# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8630 | 0 | 0.9979 | Environmental fate and behaviour of antibiotic resistance genes and small interference RNAs released from genetically modified crops. Rising global populations have amplified food scarcity across the world and ushered in the development of genetically modified (GM) crops to overcome these challenges. Cultivation of major crops such as corn and soy has favoured GM crops over conventional varieties to meet crop production and resilience needs. Modern GM crops containing small interference RNA molecules and antibiotic resistance genes have become increasingly common in the United States. However, the use of these crops remains controversial due to the uncertainty regarding the unintended release of its genetic material into the environment and possible downstream effects on human and environmental health. DNA or RNA transgenes may be exuded from crop tissues during cultivation or released during plant decomposition and adsorbed by soil. This can contribute to the persistence and bioavailability in soil or water environment and possible uptake by soil microbial communities and further passing of this information to neighbouring bacteria, disrupting microbial ecosystem services such as nutrient cycling and soil fertility. In this review, transgene mechanisms of action, uses in crops, and knowledge regarding their environmental fate and impact to microbes are evaluated. This aims to encapsulate the current knowledge and promote further research regarding unintended effects transgenes may cause. | 2022 | 35892194 |
| 8635 | 1 | 0.9978 | Techniques for enhancing the tolerance of industrial microbes to abiotic stresses: A review. The diversity of stress responses and survival strategies evolved by microorganism enables them to survive and reproduce in a multitude of harsh environments, whereas the discovery of the underlying resistance genes or mechanisms laid the foundation for the directional enhancement of microbial tolerance to abiotic stresses encountered in industrial applications. Many biological techniques have been developed for improving the stress resistance of industrial microorganisms, which greatly benefited the bacteria on which industrial production is based. This review introduces the main techniques for enhancing the resistance of microorganisms to abiotic stresses, including evolutionary engineering, metabolic engineering, and process engineering, developed in recent years. In addition, we also discuss problems that are still present in this area and offer directions for future research. | 2020 | 31206805 |
| 8628 | 2 | 0.9978 | Biofertilizer microorganisms accompanying pathogenic attributes: a potential threat. Application of biofertilizers containing living or dormant plant growth promoting bacterial cells is considered to be an ecofriendly alternative of chemical fertilizers for improved crop production. Biofertilizers opened myriad doors towards sustainable agriculture as they effectively reduce heavy use of chemical fertilizers and pesticides by keeping soils profuse in micro and macronutrients, regulating plant hormones and restraining infections caused by the pests present in soil without inflicting environmental damage. Generally, pathogenicity and biosafety testing of potential plant growth promoting bacteria (PGPB) are not performed, and the bacteria are reported to be beneficial solely on testing plant growth promoting characteristics. Unfortunately, some rhizosphere and endophytic PGPB are reported to be involved in various diseases. Such PGPB can also spread virulence and multidrug resistance genes carried by them through horizontal gene transfer to other bacteria in the environment. Therefore, deployment of such microbial populations in open fields could lead to disastrous side effects on human health and environment. Careless declaration of bacteria as PGPB is more pronounced in research publications. Here, we present a comprehensive report of declared PGPB which are reported to be pathogenic in other studies. This review also suggests the employment of some additional safety assessment protocols before reporting a bacteria as beneficial and product development. | 2022 | 35221573 |
| 8337 | 3 | 0.9977 | Dynamic Boolean modelling reveals the influence of energy supply on bacterial efflux pump expression. Antimicrobial resistance (AMR) is a global health issue. One key factor contributing to AMR is the ability of bacteria to export drugs through efflux pumps, which relies on the ATP-dependent expression and interaction of several controlling genes. Recent studies have shown that significant cell-to-cell ATP variability exists within clonal bacterial populations, but the contribution of intrinsic cell-to-cell ATP heterogeneity is generally overlooked in understanding efflux pumps. Here, we consider how ATP variability influences gene regulatory networks controlling expression of efflux pump genes in two bacterial species. We develop and apply a generalizable Boolean modelling framework, developed to incorporate the dependence of gene expression dynamics on available cellular energy supply. Theoretical results show that differences in energy availability can cause pronounced downstream heterogeneity in efflux gene expression. Cells with higher energy availability have a superior response to stressors. Furthermore, in the absence of stress, model bacteria develop heterogeneous pulses of efflux pump gene expression which contribute to a sustained sub-population of cells with increased efflux expression activity, potentially conferring a continuous pool of intrinsically resistant bacteria. This modelling approach thus reveals an important source of heterogeneity in cell responses to antimicrobials and sheds light on potentially targetable aspects of efflux pump-related antimicrobial resistance. | 2022 | 35078338 |
| 9583 | 4 | 0.9977 | Bacteriophages presence in nature and their role in the natural selection of bacterial populations. Phages are the obligate parasite of bacteria and have complex interactions with their hosts. Phages can live in, modify, and shape bacterial communities by bringing about changes in their abundance, diversity, physiology, and virulence. In addition, phages mediate lateral gene transfer, modify host metabolism and reallocate bacterially-derived biochemical compounds through cell lysis, thus playing an important role in ecosystem. Phages coexist and coevolve with bacteria and have developed several antidefense mechanisms in response to bacterial defense strategies against them. Phages owe their existence to their bacterial hosts, therefore they bring about alterations in their host genomes by transferring resistance genes and genes encoding toxins in order to improve the fitness of the hosts. Application of phages in biotechnology, environment, agriculture and medicines demands a deep insight into the myriad of phage-bacteria interactions. However, to understand their complex interactions, we need to know how unique phages are to their bacterial hosts and how they exert a selective pressure on the microbial communities in nature. Consequently, the present review focuses on phage biology with respect to natural selection of bacterial populations. | 2020 | 33170167 |
| 9728 | 5 | 0.9977 | Metagenomic analysis of metal(loid)s resistance genes and its environmental applications. Heavy metals are widely used to satiate the demands of growing industrialization and modern life. However, the presence of metal in large quantities in the ecosystem significantly impacts all life forms, particularly microorganisms. Many bacterial strains have developed metal resistance genes (MRG) to survive in extreme conditions through various mechanisms, such as active efflux, sequestration, permeability barriers, or co-resistance with antibiotic resistance genes. Metagenomic analysis is a powerful approach that enables the exploration of the functional repertoire and diversity of microorganisms, providing deeper insights into the mechanisms underlying the development of MRGs, and the active metabolites they produce to adapt to the polluted environments. With the advancement of these techniques, the knowledge can be further applied to environmental applications, such as bioremediation, biomonitoring, and synthetic biology. Bacteria with metal toxicity tolerance can be employed to enhance environmental sustainability and mitigate potential hazards. | 2025 | 40992856 |
| 8647 | 6 | 0.9977 | Eco-evolutionary strategies for relieving carbon limitation under salt stress differ across microbial clades. With the continuous expansion of saline soils under climate change, understanding the eco-evolutionary tradeoff between the microbial mitigation of carbon limitation and the maintenance of functional traits in saline soils represents a significant knowledge gap in predicting future soil health and ecological function. Through shotgun metagenomic sequencing of coastal soils along a salinity gradient, we show contrasting eco-evolutionary directions of soil bacteria and archaea that manifest in changes to genome size and the functional potential of the soil microbiome. In salt environments with high carbon requirements, bacteria exhibit reduced genome sizes associated with a depletion of metabolic genes, while archaea display larger genomes and enrichment of salt-resistance, metabolic, and carbon-acquisition genes. This suggests that bacteria conserve energy through genome streamlining when facing salt stress, while archaea invest in carbon-acquisition pathways to broaden their resource usage. These findings suggest divergent directions in eco-evolutionary adaptations to soil saline stress amongst microbial clades and serve as a foundation for understanding the response of soil microbiomes to escalating climate change. | 2024 | 39019914 |
| 8658 | 7 | 0.9977 | Microplastic exposure reshapes the virome and virus-bacteria networks with implications for immune regulation in Mytilus coruscus. Microplastic pollution has emerged as a critical environmental concern, yet its impacts on host-associated viral communities and immune balance in marine bivalves remain largely unexplored. In this study, Mytilus coruscus individuals were exposed to microplastics in situ for seven days. Virome sequencing and bioinformatic analyses revealed that microplastic exposure induced divergent responses in DNA and RNA viral communities. DNA viromes exhibited suppressed diversity and downregulation of core viral metabolic pathways, potentially reflecting reduced viral replication capacity under host immune stress. In contrast, RNA viromes displayed metabolic activation and functional shifts, including enriched glycan and nucleotide metabolism, possibly linked to enhanced viral activity or immune evasion. Phage-bacteria interaction networks were also restructured, showing increased associations with opportunistic pathogens such as Vibrio cholerae and Enterobacter, potentially affecting immune surveillance. Furthermore, the expression of antibiotic resistance genes (ARGs) in viral genomes was differentially regulated, suggesting pollutant-induced microbial selection that may challenge host immune resilience. These findings suggest that microplastics not only reshape virome composition and metabolic functions but also influence virus-mediated immune interactions, with important implications for disease susceptibility and immune homeostasis in filter-feeding shellfish. | 2025 | 41056669 |
| 8249 | 8 | 0.9977 | Biocontrol Traits Correlate With Resistance to Predation by Protists in Soil Pseudomonads. Root-colonizing bacteria can support plant growth and help fend off pathogens. It is clear that such bacteria benefit from plant-derived carbon, but it remains ambiguous why they invest in plant-beneficial traits. We suggest that selection via protist predation contributes to recruitment of plant-beneficial traits in rhizosphere bacteria. To this end, we examined the extent to which bacterial traits associated with pathogen inhibition coincide with resistance to protist predation. We investigated the resistance to predation of a collection of Pseudomonas spp. against a range of representative soil protists covering three eukaryotic supergroups. We then examined whether patterns of resistance to predation could be explained by functional traits related to plant growth promotion, disease suppression and root colonization success. We observed a strong correlation between resistance to predation and phytopathogen inhibition. In addition, our analysis highlighted an important contribution of lytic enzymes and motility traits to resist predation by protists. We conclude that the widespread occurrence of plant-protective traits in the rhizosphere microbiome may be driven by the evolutionary pressure for resistance against predation by protists. Protists may therefore act as microbiome regulators promoting native bacteria involved in plant protection against diseases. | 2020 | 33384680 |
| 8288 | 9 | 0.9977 | Metabolic pathways and antimicrobial peptide resistance in bacteria. Antimicrobial resistance is a pressing concern that poses a significant threat to global public health, necessitating the exploration of alternative strategies to combat drug-resistant microbial infections. Recently, antimicrobial peptides (AMPs) have gained substantial attention as possible replacements for conventional antibiotics. Because of their pharmacodynamics and killing mechanisms, AMPs display a lower risk of bacterial resistance evolution compared with most conventional antibiotics. However, bacteria display different mechanisms to resist AMPs, and the role of metabolic pathways in the resistance mechanism is not fully understood. This review examines the intricate relationship between metabolic genes and AMP resistance, focusing on the impact of metabolic pathways on various aspects of resistance. Metabolic pathways related to guanosine pentaphosphate (pppGpp) and guanosine tetraphosphate (ppGpp) [collectively (p)ppGpp], the tricarboxylic acid (TCA) cycle, haem biosynthesis, purine and pyrimidine biosynthesis, and amino acid and lipid metabolism influence in different ways metabolic adjustments, biofilm formation and energy production that could be involved in AMP resistance. By targeting metabolic pathways and their associated genes, it could be possible to enhance the efficacy of existing antimicrobial therapies and overcome the challenges exhibited by phenotypic (recalcitrance) and genetic resistance toward AMPs. Further research in this area is needed to provide valuable insights into specific mechanisms, uncover novel therapeutic targets, and aid in the fight against antimicrobial resistance. | 2024 | 38742645 |
| 8609 | 10 | 0.9977 | Nano-biochar regulates phage-host interactions, reducing antibiotic resistance genes in vermicomposting systems. Biochar amendment reshapes microbial community dynamics in vermicomposting, but the mechanism of how phages respond to this anthropogenic intervention and regulate the dissemination of antibiotic resistance genes (ARGs) remains unclear. In this study, we used metagenomics, viromics, and laboratory validation to explore how nano-biochar affects phage-host interactions and ARGs dissemination in vermicomposting. Our results revealed distinct niche-specific phage life strategies. In vermicompost, lytic phages dominated and used a "kill-the-winner" strategy to suppress antibiotic-resistant bacteria (ARB). In contrast, lysogenic phages prevailed in the earthworm gut, adopting a "piggyback-the-winner" strategy that promoted ARGs transduction through mutualistic host interactions. Nano-biochar induced the conversion of lysogenic to lytic phages in the earthworm gut, while concurrently reducing the abundance of lysogenic phages and their encoded auxiliary metabolic genes carried by ARB. This shift disrupted phage-host mutualism and inhibited ARGs transmission via a "phage shunting" mechanism. In vitro validation with batch culture experiments further confirmed that lysogenic phages increased transduction of ARGs in the earthworm gut, while nano-biochar reduced the spread of ARGs by enhancing lysis infectivity. Our study constructs a mechanistic framework linking nano-biochar induced shifts in phage lifestyles that suppress ARG spread, offering insights into phage-host coadaptation and resistance mitigation strategies in organic waste treatment ecosystems. | 2025 | 40838886 |
| 8772 | 11 | 0.9977 | The role of drought response genes and plant growth promoting bacteria on plant growth promotion under sustainable agriculture: A review. Drought is a major stressor that poses significant challenges for agricultural practices. It becomes difficult to meet the global demand for food crops and fodder. Plant physiology, physico-chemistry and morphology changes in plants like decreased photosynthesis and transpiration rate, overproduction of reactive oxygen species, repressed shoot and root shoot growth and modified stress signalling pathways by drought, lead to detrimental impacts on plant development and output. Coping with drought stress requires a variety of adaptations and mitigation techniques. Crop yields could be effectively increased by employing plant growth-promoting rhizobacteria (PGPR), which operate through many mechanisms. These vital microbes colonise the rhizosphere of crops and promote drought resistance by producing exopolysaccharides (EPS), 1-aminocyclopropane-1-carboxylate (ACC) deaminase and phytohormones including volatile compounds. The upregulation or downregulation of stress-responsive genes causes changes in root architecture due to acquiring drought resistance. Further, PGPR induces osmolyte and antioxidant accumulation. Another key feature of microbial communities associated with crops includes induced systemic tolerance and the production of free radical-scavenging enzymes. This review is focused on detailing the role of PGPR in assisting plants to adapt to drought stress. | 2024 | 39002396 |
| 8616 | 12 | 0.9977 | Mechanisms of inhibition and recovery under multi-antibiotic stress in anammox: A critical review. With the escalating global concern for emerging pollutants, particularly antibiotics, microplastics, and nanomaterials, the potential disruption they pose to critical environmental processes like anaerobic ammonia oxidation (anammox) has become a pressing issue. The anammox process, which plays a crucial role in nitrogen removal from wastewater, is particularly sensitive to external pollutants. This paper endeavors to address this knowledge gap by providing a comprehensive overview of the inhibition mechanisms of multi-antibiotic on anaerobic ammonia-oxidizing bacteria, along with insights into their recovery processes. The paper dives deeply into the various ways antibiotics interact with anammox bacteria, focusing specifically on their interference with the bacteria's extracellular polymers (EPS) - crucial components that maintain the structural integrity and functionality of the cells. Additionally, it explores how anammox bacteria utilize quorum sensing (QS) mechanisms to regulate their community structure and respond to antibiotic stress. Moreover, the paper summarizes effective removal methods for these antibiotics from wastewater systems, which is crucial for mitigating their inhibitory effects on anammox bacteria. Finally, the paper offers valuable insights into how anammox communities can recuperate from multi-antibiotic stress. This includes strategies for reintroducing healthy bacteria, optimizing operational conditions, and using bioaugmentation techniques to enhance the resilience of anammox communities. In summary, this paper not only enriches our understanding of the complex interactions between antibiotics and anammox bacteria but also provides theoretical and practical guidance for the treatment of antibiotic pollution in sewage, ensuring the sustainability and effectiveness of wastewater treatment processes. | 2024 | 39366232 |
| 9580 | 13 | 0.9977 | Antibiotic resistance in bacterial communities. Bacteria are single-celled organisms, but the survival of microbial communities relies on complex dynamics at the molecular, cellular, and ecosystem scales. Antibiotic resistance, in particular, is not just a property of individual bacteria or even single-strain populations, but depends heavily on the community context. Collective community dynamics can lead to counterintuitive eco-evolutionary effects like survival of less resistant bacterial populations, slowing of resistance evolution, or population collapse, yet these surprising behaviors are often captured by simple mathematical models. In this review, we highlight recent progress - in many cases, advances driven by elegant combinations of quantitative experiments and theoretical models - in understanding how interactions between bacteria and with the environment affect antibiotic resistance, from single-species populations to multispecies communities embedded in an ecosystem. | 2023 | 37054512 |
| 6449 | 14 | 0.9976 | Microbial regulation of natural antibiotic resistance: Understanding the protist-bacteria interactions for evolution of soil resistome. The emergence, evolution and spread of antibiotic resistance genes (ARGs) in the environment represent a global threat to human health. Our knowledge of antibiotic resistance in human-impacted ecosystems is rapidly growing with antibiotic use, organic fertilization and wastewater irrigation identified as key selection pressures. However, the importance of biological interactions, especially predation and competition, as a potential driver of antibiotic resistance in the natural environment with limited anthropogenic disturbance remains largely overlooked. Stress-affected bacteria develop resistance to maximize competition and survival, and similarly bacteria may develop resistance to fight stress under the predation pressure of protists, an essential component of the soil microbiome. In this article, we summarized the major findings for the prevalence of natural ARGs on our planet and discussed the potential selection pressures driving the evolution and development of antibiotic resistance in natural settings. This is the first article that reviewed the potential links between protists and the antibiotic resistance of bacteria, and highlighted the importance of predation by protists as a crucial selection pressure of antibiotic resistance in the absence of anthropogenic disturbance. We conclude that an improved ecological understanding of the protists-bacteria interactions and other biological relationships would greatly expand our ability to predict and mitigate the environmental antibiotic resistance under the context of global change. | 2020 | 31818598 |
| 8633 | 15 | 0.9976 | Bacterial interactions with arsenic: Metabolic pathways, resistance mechanisms, and bioremediation approaches. Arsenic contamination in natural waters is one of the biggest threats to human health, mainly due to its carcinogenic potential. Given its toxicity, nearly all organisms have evolved to develop an arsenic resistance mechanism. Conventional techniques of arsenic remediation suffer from various limitations of their applicability, cost and/or chemical intensive nature. In past few decades, bioremediation has emerged as a potential alternative to the conventional techniques. Microbial bioremediation, bacteria in particular, offers an eco-friendly and sustainable alternative, owing to its inherent metabolic capabilities to transform, immobilize or volatilize arsenic. Diverse biochemical pathways involving oxidation of As(III) to As(V), reduction of As(V) under anaerobic respiration or detoxification, methylation and demethylation, bioleaching and biomineralization into insoluble forms are essential mechanisms for arsenic remediation. These transformations, detoxification and resistance are regulated by specific genetic systems, including the ars operon, aio, arr and arsM, accessory genes such as arsR, arsB, acr3, arsC and arsP. The metabolic regulation of arsenic detoxification involves complex cofactor-dependent enzyme systems and environmental signal-responsive transcriptional control. Integrated approaches such as immobilization of bacteria on biochar or their encapsulation have also been known to enhance stability, reusability and stress tolerance. However, bioremediation is a very complex process due to the interrelationship of various influences such as, presence of specific microorganisms, nutrients and environmental factors. Therefore, it is of utmost importance to understand the bacterial interactions with arsenic for the development of bioremediation technologies. This review article tries to discuss the current status of arsenic bioremediation using bacteria, its field applications, challenges and future perspectives. It also includes the strengths, weaknesses, opportunities, threats (SWOT) analysis to assess the merits and demerits of using bacteria for bioremediation of arsenic. | 2025 | 41043264 |
| 8283 | 16 | 0.9976 | Stress responses as determinants of antimicrobial resistance in Gram-negative bacteria. Bacteria encounter a myriad of potentially growth-compromising conditions in nature and in hosts of pathogenic bacteria. These 'stresses' typically elicit protective and/or adaptive responses that serve to enhance bacterial survivability. Because they impact upon many of the same cellular components and processes that are targeted by antimicrobials, adaptive stress responses can influence antimicrobial susceptibility. In targeting and interfering with key cellular processes, antimicrobials themselves are 'stressors' to which protective stress responses have also evolved. Cellular responses to nutrient limitation (nutrient stress), oxidative and nitrosative stress, cell envelope damage (envelope stress), antimicrobial exposure and other growth-compromising stresses, have all been linked to the development of antimicrobial resistance in Gram-negative bacteria - resulting from the stimulation of protective changes to cell physiology, activation of resistance mechanisms, promotion of resistant lifestyles (biofilms), and induction of resistance mutations. | 2012 | 22424589 |
| 8636 | 17 | 0.9976 | Insights into the synthesis, engineering, and functions of microbial pigments in Deinococcus bacteria. The ability of Deinococcus bacteria to survive in harsh environments, such as high radiation, extreme temperature, and dryness, is mainly attributed to the generation of unique pigments, especially carotenoids. Although the limited number of natural pigments produced by these bacteria restricts their industrial potential, metabolic engineering and synthetic biology can significantly increase pigment yield and expand their application prospects. In this study, we review the properties, biosynthetic pathways, and functions of key enzymes and genes related to these pigments and explore strategies for improving pigment production through gene editing and optimization of culture conditions. Additionally, studies have highlighted the unique role of these pigments in antioxidant activity and radiation resistance, particularly emphasizing the critical functions of deinoxanthin in D. radiodurans. In the future, Deinococcus bacterial pigments will have broad application prospects in the food industry, drug production, and space exploration, where they can serve as radiation indicators and natural antioxidants to protect astronauts' health during long-term space flights. | 2024 | 39119139 |
| 8599 | 18 | 0.9976 | Artificial sweeteners stimulate horizontal transfer of extracellular antibiotic resistance genes through natural transformation. Antimicrobial resistance has emerged as a global threat to human health. Natural transformation is an important pathway for horizontal gene transfer, which facilitates the dissemination of antibiotic resistance genes (ARGs) among bacteria. Although it is suspected that artificial sweeteners could exert antimicrobial effects, little is known whether artificial sweeteners would also affect horizontal transfer of ARGs via transformation. Here we demonstrate that four commonly used artificial sweeteners (saccharin, sucralose, aspartame, and acesulfame potassium) promote transfer of ARGs via natural transformation in Acinetobacter baylyi ADP1, a model organism for studying competence and transformation. Such phenomenon was also found in a Gram-positive human pathogen Bacillus subtilis and mice faecal microbiome. We reveal that exposure to these sweeteners increases cell envelope permeability and results in an upregulation of genes encoding DNA uptake and translocation (Com) machinery. In addition, we find that artificial sweeteners induce an increase in plasmid persistence in transformants. We propose a mathematical model established to predict the long-term effects on transformation dynamics under exposure to these sweeteners. Collectively, our findings offer insights into natural transformation promoted by artificial sweeteners and highlight the need to evaluate these environmental contaminants for their antibiotic-like side effects. | 2022 | 34465899 |
| 8659 | 19 | 0.9976 | Phage phylogeny, molecular signaling, and auxiliary antimicrobial resistance in aerobic and anaerobic membrane bioreactors. Phage emit communication signals that inform their lytic and lysogenic life cycles. However, little is known regarding the abundance and diversity of the genes associated with phage communication systems in wastewater treatment microbial communities. This study focused on phage communities within two distinct biochemical wastewater environments, specifically aerobic membrane bioreactors (AeMBRs) and anaerobic membrane bioreactors (AnMBRs) exposed to varying antibiotic concentrations. Metagenomic data from the bench-scale systems were analyzed to explore phage phylogeny, life cycles, and genetic capacity for antimicrobial resistance and quorum sensing. Two dominant phage families, Schitoviridae and Peduoviridae, exhibited redox-dependent dynamics. Schitoviridae prevailed in anaerobic conditions, while Peduoviridae dominated in aerobic conditions. Notably, the abundance of lytic and lysogenic proteins varied across conditions, suggesting the coexistence of both life cycles. Furthermore, the presence of antibiotic resistance genes (ARGs) within viral contigs highlighted the potential for phage to transfer ARGs in AeMBRs. Finally, quorum sensing genes in the virome of AeMBRs indicated possible molecular signaling between phage and bacteria. Overall, this study provides insights into the dynamics of viral communities across varied redox conditions in MBRs. These findings shed light on phage life cycles, and auxiliary genetic capacity such as antibiotic resistance and bacterial quorum sensing within wastewater treatment microbial communities. | 2024 | 38677036 |