# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 612 | 0 | 0.9642 | Pathways and roles of wall teichoic acid glycosylation in Staphylococcus aureus. The thick peptidoglycan layers of Gram-positive bacteria are connected to polyanionic glycopolymers called wall teichoic acids (WTA). Pathogens such as Staphylococcus aureus, Listeria monocytogenes, or Enterococcus faecalis produce WTA with diverse, usually strain-specific structure. Extensive studies on S. aureus WTA mutants revealed important functions of WTA in cell division, growth, morphogenesis, resistance to antimicrobials, and interaction with host or phages. While most of the S. aureus WTA-biosynthetic genes have been identified it remained unclear for long how and why S. aureus glycosylates WTA with α- or β-linked N-acetylglucosamine (GlcNAc). Only recently the discovery of two WTA glycosyltransferases, TarM and TarS, yielded fundamental insights into the roles of S. aureus WTA glycosylation. Mutants lacking WTA GlcNAc are resistant towards most of the S. aureus phages and, surprisingly, TarS-mediated WTA β-O-GlcNAc modification is essential for β-lactam resistance in methicillin-resistant S. aureus. Notably, S. aureus WTA GlcNAc residues are major antigens and activate the complement system contributing to opsonophagocytosis. WTA glycosylation with a variety of sugars and corresponding glycosyltransferases were also identified in other Gram-positive bacteria, which paves the way for detailed investigations on the diverse roles of WTA modification with sugar residues. | 2014 | 24365646 |
| 355 | 1 | 0.9640 | Evolution of multiple-antibiotic-resistance plasmids mediated by transposable plasmid deoxyribonucleic acid sequences. Two plasmid deoxyribonucleic acid sequences mediating multiple antibiotic resistance transposed in vivo between coexisting plasmids in clinical isolates of Serratia marcescens. This event resulted in the evolution of a transferable multiresistance plasmid. Both sequences, designated in Tn1699 and Tn1700, were flanked by inverted deoxyribonucleic acid repetitions and could transpose between replicons independently of the Excherichia coli recA gene function. Tn1699 and Tn1700 mediated ampicillin, carbenicillin, kanamycin, and gentamicin resistance but differed in the type of gentamicin-acetyltransferase enzymes that they encoded. The structural genes for these enzymes share a great deal of polynucleotide sequence similarity despite their phenotypic differences. The transposition of Tn1699 and Tn1700 to coresident transferable plasmids has contributed to the dissemination of antibiotic resistance among other gram-negative bacteria. These organisms have recently caused nosocomial infections in epidemic proportions. | 1979 | 387747 |
| 112 | 2 | 0.9626 | Glycopeptide resistance determinants from the teicoplanin producer Actinoplanes teichomyceticus. In enterococci and other pathogenic bacteria, high-level resistance to vancomycin and other glycopeptide antibiotics requires the action of the van genes, which direct the synthesis of peptidoglycan terminating in the depsipeptide D-alanyl-D-lactate, in place of the usual D-Ala-D-Ala. The Actinoplanes teichomyceticus tcp cluster, devoted to the biosynthesis of the glycopeptide antibiotic teicoplanin, contains van genes associated to a murF-like sequence (murF2). We show that A. teichomyceticus contains also a house-keeping murF1 gene, capable of complementing a temperature sensitive Escherichia coli murF mutant. MurF1, expressed in Streptomyces lividans, can catalyze the addition of either D-Ala-D-Ala or D-Ala-D-Lac to the UDP-N-acetyl-muramyl-L-Ala-D-Glu-d-Lys. However, similarly expressed MurF2 shows a small enzymatic activity only with D-Ala-D-lactate. Introduction of a single copy of the entire set of van genes confers resistance to teicoplanin-type glycopeptides to S. coelicolor. | 2004 | 15500981 |
| 207 | 3 | 0.9624 | Synthesis of an amphiphilic vancomycin aglycone derivative inspired by polymyxins: overcoming glycopeptide resistance in Gram-positive and Gram-negative bacteria in synergy with teicoplanin in vitro. Gram-negative bacteria possess intrinsic resistance to glycopeptide antibiotics so these important antibacterial medications are only suitable for the treatment of Gram-positive bacterial infections. At the same time, polymyxins are peptide antibiotics, structurally related to glycopeptides, with remarkable activity against Gram-negative bacteria. With the aim of breaking the intrinsic resistance of Gram-negative bacteria against glycopeptides, a polycationic vancomycin aglycone derivative carrying an n-decanoyl side chain and five aminoethyl groups, which resembles the structure of polymyxins, was prepared. Although the compound by itself was not active against the Gram-negative bacteria tested, it synergized with teicoplanin against Escherichia coli, Pseudomonas aeruginosa and Acinetobacter baumannii, and it was able to potentiate vancomycin against these Gram-negative strains. Moreover, it proved to be active against vancomycin- and teicoplanin-resistant Gram-positive bacteria. | 2022 | 36463278 |
| 118 | 4 | 0.9620 | Trichlorination of a Teicoplanin-Type Glycopeptide Antibiotic by the Halogenase StaI Evades Resistance. Glycopeptide antibiotics (GPAs) include clinically important drugs used for the treatment of infections caused by Gram-positive pathogens. These antibiotics are specialized metabolites produced by several genera of actinomycete bacteria. While many GPAs are highly chemically modified, A47934 is a relatively unadorned GPA lacking sugar or acyl modifications, common to other members of the class, but which is chlorinated at three distinct sites. The biosynthesis of A47934 is encoded by a 68-kb gene cluster in Streptomyces toyocaensis NRRL 15009. The cluster includes all necessary genes for the synthesis of A47934, including two predicted halogenase genes, staI and staK In this study, we report that only one of the halogenase genes, staI, is necessary and essential for A47934 biosynthesis. Chlorination of the A47934 scaffold is important for antibiotic activity, as assessed by binding affinity for the target N-acyl-d-Ala-d-Ala. Surprisingly, chlorination is also vital to avoid activation of enterococcal and Streptomyces VanB-type GPA resistance through induction of resistance genes. Phenotypic assays showed stronger induction of GPA resistance by the dechlorinated compared to the chlorinated GPA. Correspondingly, the relative expression of the enterococcal vanA resistance gene was shown to be increased by the dechlorinated compared to the chlorinated compound. These results provide insight into the biosynthesis of GPAs and the biological function of GPA chlorination for this medically important class of antibiotic. | 2018 | 30275088 |
| 212 | 5 | 0.9615 | Spectrum of antibacterial activity and mode of action of a novel tris-stilbene bacteriostatic compound. The spectrum of activity and mode of action of a novel antibacterial agent, 135C, was investigated using a range of microbiological and genomic approaches. Compound 135C was active against Gram-positive bacteria with MICs for Staphylococcus aureus ranging from 0.12-0.5 μg/ml. It was largely inactive against Gram-negative bacteria. The compound showed bacteriostatic activity in time-kill studies and did not elicit bacterial cell leakage or cell lysis. Checkerboard assays showed no synergy or antagonism when 135C was combined with a range of other antibacterials. Multi-step serial passage of four S. aureus isolates with increasing concentrations of 135C showed that resistance developed rapidly and was stable after drug-free passages. Minor differences in the fitness of 135C-resistant strains and parent wildtypes were evident by growth curves, but 135C-resistant strains did not show cross-resistance to other antibacterial agents. Genomic comparison of resistant and wildtype parent strains showed changes in genes encoding cell wall teichoic acids. 135C shows promising activity against Gram-positive bacteria but is currently limited by the rapid resistance development. Further studies are required to investigate the effects on cell wall teichoic acids and to determine whether the issue of resistance development can be overcome. | 2018 | 29720673 |
| 211 | 6 | 0.9614 | Preclinical pharmacology of GAR-936, a novel glycylcycline antibacterial agent. GAR-936 is an analog of minocycline, a semisynthetic derivative of tetracycline. It has broad-spectrum antibacterial activity in vitro and in vivo. The new class of tetracyclines to which GAR-936 belongs is named the glycylcyclines. Tetracyclines act by inhibiting protein translation in bacteria, presumably by binding to the 30S ribosomal subunit and blocking entry of amino-acyl transfer RNA molecules into the A site of the ribosome. This prevents incorporation of amino acid residues into elongating peptide chains. In general, tetracyclines are considered bacteriostatic and the critical therapeutic parameter is the area under the concentration-time curve. GAR-936 has bactericidal activity; at 4 times the minimum inhibitory concentration, a 2- to 3-log reduction in colony counts was seen against Streptococcus pneumoniae, Neisseria gonorrhoeae, Haemophilus influenzae, Escherichia coli, and Staphylococcus aureus. GAR-936 is active against the antibiotic-resistant gram-positive bacteria methicillin-resistant Staphylococcus aureus, penicillin-resistant S. pneumoniae, and vancomycin-resistant enterococci. It is most significant that GAR-936 and other glycylcyclines are active against bacterial strains carrying either or both of the two major forms of tetracycline resistance: efflux and ribosomal protection. Using isogenic panels of bacteria carrying various tetracycline-resistance determinants, a series of more than 300 analogs was tested for antibacterial activity, which allowed for structure-activity relationships to be determined. Results indicated that certain substituents at the 9 position of the tetracycline molecule restored activity against bacteria harboring genes encoding either or both efflux and ribosomal protection. A single chemical modification overcame the two molecularly distinct forms of resistance while maintaining activity against susceptible gram-positive, gram-negative, aerobic, and anaerobic bacteria. Although mutants can be generated that are less susceptible to previously studied glycylcyclines, only marginal differences in susceptibility to GAR-936 were noted. Therefore, whereas emergence of resistance to any widely administered antibiotic is a foregone conclusion, resistance to GAR-936 will not readily arise by trivial mutations in existing resistance genes. | 2000 | 11001329 |
| 119 | 7 | 0.9614 | Heterologous Expression Reveals Ancient Properties of Tei3—A VanS Ortholog from the Teicoplanin Producer Actinoplanes teichomyceticus. Glycopeptide antibiotics (GPAs) are among the most clinically successful antimicrobials. GPAs inhibit cell-wall biosynthesis in Gram-positive bacteria via binding to lipid II. Natural GPAs are produced by various actinobacteria. Being themselves Gram-positives, the GPA producers evolved sophisticated mechanisms of self-resistance to avoid suicide during antibiotic production. These self-resistance genes are considered the primary source of GPA resistance genes actually spreading among pathogenic enterococci and staphylococci. The GPA-resistance mechanism in Actinoplanes teichomyceticus—the producer of the last-resort-drug teicoplanin—has been intensively studied in recent years, posing relevant questions about the role of Tei3 sensor histidine kinase. In the current work, the molecular properties of Tei3 were investigated. The setup of a GPA-responsive assay system in the model Streptomyces coelicolor allowed us to demonstrate that Tei3 functions as a non-inducible kinase, conferring high levels of GPA resistance in A. teichomyceticus. The expression of different truncated versions of tei3 in S. coelicolor indicated that both the transmembrane helices of Tei3 are crucial for proper functioning. Finally, a hybrid gene was constructed, coding for a chimera protein combining the Tei3 sensor domain with the kinase domain of VanS, with the latter being the inducible Tei3 ortholog from S. coelicolor. Surprisingly, such a chimera did not respond to teicoplanin, but indeed to the related GPA A40926. Coupling these experimental results with a further in silico analysis, a novel scenario on GPA-resistance and biosynthetic genes co-evolution in A. teichomyceticus was hereby proposed. | 2022 | 36555354 |
| 368 | 8 | 0.9613 | Construction and complementation of in-frame deletions of the essential Escherichia coli thymidylate kinase gene. This work reports the construction of Escherichia coli in-frame deletion strains of tmk, which encodes thymidylate kinase, Tmk. The tmk gene is located at the third position of a putative five-gene operon at 24.9 min on the E. coli chromosome, which comprises the genes pabC, yceG, tmk, holB, and ycfH. To avoid potential polar effects on downstream genes of the operon, as well as recombination with plasmid-encoded tmk, the tmk gene was replaced by the kanamycin resistance gene kka1, encoding amino glycoside 3'-phosphotransferase kanamycin kinase. The kanamycin resistance gene is expressed under the control of the natural promoter(s) of the putative operon. The E. coli tmk gene is essential under any conditions tested. To show functional complementation in bacteria, the E. coli tmk gene was replaced by thymidylate kinases of bacteriophage T4 gp1, E. coli tmk, Saccharomyces cerevisiae cdc8, or the Homo sapiens homologue, dTYMK. Growth of these transgenic E. coli strains is completely dependent on thymidylate kinase activities of various origin expressed from plasmids. The substitution constructs show no polar effects on the downstream genes holB and ycfH with respect to cell viability. The presented transgenic bacteria could be of interest for testing of thymidylate kinase-specific phosphorylation of nucleoside analogues that are used in therapies against cancer and infectious diseases. | 2006 | 16461678 |
| 114 | 9 | 0.9612 | A novel enzyme conferring streptothricin resistance alters the toxicity of streptothricin D from broad-spectrum to bacteria-specific. Streptothricins (STs) produced by Streptomyces strains are broad-spectrum antibiotics. All STs consist of a carbamoylated D-gulosamine to which the beta-lysine homopolymer (1 to 7 residues) and the amide form of the unusual amino acid streptolidine (streptolidine lactam) are attached. Although many ST-resistance genes have been identified in bacteria, including clinically isolated pathogens and ST-producing Streptomyces strains, only one resistance mechanism has been identified to date. This mechanism involves the modification of the ST molecule by monoacetylation of the moiety of the beta-lysine(s). In this study, we successfully isolated a novel ST-resistance gene (sttH) from Streptomyces albulus, which is a known ST nonproducer. The in vitro analysis of SttH demonstrated that this enzyme catalyzes the hydrolysis of the amide bond of streptolidine lactam, thereby conferring ST resistance. Interestingly, the selective toxicity of ST-D possessing 3x beta-lysine moiety was altered from broad-spectrum to bacteria-specific by the hydrolysis of streptolidine lactam, although ST-F (1 x beta-lysine) was detoxified by SttH in both prokaryotes and eukaryotes (yeasts). STs have not been clinically developed due to their toxicities; however, in this study, we showed that hydrolyzed ST-D (ST-D-acid) exhibits potent antibacterial activity even when its toxicity against eukaryotic cells is reduced by SttH. This suggests that ST-D-acid is a potential candidate for clinical development or for use as a new lead compound for drug discovery. | 2006 | 16641084 |
| 225 | 10 | 0.9610 | Mechanisms of bactericidal action and resistance of polymyxins for Gram-positive bacteria. Polymyxins are cationic antimicrobial peptides used as the last-line therapy to treat multidrug-resistant Gram-negative bacterial infections. The bactericidal activity of polymyxins against Gram-negative bacteria relies on the electrostatic interaction between the positively charged polymyxins and the negatively charged lipid A of lipopolysaccharide (LPS). Given that Gram-positive bacteria lack an LPS-containing outer membrane, it is generally acknowledged that polymyxins are less active against Gram-positive bacteria. However, Gram-positive bacteria produce negatively charged teichoic acids, which may act as the target of polymyxins. More and more studies suggest that polymyxins have potential as a treatment for Gram-positive bacterial infection. This mini-review discusses recent advances in the mechanism of the antibacterial activity and resistance of polymyxins in Gram-positive bacteria.Key Points• Teichoic acids play a key role in the action of polymyxins on Gram-positive bacteria.• Polymyxin kills Gram-positive bacteria by disrupting cell surface and oxidative damage.• Modification of teichoic acids and phospholipids contributes to polymyxin resistance in Gram-positive bacteria.• Polymyxins have potential as a treatment for Gram-positive bacterial infection. | 2020 | 32157424 |
| 819 | 11 | 0.9610 | Trimethoprim resistance transposon Tn4003 from Staphylococcus aureus encodes genes for a dihydrofolate reductase and thymidylate synthetase flanked by three copies of IS257. Trimethoprim resistance mediated by the Staphylococcus aureus multi-resistance plasmid pSK1 is encoded by a structure with characteristics of a composite transposon which we have designated Tn4003. Nucleotide sequence analysis of Tn4003 revealed it to be 4717 bp in length and to contain three copies of the insertion element IS257 (789-790 bp), the outside two of which are flanked by directly repeated 8-bp target sequences. IS257 has imperfect terminal inverted repeats of 27-28 bp and encodes for a putative transposase with two potential alpha-helix-turn-alpha-helix DNA recognition motifs. IS257 shares sequence similarities with members of the IS15 family of insertion sequences from Gram-negative bacteria and with ISS1 from Streptococcus lactis. The central region of the transposon contains the dfrA gene that specifies the S1 dihydrofolate reductase (DHFR) responsible for trimethoprim resistance. The S1 enzyme shows sequence homology with type I and V trimethoprim-resistant DHFRs from Gram-negative bacteria and with chromosomally encoded DHFRs from Gram-positive and Gram-negative bacteria. 5' to dfrA is a thymidylate synthetase gene, designated thyE. | 1989 | 2548057 |
| 8434 | 12 | 0.9609 | A potent and selective antimicrobial poly(amidoamine) dendrimer conjugate with LED209 targeting QseC receptor to inhibit the virulence genes of gram negative bacteria. The pandemic of multidrug-resistant Gram negative bacteria (GNB) is a worldwide healthcare concern, and very few antibiotics are being explored to match the clinical challenge. Recently, amino-terminated poly(amidoamine) (PAMAM) dendrimers have shown potential to function as broad antimicrobial agents. However, PAMAM displays a generation dependent cytotoxicity to mammalian cells and low selectivity on bacterial cells, which limits PAMAM to be developed as an antibacterial agent for systemic administration. We conjugated G3 PAMAM with LED209, a specific inhibitor of quorum sensor QseC of GNB, to generate a multifunctional agent PAMAM-LED209. Intriguingly, PAMAM-LED209 showed higher selectivity on GNB and lower cytotoxicity to mammalian cells, yet remained strong antibacterial activity. PAMAM-LED209 also inhibited virulence gene expression of GNB, and did not induce antibiotic-resistance. The present work firstly demonstrated that PAMAM-LED209 conjugate had a highly selective anti-GNB activity and low cytotoxicity, which offered a feasible strategy for combating multidrug-resistant GNB infections. FROM THE CLINICAL EDITOR: This research team demonstrated that a novel PAMAM-LED209 conjugate had highly selective activity against Gram-negative bacteria, coupled with low cytotoxicity, offering a potential strategy for combating multidrug-resistant infections. | 2015 | 25461286 |
| 418 | 13 | 0.9608 | Plasmid-mediated mechanisms of resistance to aminoglycoside-aminocyclitol antibiotics and to chloramphenicol in group D streptococci. Genes conferring resistance to aminoglycoside-aminocyclitol antibiotics in three group D streptococcal strains, Streptococcus faecalis JH1 and JH6 and S. faecium JH7, and to chloramphenicol in JH6 are carried by plasmids that can transfer to other S. faecalis cells. The aminoglycoside resistance is mediated by constitutively synthesized phosphotransferase enzymes that have substrate profiles very similar to those of aminoglycoside phosphotransferases found in gram-negative bacteria. Phosphorylation probably occurs at the aminoglycoside 3'-hydroxyl group. Plasmid-borne streptomycin resistance is due to production of the enzyme streptomycin adenylyltransferase, which, as in staphylococci and in contrast to that detected in gram-negative bacteria, is less effective against spectinomycin as substrate. Resistance to chloramphenicol is by enzymatic acetylation. The chloramphenicol acetyltransferase is inducible and bears a close resemblance to the type D chloramphenicol acetyltransferase variant from staphylococci. | 1978 | 96732 |
| 9782 | 14 | 0.9607 | Homodimeric Tobramycin Adjuvant Repurposes Novobiocin as an Effective Antibacterial Agent against Gram-Negative Bacteria. Low permeability across the outer membrane is a major reason why most antibiotics are ineffective against Gram-negative bacteria. Agents that permeabilize the outer membrane are typically toxic at their effective concentrations. Here, we report the development of a broad-spectrum homodimeric tobramycin adjuvant that is nontoxic and more potent than the gold standard permeabilizing agent, polymyxin B nonapeptide. In pilot studies, the adjuvant confers potent bactericidal activity on novobiocin against Gram-negative bacteria, including carbapenem-resistant and colistin-resistant strains bearing plasmid-borne mcr-1 genes. Resistance development to the combination was significantly reduced, relative to novobiocin alone, and there was no induction of cross-resistance to other antibiotics, including the gyrase-acting fluoroquinolones. Tobramycin homodimer may allow the use of lower doses of novobiocin, overcoming its twin problem of efficacy and toxicity. | 2019 | 31557020 |
| 496 | 15 | 0.9607 | Cloning of genes that have environmental and clinical importance from rhodococci and related bacteria. Generalised and specialised transduction systems were developed for Rhodococcus by means of bacteriophage Q4. The latter was used in conjunction with DNA from an unstable genetic element of R. rhodochrous to construct resistance plasmids which replicate in strains of R. equi, R. erythropolis and R. rhodochrous. One of the plasmids, pDA21, was joined with Erythropolis coli suicide vector pEcoR251 to obtain shuttle plasmids maintained in both rhodococci and E. coli. Conjugation between these rhodococcal strains demonstrated all were interfertile with each other and that some of the determinants for this were located on the unstable genetic element. Plasmids derived from this element, such as pDA21, carried the conjugative and self-incompatibility capacities; deletion analysis revealed that DNA necessary for self-incompatibility overlapped with that for arsenic resistance. Rifampicin is one of the principal chemotherapeutic agents used to treat infections by rhodococci and related organisms. The genes responsible for two types of inactivation have been cloned. The sequence of the R. equi DNA responsible for decomposition of the antibiotic strongly resembled those of monooxygenases acting upon phenolic compounds, consistent with the presence of a naphthalenyl moiety in the rifampicin molecule. Antibiotic resistance conferred by the gene was surprisingly specific to the semisynthetic compounds rifampicin (150-fold increase) and rifapentine (70-fold). Similar specificity was observed with the other inactivation gene cloned, which ribosylates rifampicin at the 23-hydroxyl position. A 60-bp sequence upstream of the monooxygenase and ribosylation genes is strikingly similar suggesting a shared pattern of regulation. Rhodococcal arsenic resistance and azo dye degradation genes have been cloned and characterised. | 1998 | 10068797 |
| 611 | 16 | 0.9606 | The Staphylococcus aureus FASII bypass escape route from FASII inhibitors. Antimicrobials targeting the fatty acid synthesis (FASII) pathway are being developed as alternative treatments for bacterial infections. Emergence of resistance to FASII inhibitors was mainly considered as a consequence of mutations in the FASII target genes. However, an alternative and efficient anti-FASII resistance strategy, called here FASII bypass, was uncovered. Bacteria that bypass FASII incorporate exogenous fatty acids in membrane lipids, and thus dispense with the need for FASII. This strategy is used by numerous Gram-positive low GC % bacteria, including streptococci, enterococci, and staphylococci. Some bacteria repress FASII genes once fatty acids are available, and "constitutively" shift to FASII bypass. Others, such as the major pathogen Staphylococcus aureus, can undergo high frequency mutations that favor FASII bypass. This capacity is particularly relevant during infection, as the host supplies the fatty acids needed for bacteria to bypass FASII and thus become resistant to FASII inhibitors. Screenings for anti-FASII resistance in the presence of exogenous fatty acids confirmed that FASII bypass confers anti-FASII resistance among clinical and veterinary isolates. Polymorphisms in S. aureus FASII initiation enzymes favor FASII bypass, possibly by increasing availability of acyl-carrier protein, a required intermediate. Here we review FASII bypass and consequences in light of proposed uses of anti-FASII to treat infections, with a focus on FASII bypass in S. aureus. | 2017 | 28728970 |
| 117 | 17 | 0.9606 | Acyl depsipeptide (ADEP) resistance in Streptomyces. ADEP, a molecule of the acyl depsipeptide family, has an antibiotic activity with a unique mode of action. ADEP binding to the ubiquitous protease ClpP alters the structure of the enzyme. Access of protein to the ClpP proteolytic chamber is therefore facilitated and its cohort regulatory ATPases (ClpA, ClpC, ClpX) are not required. The consequent uncontrolled protein degradation in the cell appears to kill the ADEP-treated bacteria. ADEP is produced by Streptomyces hawaiiensis. Most sequenced genomes of Streptomyces have five clpP genes, organized as two distinct bicistronic operons, clpP1clpP2 and clpP3clpP4, and a single clpP5 gene. We investigated whether the different Clp proteases are all sensitive to ADEP. We report that ClpP1 is a target of ADEP whereas ClpP3 is largely insensitive. In wild-type Streptomyces lividans, clpP3clpP4 expression is constitutively repressed and the reason for the maintenance of this operon in Streptomyces has been elusive. ClpP activity is indispensable for survival of actinomycetes; we therefore tested whether the clpP3clpP4 operon, encoding an ADEP-insensitive Clp protease, contributes to a mechanism of ADEP resistance by target substitution. We report that in S. lividans, inactivation of ClpP1ClpP2 production or protease activity is indeed a mode of resistance to ADEP although it is neither the only nor the most frequent mode of resistance. The ABC transporter SclAB (orthologous to the Streptomyces coelicolor multidrug resistance pump SCO4959-SCO4960) is also able to confer ADEP resistance, and analysis of strains with sclAB deletions indicates that there are also other mechanisms of ADEP resistance. | 2011 | 21636652 |
| 121 | 18 | 0.9606 | Old and New Glycopeptide Antibiotics: Action and Resistance. Glycopeptides are considered antibiotics of last resort for the treatment of life-threatening infections caused by relevant Gram-positive human pathogens, such as Staphylococcus aureus, Enterococcus spp. and Clostridium difficile. The emergence of glycopeptide-resistant clinical isolates, first among enterococci and then in staphylococci, has prompted research for second generation glycopeptides and a flurry of activity aimed at understanding resistance mechanisms and their evolution. Glycopeptides are glycosylated non-ribosomal peptides produced by a diverse group of soil actinomycetes. They target Gram-positive bacteria by binding to the acyl-D-alanyl-D-alanine (D-Ala-D-Ala) terminus of the growing peptidoglycan on the outer surface of the cytoplasmatic membrane. Glycopeptide-resistant organisms avoid such a fate by replacing the D-Ala-D-Ala terminus with D-alanyl-D-lactate (D-Ala-D-Lac) or D-alanyl-D-serine (D-Ala-D-Ser), thus markedly reducing antibiotic affinity for the cellular target. Resistance has manifested itself in enterococci and staphylococci largely through the expression of genes (named van) encoding proteins that reprogram cell wall biosynthesis and, thus, evade the action of the antibiotic. These resistance mechanisms were most likely co-opted from the glycopeptide producing actinomycetes, which use them to avoid suicide during antibiotic production, rather than being orchestrated by pathogen bacteria upon continued treatment. van-like gene clusters, similar to those described in enterococci, were in fact identified in many glycopeptide-producing actinomycetes, such as Actinoplanes teichomyceticus, which produces teicoplanin, and Streptomyces toyocaensis, which produces the A47934 glycopeptide. In this paper, we describe the natural and semi-synthetic glycopeptide antibiotics currently used as last resort drugs for Gram-positive infections and compare the van gene-based strategies of glycopeptide resistance among the pathogens and the producing actinomycetes. Particular attention is given to the strategy of immunity recently described in Nonomuraea sp. ATCC 39727. Nonomuraea sp. ATCC 39727 is the producer of A40926, which is the natural precursor of the second generation semi-synthetic glycopeptide dalbavancin, very recently approved for acute bacterial skin and skin structure infections. A thorough understanding of glycopeptide immunity in this producing microorganism may be particularly relevant to predict and eventually control the evolution of resistance that might arise following introduction of dalbavancin and other second generation glycopeptides into clinics. | 2014 | 27025757 |
| 210 | 19 | 0.9604 | Development of antisense peptide-peptide nucleic acids against fluoroquinolone-resistant Escherichia coli. BACKGROUND: Fluoroquinolones (FQs) are potent and broad-spectrum antibiotics commonly used to treat MDR bacterial infections, but bacterial resistance to FQs has emerged and spread rapidly around the world. The mechanisms for FQ resistance have been revealed, including one or more mutations in FQ target genes such as DNA gyrase (gyrA) and topoisomerase IV (parC). Because therapeutic treatments for FQ-resistant bacterial infections are limited, it is necessary to develop novel antibiotic alternatives to minimize or inhibit FQ-resistant bacteria. OBJECTIVES: To examine the bactericidal effect of antisense peptide-peptide nucleic acids (P-PNAs) that can block the expression of DNA gyrase or topoisomerase IV in FQ-resistant Escherichia coli (FRE). METHODS: A set of antisense P-PNA conjugates with a bacterial penetration peptide were designed to inhibit the expression of gyrA and parC and were evaluated for their antibacterial activities. RESULTS: Antisense P-PNAs, ASP-gyrA1 and ASP-parC1, targeting the translational initiation sites of their respective target genes significantly inhibited the growth of the FRE isolates. In addition, ASP-gyrA3 and ASP-parC2, which bind to the FRE-specific coding sequence within the gyrA and parC structural genes, respectively, showed selective bactericidal effects against FRE isolates. CONCLUSIONS: Our results demonstrate the potential of targeted antisense P-PNAs as antibiotic alternatives against FQ-resistance bacteria. | 2023 | 37390375 |