceptibility testing methods. RESULTS: For the 108 CSF cultures, the concordance rate between the MNCP and the conventional identification method was 94.44%; six species attained 100% consistency. For the production of carbapenemase- and extended-spectrum beta-lactamase (ESBL)-related antibiotic resistance genes, both the sensitivity and specificity of the MNCP tests were high (>90.0%) and could fully meet the requirements of clinical diagnosis. CONCLUSIONS: The MNCP is fast, accurate, and easy to use, and has great clinical potential in the treatment of post-neurosurgical meningitis. | 2018 | 29559366 |
| 5834 | 15 | 0.9901 | Real-Time PCR to Identify Staphylococci and Assay for Virulence from Blood. The genus Staphylococcus includes pathogenic and non-pathogenic facultative anaerobes. Due to the plethora of virulence factors encoded in its genome, the species Staphylococcus aureus is known to be the most pathogenic. S. aureus strains harboring genes encoding virulence and antibiotic resistance are of public health importance. In clinical samples, however, pathogenic S. aureus is often mixed with putatively less pathogenic coagulase-negative staphylococci (CoNS), both of which can harbor mecA, the genetic driver for staphylococcal methicillin-resistance. In this chapter, the detailed practical procedure for operating a real-time pentaplex PCR assay in blood cultures is described. The pentaplex real-time PCR assay simultaneously detects markers for the presence of bacteria (16S rRNA), coagulase-negative staphylococcus (cns), S. aureus (spa), Panton-Valentine leukocidin (pvl), and methicillin resistance (mecA). | 2017 | 28600770 |
| 5831 | 16 | 0.9901 | Development of a nucleic acid lateral flow immunoassay (NALFIA) for reliable, simple and rapid detection of the methicillin resistance genes mecA and mecC. The gene mecA and its homologue mecC confer methicillin resistance in Staphylococcus aureus and other staphylococci. Methicillin-resistant staphylococci (MRS) are considered resistant to all β-lactam antibiotics. To avoid the use of β-lactam antibiotics for the control of MRS infections, there is an urgent need for a fast and reliable screening assay for mecA and mecC that can easily be integrated in routine laboratory diagnostics. The aim of this study was the development of such a rapid detection method for methicillin resistance based on nucleic acid lateral flow immunoassay (NALFIA) technology. In NALFIA, the target sequences are PCR-amplified, immobilized via antigen-antibody interaction and finally visualized as distinct black bars resulting from neutravidin-labeled carbon particles via biotin-neutravidin interaction. A screening of 60 defined strains (MRS and non-target bacteria) and 28 methicillin-resistant S. aureus (MRSA) isolates from clinical samples was performed with PCR-NALFIA in comparison to PCR with subsequent gel electrophoresis (PCR-GE) and real-time PCR. While all samples were correctly identified with all assays, PCR-NALFIA was superior with respect to limits of detection. Moreover, this assay allowed for differentiation between mecA and mecC by visualizing the two alleles at different positions on NALFIA test stripes. However, since this test system only targets the mecA and mecC genes, it does not allow to determine in which staphylococcal species the mec gene is included. Requiring only a fraction of the time needed for cultural methods (i.e. the gold standard), the PCR-NALFIA presented here is easy to handle and can be readily integrated into laboratory diagnostics. | 2017 | 27569992 |
| 5801 | 17 | 0.9901 | Antibiotic resistance: Evaluation of levofloxacin treatment in acute respiratory tract infections cases at the Tasikmalaya City Health Center, Indonesia. Acute respiratory tract infections (ARTIs) are an acute inflammation of the upper and lower respiratory tract caused by the infection of microorganisms or bacteria, viruses, without or accompanied by inflammation of the lung parenchyma. The use of antibiotics is one way to treat respiratory diseases. This study aims to determine the level of resistance of levofloxacin antibiotics to clinical isolates from ARTIs patients at the Tasikmalaya Health Center, Indonesia. The stages of the research included rejuvenation of clinical single isolates from ARTIs patients, identification of bacteria, and antibiotic resistance testing using the paper-disc method. The results of resistance tests from 142 single clinical isolates of acute respiratory infections showed that levofloxacin antibiotics had high levels of resistance of 50.0%, 30.95% of resistance with intermediate levels, and 19.04% were still sensitive. Bacterial identification test results showed bacteria that have been resistant to levofloxacin are from the genus Haemophillus, Streptococcus, Corynebacterium, Staphylococcus, and Bordetella. Treatment of ARTIs with the antibiotic levofloxacin shows that there has been a relatively large resistance, where the results of the identification of all bacteria showed the bacteria that cause ARTIs. | 2020 | 33102193 |
| 5796 | 18 | 0.9901 | Antibiotic treatment algorithm development based on a microarray nucleic acid assay for rapid bacterial identification and resistance determination from positive blood cultures. Rapid diagnosis of bloodstream infections remains a challenge for the early targeting of an antibiotic therapy in sepsis patients. In recent studies, the reliability of the Nanosphere Verigene Gram-positive and Gram-negative blood culture (BC-GP and BC-GN) assays for the rapid identification of bacteria and resistance genes directly from positive BCs has been demonstrated. In this work, we have developed a model to define treatment recommendations by combining Verigene test results with knowledge on local antibiotic resistance patterns of bacterial pathogens. The data of 275 positive BCs were analyzed. Two hundred sixty-three isolates (95.6%) were included in the Verigene assay panels, and 257 isolates (93.5%) were correctly identified. The agreement of the detection of resistance genes with subsequent phenotypic susceptibility testing was 100%. The hospital antibiogram was used to develop a treatment algorithm on the basis of Verigene results that may contribute to a faster patient management. | 2016 | 26712265 |
| 1485 | 19 | 0.9901 | Evaluation of Verigene Blood Culture Test Systems for Rapid Identification of Positive Blood Cultures. The performance of molecular tests using the Verigene Gram-Positive and Gram-Negative Blood Culture nucleic acid tests (BC-GP and BC-GN, resp.; Naosphere, Northbrook, IL, USA) was evaluated for the identification of microorganisms detected from blood cultures. Ninety-nine blood cultures containing Gram-positive bacteria and 150 containing Gram-negative bacteria were analyzed using the BC-GP and BC-GN assays, respectively. Blood cultures were performed using the Bactec blood culture system (BD Diagnostic Systems, Franklin Lakes, NJ, USA) and conventional identification and antibiotic-susceptibility tests were performed using a MicroScan system (Siemens, West Sacramento, CA, USA). When a single strain of bacteria was isolated from the blood culture, Verigene assays correctly identified 97.9% (94/96) of Gram-positive bacteria and 93.8% (137/146) of Gram-negative bacteria. Resistance genes mecA and vanA were correctly detected by the BC-GP assay, while the extended-spectrum β-lactamase CTX-M and the carbapenemase OXA resistance gene were detected from 30 cases cultures by the BC-GN assay. The BC-GP and BC-GN assays showed high agreement with conventional identification and susceptibility tests. These tests are useful for rapid identification of microorganisms and the detection of clinically important resistance genes from positive Bactec blood cultures. | 2016 | 26904669 |